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Abstract

In this work, we are interested in representing the solution of Hadamard type fractional differential equation by intro-
ducing the concept of double sequence space 2¢(A). After that, we construct the Hausdorff measure of non-compactness
on the space 2°(A). Furthermore, we see the existence of a solution of Hadamard-type fractional differential equation
on the space 2¢(A). After that, we demonstrate an example to see the applicability of our results.
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1 Introduction

Fractional differential equations involving fractional order derivatives have gained a lot of importance in recent years
because of their variety of practical applications in different fields of science and engineering. Fixed point theory and
MNC are widely used in solving different types of differential and integral equations, see [10} 111 12} T3] 14} 16} 20} [30].
Moreover, MNC was first introduced by Kuratowski [25] in 1930. After that, G. Darbo [9] generalized Schauder’s fixed
point theorem with the help of Kuratowski’s MNC.

In this paper, we want to establish the solvability of the Hadamard-type fractional differential equation:

H

N . . a2 o .dt

) =5/ (@) =0, s(a2) = [ 5(050)F,

where aq, as, p* € RT with a1 < as < +00, 2 < p* < 3, Hp.~ is the Hadamard fractional derivative of order p*,
at

and § : [a1,a2] — R with g(t) # 0, t € [a1, as).

The theory of fractional differential equations deals with many scientific systems such as mathematical modelling
systems, in the fields of biology, chemistry, physics, polymer rheology, economy, applied science etc. To see work on
this follow the paper [17, [19] 2T, B33].
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Now, here we introduce the Double sequence space whose initial work was established by Bromwich in 1965 [§].
Recently, Zeltser [36] studied both the theory of topological double sequence space and the theory of summability of
double sequence space. Patterson and Savas [32] introduce the double lacunary statistical convergence. There are
concepts of convergence of double sequence space that have been extended by several authors such as Pringsheim’s
sense, statistically bounded, regularly statistically null etc. To see recent work on convergence of double sequence
space follow [I5] 24, [3T], [34].

2 Preliminaries

Now here we have recalled the definition of MNC which was introduced by Kuratowski and it has a very substantial
role in the case of infinite dimensional normed space or metric space. In 1955, Darbo [9] introduce F'PT which is the

generalization form of Schauder F'PT and Banach contraction principle. There are several types of well-known MNC.
First we represent one of the substantial MNC is the Hausdorff MNC which is presented as:

For a bounded subset H of a metric space [,

x(H) = inf{¢ > 0 : H has finite & — net in /}.
Another important MNC is Kuratowski, which is presented as (see [25]):

~*(H) = inf{&; > O|H = U H;, diam(H,) < & for 1 <1< m < oo},
=1
where, diam(Hl) indicates the diameter of the set H;, which is given by
diam(H;) = sup{d(s1, s2) : 51,52 € H;}.

The following definition will be used in the sequel.

Definition 2.1. [5] MNC in C is a function S : R — RT which satisfied the given conditions,

G) & (Z) = 0 for relatively compact subset of C.

K2+ (1-K) zl) gKg(z) + (1_]1{)5(31) for K € [0,1].
(vil) if 2, € Kg, 25, = 2, 234y C Zj for h=1,2,3,4,...and lim §(Z;) =0 then (V2 Z; # 6.

h—o0

)
)
)5 (
(v) g(C’onvZ = 5(2) .
s
)

— . —

The subfamily kerS, defined by (ii), represents kernel of measure S and since S(Ss0) < S (Zh) for any h, we can
say that S(Z.) = 0. Then Z,, = Nie, Z;l € kerS.

Double sequence space(2°(A):

Let T = (1nt) define the double sequence. The zero single sequence will be represented by ¥ = (4,7, ....) and the
zero double sequence will represented by 20. A double sequence T = (1)) convergence in Pringsheim’s sense or P—

convergent to Z if limy, y—oo(Wnk) = Z (denoted by P — limT = Z). Some works on double sequence spaces were
studied by Hardy [18], Moricz [27], Moricz and Rhoades [28].

