- Khan, M., Li, T., Hayat, A., Zada, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A. and Zhao, T., 2021. A concise review on the elastomeric behavior of electroactive polymer materials. International Journal of Energy Research, 46 (15), pp.14306–14337.
- Dong, Y., Yeung, K.W., Tang, C.Y., Law, W.C., Tsui, G.C.P. and Xie, X., 2021. Development of ionic liquid-based electroactive polymer composites using nanotechnology. Nanotechnology Reviews, 10, pp. 99–116.
- Maksimkin, A.V., Dayyoub, T., Telyshev, D.V. and Gerasi-menko, A.Y., 2022. Electroactive polymer-based composites for artificial muscle- like actuators: A review. Nanomaterials, 12, p. 2272.
- Tsiakmakis, K., Delimaras, V., Hatzopoulos, A.T., and Papadopoulou, M.S., 2023. Real time discrete optimized adaptive control for ionic polymer metal composites. WSEAS Transactions on Systems and Control, 18, pp. 26–37.
- Nasrollah, A., Soleimanimehr, H. and Khazeni, H., 2021. Nafion-based ionic- polymer-metal composites: displacement rate analysis by changing electrode properties. Advanced Journal of Science and Engineering, 2, pp.51–58.
- Yang, L., Wang, H., and Zhang, X., 2021. Recent progress in preparation process of ionic polymer-metal composites. Results in Physics, 29, p. 104800.
- Barbero, E. J., 2023. Finite Element Analysis of Composite Materials using Abaqus. CRC press.
- Zoski, C.G., 2006. Handbook of electrochemistry. Elsevier.
- Tozzi, K.A., Goncalves, R., Barbosa, R., Saccardo, M.C., Zuquello, A., Sgreccia, E., Narducci, R. Scuracchio, C.H. and di Vona, M.L., 2023. Improving electrochemical stability and electromechanical efficiency of ipmcs: tuning ionic liquid concentration. Journal of Applied Electrochemistry, 53, pp. 241–255.
- Nic, M., Jirat, J. and Kosata, B., 2005. compendium of chemical terminology. International Union of Pure and Applied Chemistry.
- NIST, 2025. Fine-structure constant. The nist reference on constants, units, and uncertainty. Availabe at : https//physics.nist.gov/cgi-bincuu/value (Accessed: 2025).
- NIST, 2025. Vacuum electric permittivity. The nist reference on constants, units, and uncertainty. Availabe at : https//physics.nist.gov/cgi-bincuu/value (Accessed: 2025).
- NIST, 2025. Density of material. The nist reference on constants, units, and uncertainty. Availabe at : https//physics.nist.gov/cgi-bincuu/value (Accessed: 2025).
- Ling, B., Wei, K., Wang, Z., Yang, X., Qu, Z. and Fang, D., 2020. Experimentally program large magnitude of poisson’s ratio in additively manufactured mechanical metamaterials. International Journal of Mechanical Sciences, 173, p. 105466.
- Lv, W. Li, D. and Dong, L., 2021. Study on blast resistance of a composite sandwich panel with isotropic foam core with negative poisson’s ratio. International Journal of Mechanical Sciences, 191, p. 106105.
- Bernat, J., Gajewski, P., Ko-lota, J. and Marcinkowska, A., 2023. Review of soft ac- tuators controlled with electrical stimuli: Ipmc, deap, and mre. Applied Sciences, 13, p. 1651.
- Chang, L., Wang, D., Hu, J., Li, Y., Wang, Y. and Hu, Y., 2021. Hierarchical struc- ture fabrication of ipmc strain sensor with high sensitivity. Frontiers in Materials, 8, p. 748687.
- Nasrollah, A., Soleimanimehr, H. and Haghighi, S.B., 2024. Ipmc-based actuators: An approach for measuring a linear form of its static equation. Heliyon, 10(4), e24687.
- Ragot, P.M., Hunt, A., Sacco, L.N., Sarro, P.M. and Mastrangeli, M., 2023. Manufacturing thin ionic polymer metal composite for sensing at the microscale. Smart Materials and Structures, 32, p. 035006.
- Kim, K.J., and Shahinpoor, M., 2003. Ionic polymer–metal composites: II. manufacturing techniques. Smart materials and structures, 12, p.65.
- Yu, M., Shen, H. and Dai, Z.d., 2007. Manufacture and performance of ionic polymer-metal composites. Journal of Bionic Engineering, 4, pp. 143–149.
- Khmelnitskiy, I.K., Vereschagina, L.O., Kalyonov, V.E., Lagosh, A.V. and Broyko, P., 2017. Improvement of manufacture technology and investigation of ipmc actuator electrodes. in 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (pp. 892–895).
- Sarkis, S., 2022. 3D Printing of IPMC Actuators Based on the Direct Assembly Method (Doctoral dissertation, the Lebanese American University).
- Pugal, D., Kim, S., Kim, K. and Leang, K., 2010. Ipmc: recent progress in modeling, manufacturing, and new applications. Electroactive Polymer Actuators and Devices, pp.228–237.
