
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,369 |
ساخت و بررسی عملکرد غشای کامپوزیتی لایه نازک پلیآمیدی در نمک زدایی و حذف ناپروکسن از محلولهای آبی | ||
شیمى کاربردى روز | ||
دوره 19، شماره 72، مهر 1403، صفحه 339-364 اصل مقاله (3.04 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2024.33675.2264 | ||
نویسندگان | ||
مسعود نصیری؛ سارا عبدی* | ||
دانشکده مهندسی شیمی، نفت و گاز، دانشگاه سمنان، سمنان 19111-35131، ایران | ||
تاریخ دریافت: 15 فروردین 1403، تاریخ بازنگری: 23 مهر 1403، تاریخ پذیرش: 03 آذر 1403 | ||
چکیده | ||
هدف از این مطالعه، حذف داروی ضد التهابی غیر استروئیدی ناپروکسن از محلولهای آبی به کمک غشای کامپوزیتی لایه نازک (TFC) بر پایهی پلیاترسولفون (PES) میباشد. این غشای نانوفیلتراسیون با استفاده از روش پلیمریزاسیون بین سطحی (IP) و با تشکیل یک لایهی پلیآمیدی فعال بر روی سطح بستر میکرومتخلخل ایجاد گردید. مورفولوژی، زبری و بار سطح غشای کامپوزیتی سنتز شده به ترتیب به کمک میکروسکوپ الکترونی روبشی نشری میدانی(FESEM) ، میکروسکوپ نیروی اتمی (AFM) و پتانسیل زتا مورد بررسی قرار گرفت. به منظور ارزیابی عملکرد غشای نانوفیلتراسیون ساخته شده، میزان پسزنی نمکهای تک ظرفیتی و دو ظرفیتی NaCl، Na2SO4، MgCl2 و MgSO4 اندازهگیری گردید. نتایج بدست آمده نشان داد که میزان پسزنی نمکهای حاوی آنیون دو ظرفیتی سولفات، Na2SO4 وMgSO4 ، در فشار عملیاتی 4 بار به ترتیب برابر با 90/5% و 61/8 % میباشد. دستاورد حاصل از این پژوهش میتواند دیدگاه وسیعی در رابطه با استفاده از غشاهای کامپوزیتی لایه نازک در حذف ناپروکسن به عنوان یک داروی آبگریز از محلولهای آبی ایجاد نماید. | ||
کلیدواژهها | ||
نانوفیلتراسیون؛ غشای کامپوزیتی لایه نازک؛ پلیمریزاسیون بین سطحی؛ نمکزدایی؛ ناپروکسن | ||
عنوان مقاله [English] | ||
Fabrication and Performance Evaluation of the Polyamide Thin Film Composite Membrane in Desalination and Removal of Naproxen from Aqueous Solutions | ||
نویسندگان [English] | ||
Masoud Nasiri؛ Sara Abdi | ||
Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35131-19111, Iran | ||
چکیده [English] | ||
The aim of this study is to remove the non-steroidal anti-inflammatory drug naproxen from aqueous solutions using a polyethersulfone (PES)-based thin film composite (TFC) membrane. This nanofiltration membrane was fabricated using the interfacial polymerization (IP) method and by forming an active polyamide layer on the microporous substrate surface. The morphology, roughness, and surface charge of the synthesized composite membrane were investigated using the field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), and zeta potential, respectively. To evaluate the performance of the fabricated nanofiltration membrane, the rejection rate of monovalent and divalent salts of NaCl, Na2SO4, MgCl2 and MgSO4 was measured. The obtained results showed that the rejection rate of salts containing divalent sulfate anion, Na2SO4 and MgSO4, at the operating pressure of 4 bar is equal to 90.5% and 61.8%, respectively. The result of this research can create a broad perspective regarding the use of thin film composite membranes in the removal of naproxen as a hydrophobic drug from aqueous solutions. | ||
کلیدواژهها [English] | ||
Nanofiltration, Thin film composite membrane, Interfacial polymerization, Desalination, Naproxen | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] Kaur, S., & Gauttam, P. (2022). Water Security in India: Exploring the Challenges and Prospects. Nontraditional Security Concerns in India: Issues and Challenges, 211-232.