Now here we represent the double sequence space 2°(A) over the normed space (X, ||.|]):
2°(A) = {< Wp >E€ 2% :< Aty >€ 2°(A)},

where Ay, = Wnk — Wnt1,k — Wnk+1 + Wnt1,k+1, for all nk € N. If (X,]].]|) is normed linear space then 2¢(A) also
normed linear space with the norm as :

T[] = sup [ ]| + Sup |1k + sup || At - (2.1)
n n,
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2.1 Some examples of double sequence space

Example 2.2 (Double sequence space defined by a modulus function [32]). Let S” be the set of all double

sequences of complex numbers. Let A = (dyn,%) be a non negative four dimensional matrix of real entries with
sup,, ,, Zn k=00 < 00, and we consider { as a modulus function, then

V(A f) =T eS":P—lim Z duom i f(|0n k) =03, (2.2)
'll,?)nk OO
Q" (A f) = TecS": P l&ril Z duvnkf( —Z’):O, for some 7 » , (2.3)
n,k=0,0
QL (A f)={Te8":sup Z o it ([nk|) <00 p (2.4)
Y k=0,0

Example 2.3 (Double sequence space [, (p,f,q,s) [6]). Let X be a complex linear space with the zero element
9 and X = (X,q) be a semi- normed with the seminorm q. Let us denote w?(X) as the linear space of all double
sequences T= (W) with W, € X. Let p = (pnk) be a double sequence of strictly positive real numbers and f be a
modulus function. Thus the double sequence space [, (p,f, q,s) can be expressed as :

L(p,f,q,8) = Te w2(X) : (nk)~° [f(q(nk))]P™ <00, s>0p. (2.5)

1

3
HANIE

Theorem 2.4. [26] Suppose that C is considered as a bounded subset of the Banach space 2¢(A). Here it is defined
the projector P,y : 2°(A) — 2¢(A) as

Pnk(é):@nl,énz, ..... Bk B, Doy e B, 20, 200, ... ),

where § =< 8, >€ 2¢(A) for all n,k € N. Then the Hasudorff MNC is defined as

x(€) = lim {sup {sup 8] | + Sllip |81k + su};c) ||A5nk|}} ) (2.6)

n,k—o0 Fet n

Definition 2.5. [2, 23] Let § > 0. Then the Hadamard fractional left integral of order i > 0 of a function ( :
[0,00) — R is defined as
_ 1 ¢ L =, 0. d
H i L) = — o< lnT F
=g | (i)

Definition 2.6. [2, 23] Let 7. > 0. Then the Hadamard fractional left derivative of a function (; : [n.,00) — R,
Z"’lg_lnfl(l') € [n«,00), n € N of order fi € (n —1,n) is stated as

= [ A A L I A
i, 60 - i () [, () GOF

Theorem 2.7 (Shauder). [I] Assume that § be a nonempty, closed, convex and bounded subset (NCCB) of a Banach
Space W. Then every compact, continuous mapping O : § — O has at least one FP.

Theorem 2.8. (Darbo [9]) Assume that § is a NCCB of a Banach Space W and let © : § — § be a continuous
mapping. Let us consider a constant €1 € [0,1) such that

C(§w) < é1 C(w),w C 3.

Then O has at least one fixed point in §.
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Lemma 2.9 ([35]). Considering 7* € (2,3), ) € L|a,b]. Then the Hadamard-type fractional boundary value problem

H,.- ((3) + Y(5) =0, & € (a,b)
b .
(o) = /) =0, (o= [ r61Ee)5
has a solution , P
01 [ 56,7+ 3% el
<<a>f/a 55,7+ (1) % € [a b,

where

6.7 1 (&) Mo k)"t = Z)" H(ng)” ! a<F<5<b,
a = * s . = )
’ () (In2)r =1 (In &)~ _1(1n%)” -1, a<5<F<b
b\t b o do
R=(In— - In—)"" ~t .
(n2) - [ ey

3 Solution in Sequence space 2°(A)

In this section, we are going to elaborate the solution of following HTFDE of boundary value problem

H o X;(Q) + Y;(Q) =0, Q(1,2) (3.1)

nt

, , , ey o 49 ,
GO =60 =0 %@ = [ @G@F: =123
1

Let us denote {Y;}22, =Y and {x;}52; = X, then the infinite system equations (3.1)) can be written as

Hp X(Q)+Y(Q) =0, Q(1,2) (3.2)

(1) = 0r5(1) = 0, %;(2) = / HD j=1,2.3..

