
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,786 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
مدلسازی انتشاربدافزار HD-SEIRS در شبکههای پیچیده ناهمگن | ||
مدل سازی در مهندسی | ||
دوره 22، شماره 79، دی 1403، صفحه 17-28 اصل مقاله (1.03 M) | ||
نوع مقاله: مقاله کامپیوتر | ||
شناسه دیجیتال (DOI): 10.22075/jme.2024.29591.2394 | ||
نویسندگان | ||
الهام اسدی؛ سوده حسینی* | ||
گروه علوم کامپیوتر، دانشگاه شهید باهنرکرمان، کرمان، ایران | ||
تاریخ دریافت: 23 دی 1401، تاریخ بازنگری: 21 فروردین 1402، تاریخ پذیرش: 15 فروردین 1403 | ||
چکیده | ||
در سالهای اخیر اینترنت جزئی از الزامات زندگی انسان شده است. با استفادهی گسترده از اینترنت، وب و شبکههای اجتماعی برخط، تعداد آسیب پذیریها و تهدیدات امنیتی به میزان قابل توجهی افزایش یافته است. انواع مختلف بدافزارها (کرمها و ویروسها) به یک تهدید بزرگ برای امنیت سیستمها و شبکهها تبدیل شدهاند. در این راستا محققین به دنبال روشهایی برای شناسایی بدافزارها و مبارزه با آنها هستند. یکی از روشهای مورد استفاده در این زمینه مدلسازی انتشار بدافزار است تا با مدل کردن رفتار بدافزارها به شناسایی و مبارزه با آنها بپردازیم. در این مقاله یک مدل انتشار بدافزار مبتنی بر انتشار بیماریهای همهگیری در ساختار شبکهای ناهمگن با درنظر گرفتن دستگاههای متصل به شبکه و شبکهی اینترنت معرفی شده است. مدلسازی بر اساس مدل بیماریهای همهگیری مستعد–درمعرض آلودگی– آلوده–بهبودیافته برای دستگاهها و شبکه اینترنت انجام میشود. نتایج نشان میدهد سرعت انتشار بدافزار در مدل پیشنهادی HD-SEIRS در مقایسه با مدل SEIR به طور قابل توجهی کاهش یافته است. همچنین در این مقاله نسبت بازتولید اولیه برای مدل پیشنهادی محاسبه شده است و اثر تغییرات پارامترها روی مدل پیشنهادی مورد بررسی قرار میگیرد. | ||
کلیدواژهها | ||
مدلسازی انتشار بدافزار؛ نسبت بازتولید اولیه؛ شبکههای بیمقیاس؛ شبکههای ناهمگن؛ بیماریهای همهگیری | ||
عنوان مقاله [English] | ||
HD-SEIRS Malware Propagation Model in Heterogeneous Complex Networks | ||
نویسندگان [English] | ||
Elham Asadi؛ Soodeh Hosseini | ||
Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده [English] | ||
In recent years, the Internet has become part of the requirements of human life. With the widespread use of the Internet, the Web, and online social networks, the number of vulnerabilities and security threats has increased significantly. Various types of malwares (worms and viruses) have become a major threat to the security of systems and networks. In this regard, researchers are looking for ways to identify malware and fight against them. One of the methods used in this field is to model the malware propagation in order to identify and combat malware by modeling its behavior. In this article, a malware propagation model based on the propagation of epidemic diseases in a heterogeneous network structure, considering the devices connected to the network and the Internet, is introduced. Modeling is done based on the Susceptible-Exposed-Infected-Recovered epidemic model for devices and Internet networks. The results show that the speed of malware propagation in the proposed HD-SEIRS model is significantly reduced compared to the SEIR model. Also, in this article, the basic reproduction ratio (R_0 ) is calculated for the proposed model and the effect of parameter changes on the proposed model is investigated. | ||
کلیدواژهها [English] | ||
Malware propagation modeling, Basic reproductive ratio, Scale-free networks (SFNs), Heterogeneous networks, Epidemic diseases | ||
مراجع | ||
[1] Y. Ye, T. Li, D. Adjeroh, and S.S. Iyengar. “A survey on malware detection using data mining techniques.” ACM Computing Surveys (CSUR) 50, no. 3 (2017): 1-40. [2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang. “Complex networks: Structure and dynamics.” Physics Reports 424, no. 4-5 (2006): 175-308. [3] A. M. del Rey. “Mathematical modeling of the propagation of malware: a review.” Security and Communication Networks 8, no. 15 (2015): 2561-2579. [4] L. Zhao, Q. Wang, J. Cheng, Y. Chen, J. Wang, and W. Huang. “Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal.” Physica A: Statistical Mechanics and its Applications 390, no. 13 (2011): 2619-2625. [5] K. Sznajd-Weron, and J. Sznajd. “Opinion evolution in closed community.” International Journal of Modern Physics C 11, no. 06 (2000): 1157-1165. [6] J. Yang, C. Yao, W. Ma, and G. Chen. “A study of the spreading scheme for viral marketing based on a complex network model.” Physica A: Statistical Mechanics and its Applications 389, no. 4 (2010): 859-870. [7] M.T. Signes-Pont, A. Cortés-Castillo, H. Mora-Mora, and J. Szymanski. “Modelling the malware propagation in mobile computer devices.” Computers & Security 79 (2018): 80-93. [8] W.O. Kermack, and A.G. McKendrick. “A contribution to the mathematical theory of epidemics.” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115, no. 772 (1927): 700-721. [9] E. Kuhl, and E. Kuhl. “The classical SIR model.” Computational Epidemiology: Data-Driven Modeling of COVID-19 (2021): 41-59. [10] R. Almeida. “Analysis of a fractional SEIR model with treatment.” Applied Mathematics Letters, 84 (2018): 56-62. [11] S. Hosseini. “Defense against malware propagation in complex heterogeneous networks.” Cluster Computing, 24 (2021): 1199-1215. [12] J.R.C. Piqueira, M.A. Cabrera, and C.M. Batistela. “Malware propagation in clustered computer networks.” Physica A: Statistical Mechanics and its Applications, 573 (2021): 125958. [13] B.K. Mishra, A.K. Keshri, D.K. Mallick, and B.K. Mishra. “Mathematical model on distributed denial of service attack through Internet of things in a network.” Nonlinear Engineering 8, no. 1 (2019): 486-495. [14] X. Zhu, and J. Huang. “Malware propagation model for cluster-based wireless sensor networks using epidemiological theory.” PeerJ Computer Science 7 (2021): 728-738. [15] C. Nwokoye, and I.I. Umeh. “The SEIQR–V model: On a more accurate analytical characterization of malicious threat defense.” Int. J. Inf. Technol. Comput. Sci 9, no. 12 (2017): 28-37. [16] P. Van den Driessche. "Reproduction numbers of infectious disease models." Infectious Disease Modelling 2, no. 3 (2017): 288-303. [17] J.A. Wattis. “An introduction to mathematical models of coagulation–fragmentation processes: a discrete deterministic mean-field approach.” Physica D: Nonlinear Phenomena 222, no. 1-2 (2006): 1-20.
| ||
آمار تعداد مشاهده مقاله: 163 تعداد دریافت فایل اصل مقاله: 187 |