[2] Bielenberg, J. D. (2015). When Heavyweights Get Thirsty, Contracts Fall to the Wayside: A Case for Common Contract Principles and State Decisis [Kansas v. Nebraska, 135 S. Ct. 1042 (2015)]. Washburn LJ, 55, 759.
[3] Islam, S. M. F., & Karim, Z. (2019). World’s demand for food and water: The consequences of climate change. Desalination-challenges and opportunities, 1-27.
[4] Dorling, D. (2021). World population prospects at the UN: our numbers are not our problem?.In The struggle for social sustainability (pp. 129-154). Policy Press.
[5] Alfonso-Muniozguren, P., Serna-Galvis, E. A., Bussemaker, M., Torres-Palma, R. A., & Lee, J. (2021). A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrasonics Sonochemistry, 76.
[6] Karimi-Maleh, H., Ayati, A., Davoodi, R., Tanhaei, B., Karimi, F., Malekmohammadi, S., & Sillanpää, M. (2021). Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. Journal of Cleaner Production, 125880.
[7] Nguyen, M. K., Lin, C., Bui, X. T., Rakib, M. R. J., Nguyen, H. L., Truong, Q. M., & Idris, A. M. (2024). Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state–of–the-art removal. Chemosphere, 141678.
[8] Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource technology, 224, 1-12.
[9] Silva, T. L. da, Costa, C. S. D., da Silva, M. G. C., & Vieira, M. G. A. (2022). Overview of non-steroidal anti-inflammatory drugs degradation by advanced oxidation processes. Journal of Cleaner Production, 131226.
[10] Bui, T. X., & Choi, H. (2009). Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. Journal of Hazardous Materials, 168(2-3), 602-608.
[11] Adityosulindro, S., Barthe, L., González-Labrada, K., Haza, U. J. J., Delmas, H., & Julcour, C. (2017). Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrasonics sonochemistry, 39, 889-896.
[12] Kråkström, M., Saeid, S., Tolvanen, P., Kumar, N., Salmi, T., Kronberg, L., & Eklund, P. (2022). Identification and quantification of transformation products formed during the ozonation of the non-steroidal anti-inflammatory pharmaceuticals ibuprofen and diclofenac. Ozone: Science & Engineering, 44(2), 157-171.
[13] Kumar, A., Kumar, A., Sharma, G., Naushad, M., Stadler, F. J., Ghfar, A. A., ... & Saini, R. V. (2017). Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis & photo-ozonation. Journal of Cleaner Production, 165, 431-451.
[14] Aoun, N., Boucheloukh, H., Harrouche, K., Boughrara, B., & Sehili, T. (2023). SrNiO3 perovskite synthesis for enhanced photodegradation of the nonsteroidal anti-inflammatory drug naproxen: a clean and sustainable process for water treatment. Inorganic Chemistry Communications, 158, 111459.
[15] El-Shafey, E. S. I., Al-Lawati, H. A., & Al-Hussaini, A. Y. (2014). Adsorption of fexofenadine and diphenhydramine on dehydrated and activated carbons from date palm leaflets. Chemistry and Ecology, 30(8), 765-783.
[16] Bohdziewicz, J., Kudlek, E., & Dudziak, M. (2014). Removal of selected pharmaceutical compounds from the simulated municipal secondary effluent using the nanofiltration process. Membranes and Membrane Processes in Environmental Protection, red, 119, 219-228.
[17] Kuttiani Ali, J., Abi Jaoude, M., & Alhseinat, E. (2021). Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Separation and Purification Technology, 266, 118585.
[18] Abdi, S., & Nasiri, M. (2019). Enhanced hydrophilicity and water flux of poly (ether sulfone) membranes in the presence of aluminum fumarate metal–organic framework nanoparticles: preparation and characterization. ACS applied materials & interfaces, 11(16), 15060-15070.