To check the existence of the solutions we consider the following assumptions:
(d1) Let Y =Y, € (J x R, R), the continuous operator Y : J x 2°(A) — 2°(A) is presented as
YX(2) = Y(2, X(Q) =< Yur (2, () >,

where J = [1, 2] and the family of functions {(Yx) (Q)}fz ; is equicontinuous at every point of 2¢(A).
€
(d2) For each i € J and d € 2¢(A) the following inequilities hold:

. N

8nk(ﬁ) )

[ Yo (8| <

bnr () ‘

@nk (h) ‘ +

)

AV (1, B(h))| <

i (B)] + [ ()| [ A8 ()

where @i (h), Ynk(h) are real continuous functions such that @ni(%), tne(f) are uniformly converging and
equibounded on J. Also we denote

sup sup |pnk(ﬁ)| =17, sup sup Wnk(ﬁ)\ =7T,.
hel n.k hey .k
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Theorem 3.1. If the system of equations ( is satisfied the assumption (d1) — (d2) with the condition BYs < 1,
where B = U10g2 and U = maxgz \S(Q F) then given system 1) has at least one solution ¥ =< Xnr >€

C(J,2°(4))-

Proof . Let us take X = (Xnk), which is the double sequence function that satisfies the boundary value problem

and suppose that each (Y,x) be continuous for all n,k in N on J. First we define the operator © : C(J,2°(A)) —
C(J,2°(A)) by

2 _
(6)(@) = / S(0,7)Y(F 5 L

Our aim to see O is bounded. Now, applying ll and our assumption, we have for a fixed arbitrary Q € J,

1G0@ la=1 [ s@.¥(r, )%F I
—sup ||/ Y1 (F, X(F ))?F \+sup ||/ )Y (F, X(ﬂ)g [
row | | (0, F) AT (F, e

2
S/l S(Qf)[sup\ynl(f X(F ))I+SHP\Y1k(F X(r ))HSHPIAYnk(f X(F)I]

S

s/ sup S(Q, 1) sup {|En1 (F)] + (Vo1 ()| X1 (F)[} + sup {|@1x (F)] + W1 (F) X6 (F)[}
1 QeJ n k

up {16+ 1k (P04 (P

. 2 B - - " 5 -
SU/ sup [sup [Gn1 ()] + sup [Tn1 ()] SUp [Xn1 ()] + sup |1k ()] + sup (W1, (2)] sup X1k (2)]
1 QeJ n n k n k

+sup |G ()] + sup U ($2))] sup \AXnk(Q)I]

’Tl‘ =

. 2
SU/ %up[sug\ﬁn,k(ﬁ)\+Su’13|‘lfn7k(ﬂ)|supl>€n1( )|+Sup\@n/c( )\+Su113|‘1/n7k(9)|812p|>€1k(9)|
1 Qe] n, n n,k n,

L . s
+ Su]Ic) |pn,k(ﬂ)| + Sui) ‘\Iln,k(Q” Sll]}: |AXnk (Q)} ?

Thus, we have

W‘ %.