- Jasielec, J.J., 2021. Electrodiffusion phenomena in neuroscience and the nernst–planck–poisson equations. Electrochem, 2, 197–215.
- Olsen, Z.J. and Kim, K.J., 2021. A hyperelastic porous media framework for ionic polymer-metal composite actuators and sensors: thermodynamically consistent formulation and nondimensionalization of the field equations. Smart Materials and Structures, 30, p. 095024.
- Yang, J., Janssen, M., Lian, C. and Van Roij, , 2022. Simulating the charging of cylindrical electrolyte-filled pores with the modified poisson–nernst–planck equations. The Journal of Chemical Physics, 156.
- Dolatabadi, R., Mohammadi, A. and Baghani, M., 2021. A computational simulation of electromembrane extraction based on poisson-nernst-planck equations. Analytica Chimica Acta, 1158, p. 338414.
- Zhang, L. and Liu, W., 2020. Effects of large permanent charges on ionic flows via poisson–nernst–planck models. SIAM Journal on Applied Dynamical Systems, 19, pp. 1993–2029.
- Wen, Z., Zhang, L. and Zhang, M., 2021. Dynamics of classical poisson–nernst– planck systems with multiple cations and boundary layers. Journal of Dynamics and Differential Equations, 33, pp. 211–234.
- Wen, Z., Zhang, L., Zhang, M., 2021. Dynamics of classical poisson–nernst– planck systems with multiple cations and boundary layers. Journal of Dynamics and Differential Equations, 33, pp. 211–234.
- Wen, Z., Bates, P.W. and Zhang, M., 2021. Effects on i–v relations from small permanent charge and channel geometry via classical poisson–nernst–planck equations with multiple cations. Nonlinearity, 34, p. 4464.
- Liu, J.L. and Eisenberg, B., 2020. Molecular mean-field theory of ionic solutions: A poisson-nernst-planck-bikerman model. Entropy, 22, p. 550.
- Gwecho, A.M., Wang, S., Mboya, O.T., 2020. Existence of approximate solutions for modified poisson nernst-planck describing ion flow in cell membranes. American Journal of Computational Mathematics, 10, p. 473.
- Jain, R. K., Datta, S., Majumder, S. and Dutta, A., 2011. Two ipmc fingers based micro gripper for handling. International Journal of Advanced Robotic Systems, 8, p. 13. arXiv:https://doi.org/10.5772/10523.
- Jain, R., Datta, S. and Majumder, S., Design and control of an ipmc artificial muscle finger for micro gripper using emg signal. Mechatronics, 23, pp. 381–394.
- He, Q., Liu, Z., Yin, G., Yue, Y., Yu, M., Li, H., Ji, K., Xu, X., Dai, Z. and Chen, M., 2020. The highly stable air-operating ionic polymer metal compos- ite actuator with consecutive channels and its potential application in soft gripper. Smart Materials and Structures, 29, p. 045013.
- Bhattacharya, S., Tiwary, P., Shayaque, A., Bepari, B. and Bhaumik, S., 2020. Anticipation of actuation properties of ipmc for soft robotic gripper. In 2nd International Conference on Communication, Devices and Computing (pp. 405–416).
- Wang, H., Gao, J., Chen, Y. and Hao, L., 2021. Hammerstein modeling and hybrid control of force and position for a novel integration of actuating and sensing ionic polymer metal composite gripper. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235, pp. 3113–3124.
- Shin, J., 2022. Fabrication of Ionic Polymer Metal Composite (IPMC) Microgripper (Doctoral dissertation, the Seoul National University Graduate School).
- Jena, H., Pradhan, P. and Purohit, A., 2023. Chapter 4-Dielectric properties, thermal analysis, and conductivity studies of biodegradable and biocompatible polymer nanocomposites. In Biodegradable and Biocompatible Polymer Nanocomposites, pp. 113-140. Elsevier.
- Pradhan, P., Purohit, A., Mohapatra, S.S., Subudhi, C., Das, M., Singh, N.K. and Sahoo, B.B., 2022. A computational investigation for the impact of particle size on the mechanical and thermal properties of teak wood dust (TWD) filled polyester composites. Materials Today: Proceedings, 63, pp. 756-763.
- Pradhan, P., Purohit, A., Singh, J., Subudhi, C., Mohapatra, S.S., Rout, D. and Sahoo, B.B., 2022. Tribo-performance analysis of an agro-waste-filled epoxy composites using finite element method. Journal of The Institution of Engineers (India): Series E, 103(2), pp. 339-345.
- Purohit, A., Dehury, J., Sitani, A., Pati, P.R., Giri, J., Sathish, T. and Parthiban, A., 2024. A novel study on the stacking sequence and mechanical properties of Jute-Kevlar-Epoxy composites. Interactions, 245(1), p. 100.
- Purohit, A., Singh, S.K., and Nain, P.K.S., 2024. Analysis of mechanical and sliding wear characteristics of steel industries’ solid wastes-filled epoxy composites using an experimental design approach. MRS Advances, 9(11), pp. 910-915.
|