[19] Shamsodin, M., Fazli, M., & Nasiri, M. (2019). Preparation and characterization of PES–Diatomaceous organic–inorganic composite ultrafiltration membrane. Applied Chemistry Today, 14(50), 235-248 (in Persian).
[20] Aghdami, A., & Elyasi Kojabad, M. (2024). Wastewater Treatment Hybrid Process Using Coagulation-Membrane Filtration for Industrial Purposes. Applied Chemistry Today, 19(72), 269-282 (in Persian).
[21] Lu, X., Bian, X., & Shi, L. (2002). Preparation and characterization of NF composite membrane. Journal of Membrane Science, 210(1), 3-11.
[22] Diawara, C. K. (2008). Nanofiltration process efficiency in water desalination. Separation & purification reviews, 37(3), 302-324.
[23] Basu, S., & Balakrishnan, M. (2017). Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Separation and Purification Technology, 179, 118-125.
[24] Mulyanti, R., & Susanto, H. (2018, March). Wastewater treatment by nanofiltration membranes. In IOP conference series: earth and environmental science (Vol. 142, No. 1, p. 012017). IOP Publishing.
[25] Peñate, B., & García-Rodríguez, L. (2012). Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination, 284, 1-8.
[26] Song, Y., Sun, P., Henry, L. L., & Sun, B. (2005). Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. Journal of membrane science, 251(1-2), 67-79.
[27] Seah, M. Q., Lau, W. J., Goh, P. S., Tseng, H. H., Wahab, R. A., & Ismail, A. F. (2020). Progress of interfacial polymerization techniques for polyamide thin film (nano) composite membrane fabrication: a comprehensive review. Polymers, 12(12), 2817.
[28] Masjoudi, M., Golgoli, M., Nejad, Z. G., Sadeghzadeh, S., & Borghei, S. M. (2021). Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere, 263, 128043.
[29] Raicopol, M. D., Andronescu, C., Voicu, S. I., Vasile, E., & Pandele, A. M. (2019). Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohydrate Polymers, 214, 204-212.
[30] Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P. & .lsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(suppl_1), D668-D672.
[31] Tian, L., Jiang, Y., Li, S., Han, L., & Su, B. (2020). Graphene oxide interlayered thinfilm nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance. Separation and Purification Technology, 248, 117153.
[32] Zhang, W., Ding, L., Zhang, Z., Wei, J., Jaffrin, M. Y., & Huang, G. (2016). Threshold flux and limiting flux for micellar enhanced ultrafiltration as affected by feed water: experimental and modeling studies. Journal of Cleaner Production, 112, 1241-1251.
[33] Li, C. W., Liu, C. K., & Yen, W. S. (2006). Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu (II) ions. Chemosphere, 63(2), 353-358.
[34] Sharma, N., & Purkait, M. K. (2016). Enantiomeric and racemic effect of tartaric acid on polysulfone membrane during crystal violet dye removal by MEUF process. Journal of Water Process Engineering, 10, 104-112.
[35] Samper, E., Rodríguez, M., De la Rubia, M. A., & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and purification technology, 65(3), 337-342.
[36] Khorshidi, B., Thundat, T., Fleck, B. A., & Sadrzadeh, M. (2016). A novel approach toward fabrication of high performance thin film composite polyamide membranes. Scientific reports, 6(1), 1-10.
[37] Zhu, J., Hou, J., Yuan, S., Zhao, Y., Li, Y., Zhang, R. & Van der Bruggen, B. (2019). MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. Journal of Materials Chemistry A, 7(27), 16313-16322.
[38] Xu, M., Feng, X., Han, X., Zhu, J., Wang, J., Van der Bruggen, B., & Zhang, Y. (2021). MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Separation and Purification Technology, 275, 119150.
[39] Li, Y., Wong, E., Mai, Z., & Van der Bruggen, B. (2019). Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. Journal of Membrane Science, 592, 117396.