, 2 5 5 N
sup || (©X)(€) HASU/ [T1+ Yasup [Xn1(Q) + L1+ T2 sup X1k ()] + L1+ Lo Sup | AXnk ()]
Qes 1 n n.k

5
U S aE T
S/ 7 BY1 + TollX[[JdF = [3T1 + T2||X[]U log 2.
1

Hence we can write

| (©X)() [le@,ec(a)< [3Y1 + Y| |X|11B,

where B = Ulog 2. From this we can say that © is bounded. Now, we construct a set ézc(A) = 62c(A)(f, S0) =

{5 € C(J,2¢(A)) : |I€]] < s‘o}, which is closed , convex and bounded. Now, our aim is to see © is continuous on
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C(J, ). For &, 51 € C(J,2¢(A)) and for © € J, we have

1 (8€) (@)~ (85) () 2= | / PYCLEENTE = [ @MY EAG)TE s
~ 1 [ s [Y(f,aF))—Y(f, A AN
—sup | [ S [Yur 7 7)) ~ P ()] - |
2 )
bowp | 9@ ) [VaulF &P ~ VanlF 7] 5 |
k 1
: ,
wsup | [ 9@ F) [ (TP &) ~ Yl D) F |
< [ Far 1Y |
<B || Y§~ Y ||,

where B = Ulog?2. Since the function Y(F,£(F)) is equicontinuous in 2¢(A), given any € > 0, there we find 8, > 0 so
that

, . € .
| YE= Y1 ll< £ for | €= i < .
Hence we have

| (©€) @) - (86) (@) a< B

Thus we can conclude that © is continuous. Next, our aim to see © is continuous in J. For arbitrarily fix k; and
]kg in J

I (8€) (k1) ~ (é €) (ko) |l

| / @, P AP~ [ S YT AT s

—sup | / (i1, F) = S, )] Yon (P, P - (450w | [ 18001 7) = S0k, P Y P PN |
2 ,
wsup | [ 18000, F) = ke, ) AV ) |
< [ 1800 ) = 9000, )] sp a0 )]+ sup [0 0| s v, €0 )| |
dF

2
< / 1901, F) = S0, P 1| ¥ s ecan o

Now, applying the continuity of S(ky, F ), we have for given € > 0, we can find §, > 0 such that if || k; — ko || < d.

o ) _ r ] 4 ]
then |S(kq, F) — S(ke, F)| < elonacaion? Hence, we get

2 i
_ _ , _ _..d
I/(8€) k) — (8€) (ko) 2= 1 Y€ lcarcay [ 1901, F) = S0 )| F-

i €
<Y ‘ 3 tog 2
> H € HC(JLQ (A) HYSHC(-]LQC(A) 10g2 g

Hence, we can conclude that || (C:)f) (ky) — (@f) (k2) ||a< € Therefore, © is continuous on J. Lastly, we want to
establish that © is a Darbo condensing operator with respect to Hausdorff MAC x on the space C(J,2°(A)). Now,
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we represent the Hausdorff MA/C for @320@) which is a subset of C(J,2°(A)) and it is defined as

XC(I,2¢(A Gocia = sup Xac(a Q;cAp* .

cwz())(u)) gJﬂz()(fz()( >)

Now,

X2¢(A) K@Q§2c(A)> (@*)}

2 F 2 r
. . e o dF o dF
= lim [ sup (supll [ S(p* F)YuF,01(F))— | +sup || S, F)Y 1 (F,0:(F))— |l
n,k—o0 6*662C(A) n 1 2 k 1 F
2(\ . 3 B dF
+Su’]§ I/ Se 7F)AYnk(FaUl(F)>? 1]
n, 1
. % o - - - e o ey OF
< m [ s (SR Va5 ()] sup Vsl 57 ()] + sup AV, (7,5 (DI )]
n,k— oo 0*662C(A) 1 n k n,k F

2
< lim [ sup (/ %(@*,F)[Suplﬁm(:f)l+Sup\¢n1(F)lsuplUil(F)l+Stép\@1k(ﬁ)l
1 n n n

n,k—o00 U*Et’gzc(A)

)]

Rl

+sup [Yre(F)] sup Oy (F)] + 8Up [ Gk (F)] + P [ (F ) sup A (F)]]

2

< lim [ sup (/ S(p", F)[sup (sup [k (97)| sup [ (97)| + sup [¢nr (97) | sup [U7, (")
koo 6*662C(A) 1 p*€l nk n n,k k
+Su]13|¢nk(@ )|Su’1§|AUnk(p )Hf)]

’7\‘ %

2
< lim { sup ( max S(p*, F)

k=00 | 15 eBge

9 _
. * * * dF

< lim sup </ (", F) {T2 sup ||0*(p )||A] — )
n,k— oo U*Eéqu) 1 prel r

2 ;
U . _
<Yy < lim { sup —dF Sup||U*(@*)||A}

k=00 UreBge(ay /1 p*el

)

T (sup [0}, (9")] + sup |G (%)) + sup |AT, (0%)])

<BY, lim { sup supllU*(@*)lA}

n,k— oo U*eéQC(A) p*€J
§§T2XC(J,Qc(A)) (62C(A)) .

So, we can write

sllg]Ich(A) [(éézc(m) (@*)} < §T2XC(J,QC(A)) (@c(m)

XC(1,2¢(A)) (éézc(m) < ETQXC(J,QC(A)) (ézc(m) .

As BY, < 1, which implies that © is a Darbo condensing operator with Darbo constant BY,. Therefore, © has
at least one point in Gae(a) C 2°(A), which gives the solution of the system of equations (3.1). O

4 Example

Now, we represent an example to illustrate the above theorem. Let us consider the following Hadamard type
fractional differential boundary value problem :

HD;: £(e)+Y(e) =0, (4.1)
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with
sm=2/m=0. 2= [ KT
where Y () = Y(F) = Y (F, £(F) and

Nt 1 cos(f2+1)
nk(F ,S Z W COS 7T(TL + k’) Z TEW
n=~k n=u,k=v

Here v* = 2.5, j(¢) = Ing,

2 2 _
_ de d
R =(In2)>>"! —/ pE)(Ine)*> 1L = 0.6 —/ (ne)>* =
1 c 1
=0.46 — (In1.5)%>51n¢c]? = 0.46 — 0.104 x 0.301
=0.429

and

G(e,F) =

1 (In 6)1'5(ln%)l'5 — (In % 15(In2)t5
T(2.5)(In2)5 215 (1n 21

Now, our aim is to see Y is equicontinuous.

oo

1Y 20) = Y(F D) o= | S s coseln-+ 4) + cos(F? +1)
n=~k

’Q'U/U
n(n+1)

_ i 1 cosm(n + k) — cos(F?+1) I
(1 +k3)n3 o n(n+ 1) uv [|A
cos(f2+1)
= 1\ l~uv Duv
1
< uv Duv
771:;:1) Y [ES la

71'2 , ,
SN LRI

For the continuity of the space 2¢(A), given any & > 0, there exist any p* > 0 such that

, , N 6¢
| ) = DU) o< 5 =

for £, (F),Dni(F) € 2¢(A). Hence, we have || Y(F,£(F)) =Y (F,D(F ) la< €. So, we get the result, i.e assumption
(d1) satisfied. Now for the assumption (d2), let Gnir(F) = 5> 0, (1+7k4 and ¢, (F) = w be continuous, so
that @nx(F) converges uniformly to g—g and i (F) is equibounded on J. Also, we have

1 1 T 1 Xcos(F241) 1
T, =supsup — —_— = Yo = supsup — —_— =
L fernk z::k 1+kt 90 T orank ™ nz::k 6 6

Now for any £ € J, if £,.(F) € 2¢(A), then AY,..(F,£(F)) € 2¢(A), so we have

Y, 2(F))] < Zﬁmw(nw)u Y

n n=u,k=v

cos(f2+1)

IN

> 1 cos(F2+1) .
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Also, we have,

cos(f2+1)

|AY i (F,L2(F))| < 3 2 \cosw n+ k)| +n UZZU Y p—— AL, (F)]
< Pnk(F)] + [¢onr (F) | ALuu (F)].
Lastly, we have to show Tgé < 1. Here Y9 = %, and
= Ud
B= %—UlogQ—U[logF] <2 x0.30 = 0.60,
1

where we assume that U = maxge (¢, £ ) < 2. Hence we have, ToB < 1x060=01<1. Since, it satisfied all the
hypothesizes of the theorem (3.1]), we can establish that the equation (4.1) has at least one solution which belong to

C(I,2¢(A)).
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