[40] Li, Y., Li, J., Soria, R. B., Volodine, A., & Van der Bruggen, B. (2020). Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration. Journal of Membrane Science, 603, 118002.
[41] Abdi, S., Nasiri, M., Yuan, S., Zhu, J., & Van der Bruggen, B. (2020). Fabrication of PES-based super-hydrophilic ultrafiltration membranes by combining hydrous ferric oxide particles and UV irradiation. Separation and Purification Technology, 118132.
[42] Gadelmawla, E. S., Koura, M. M., Maksoud, T. M., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133-145.
[43] Gao, X., Li, P., Gu, Z., Xiao, Q., Yu, S., & Hou, L. A. (2021). Preparation of poly (piperazine-amide) nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization: Performance and mechanism. Journal of Membrane Science, 638, 119711.
[44] Karimi, H., Rahimpour, A., & Shirzad Kebria, M. R. (2016). Pesticides removal from water using modified piperazine-based nanofiltration (NF) membranes. Desalination and Water Treatment, 57(52), 24844-24854.
[45] Zhang, K., Yang, K., Chen, Y., & Hu, Y. (2020). Ionic and pH responsive thin film composite hollow fiber nanofiltration membrane for molecular separation. Desalination, 496, 114709.
[46] Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Mohammad, A. W., Mohamed Zuki, F., & Jamari, N. L. A. (2022). Rejection mechanism of ionic solute removal by nanofiltration membranes: An overview. Nanomaterials, 12(3), 437.
[47] Van der Bruggen, B., Koninckx, A., & Vandecasteele, C. (2004). Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water research, 38(5), 1347-1353.
[48] Tansel, B. (2012). Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Separation and Purification Technology, 86, 119-126.
[49] Nodeh, M. K. M., Kanani, N., Abadi, E. B., Sereshti, H., Barghi, A., & Rezania, S. (2021). Equilibrium and kinetics studies of naproxen adsorption onto novel magnetic graphene oxide functionalized with hybrid glycidoxy-amino propyl silane. Environmental Challenges, 4, 100106.
[50] Röhricht, M., Krisam, J., Weise, U., Kraus, U. R., & Düring, R. A. (2009). Elimination of carbamazepine, diclofenac and naproxen from treated wastewater by nanofiltration. CLEAN–Soil, Air, Water, 37(8), 638-641.
[51] Abtahi, S. M., Marbelia, L., Gebreyohannes, A. Y., Ahmadiannamini, P., Joannis-Cassan, C., Albasi, C. & Vankelecom, I. F. (2019). Micropollutant rejection of annealed polyelectrolyte multilayer based nanofiltration membranes for treatment of conventionally-treated municipal wastewater. Separation and Purification Technology, 209, 470-481.
[52] Chon, K., KyongShon, H., & Cho, J. (2012). Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants. Bioresource Technology, 122, 181-188.
[53] Banjerdteerakul, K., Peng, H., & Li, K. (2023). COF-based nanofiltration membrane for effective treatment of wastewater containing pharmaceutical residues. Journal of Membrane Science, 681, 121780.
[54] Li, R., Mai, Z., Peng, D., Xu, S., Wang, J., Zhu, J., & Zhang, Y. (2022). In situ formation of porous organic polymer-based thin polyester membranes for loose nanofiltration. Journal of Membrane Science, 644, 120074.
[55] Yao, L., Qin, Z., Chen, Q., Zhao, M., Zhao, H., Ahmad, W. & Zhao, L. (2018). Insights into the nanofiltration separation mechanism of monosaccharides by molecular dynamics simulation. Separation and Purification Technology, 205, 48-57.
[56] Yuan, S., Zhang, G., Zhu, J., Mamrol, N., Liu, S., Mai, Z. & Van der Bruggen, B. (2020). Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes. Journal of Materials Chemistry A, 8(6), 3238-3245. | ||
آمار تعداد مشاهده مقاله: 101 تعداد دریافت فایل اصل مقاله: 176 |