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 This study investigates the free vibration analysis of a sandwich plate made of functionally 

graded materials (FGMs) with porosities to evaluate the natural frequency. Five parameters 

contribute to FGM: porous index, elastic parameters, porosity ratio, length-to-thickness 

ratio, and length-to-width ratio. Taking into account the thickness of the FGM plate, it is 

assumed that the plate has a new distribution of porosities. An investigation based on 

classical plate theory (CPT) examines kinematic relationships. This paper presents results 

for metal-ceramic functionally graded rectangular plates with a power law through the 

variation of volume fractions with porous ratio. A margin of error of not more than 5% 

applies to thin and thick plates. To validate the analytical results, a numerical investigation 

was conducted by employing the finite element method using ANSYS. This investigation was 

conducted on a 3D model of an FG system with SOLID186 an eight-noded element. Using 

various boundary conditions and selected models, illustrated the influence of porosity 

distribution characteristics on sandwich plate dynamic response. It was found that the 

frequency parameter of the plate increases with the increase in the sandwich structure 

mounting constraints. The plate thickness was divided into N layers to show the effect of 

several layers on the obtained results. It was found that the natural frequency for the FGM 

sandwich plate remains the same regardless of the number of layers for the same FGM 

thickness. 
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1. Introduction 

The functionally graded materials (FGMs) are 
a class of composite that continuously varies 
material properties directionally, thereby 
eliminating stress concentrations [1]. The 
change in composition can be unidirectional, 
bidirectional, or multi-directional depending on 
the applications [2, 3]. The FGM fabricated are 
either stepped-wise or continuously graded 

along the defined directions. There are several 
manufacturing techniques available which are 
categorized as solid-based, liquid-based, and 
gas-based [4]. FGM plates may suffer from 
porosities and micro-voids during fabrication, 
which may compromise their strength [5]. 
Sandwich structures because of their low weight 
and high stiffness generate higher natural 
frequency and so have vast industrial 
applications [6]. It consists of a lightweight core 
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that gives damping and energy absorption 
properties bonded by face sheets at the top and 
bottom [7]. Many researchers have analyzed the 
behavior of sandwich structures by performing 
various analysis such as free vibration [8], 
impact [9], and buckling [10], to name a few.  

Bending analysis of the FG sandwich beam 
made up of isotropic core and FG skins was 
performed using shear deformation theory. They 
demonstrated that the impact of indices is less in 
softcore as compared to hardcore [11]. The 
penalty method was employed to investigate the 
free vibration behaviour of the FG core and its 
results are compared with isotropic materials. 
The problem of the FG beam was then solved 
under various boundary conditions. The 
accuracy of the proposed meshless method was 
verified with finite element analysis [12]. 
Buckling analysis of a sandwich plate composed 
of FG skin and isotropic core for different 
boundary conditions was performed in which an 
all-clamped boundary condition yielded the 
highest buckling load [10]. Buckling analysis of 
the FG sandwich plate under thermo-mechanical 
loading was performed using Navier’s method. 
The analysis was performed considering two 
cases: FG skin and isotropic core and FG core 
with isotropic skin [13]. Moreover, for similar 
cases, buckling analysis was performed using 
the refined finite strip method and found 
sandwich plates with homogenous face sheets 
and  FG core produce larger central deflection 
[14]. For hard core bending and buckling 
analysis of FG circular plate was performed 
using revised Reissner’s theory. Out of various 
boundary conditions studied simply supported 
boundary conditions produce maximum 
deflection and fixed-end supported boundary 
conditions develop minimum [15].  

Free vibration of porous FG sandwich beam 
was performed using the finite element method. 
A comparative analysis was conducted 
considering both hard core and soft core and the 
effect of grading indices on natural frequency 
was seen. It was found that the impact of 
material tailoring is more significant in softcore 
than hardcore [16]. The free vibration analysis 
of functionally graded plates with porosity 
composed of a mixture of Aluminium (Al) and 
Alumina (Al2O3) embedded in an elastic medium 
using a novel mathematical formulation was 
studied [17]. Investigated the influences of 
material property distribution and porosity 
impact on the FG sandwich plate natural 
frequencies based on different boundary 
conditions [18]. Investigated functionally graded 
porous plates reinforced by graphene platelets 
to determine their free vibration and stability 
[19]. The free vibration of the FG core sandwich 
beam problem was solved using the 

complementary functions method. The effect of 
different gradation types on the natural 
frequency was seen and the parameter was 
minimum for exponential graded core than 
power law gradation [20]. Numerous methods 
have been so far introduced in investigating the 
behavior of sandwich structures such as the 
finite element method [21], Navier's solution 
[22], Galerkin Vlasov's method [23], differential 
quadrature finite element method [24], high-
order shear deformation theory [19, 25], 
boundary finite element method [26], 
Asymptotic Numerical Method [27], meshless 
methods [28–30], collocation method [31], and 
iso-geometric approach [32]. 

With advancements in the manufacturing of 
FGMs, it is now possible to tailor properties in 
multiple directions by varying composition, 
microstructure, or porosity. The fabrication 
technique used can be categorized as solid-
based, liquid-based, and gas-based methods [33, 
34]. In one study, a powder metallurgy method 
was used to fabricate a layered FG disk by 
varying the volume fraction across the layers. 
The study revealed that sintering temperature, 
compaction load, and reinforcement particle 
shape play crucial roles in the occurrence of 
porosity [35, 36]. A FGM with multiple layers can 
be fabricated by the use of an additive 
manufacturing method [37,38]. However, in this 
technique also some challenges include melting, 
molten pool flow, crystallization, etc., influencing 
the product density [39]. 

To achieve continuous gradation of material 
properties methods such as a direct ink writing 
technique [40] and centrifugal casting can be 
used [41–43]. While porosity can be minimized, 
the careful selection of processes and 
parameters is essential for developing a dense 
product. Since porosity significantly impacts the 
performance of FG structures, a comparison of 
FG sandwich beams with and without porosity 
was conducted through bending and free 
vibration analysis [44, 45]. The distribution of 
porosity can be either even or uneven in both 
homogeneous structures and functionally 
graded materials (FGMs). Additionally, when 
analyzing nanostructures, such as plates or 
beams, the distribution of porosity is also taken 
into account [46]. 

The free vibration analysis of a functionally 
graded (FG) sandwich plate under various 
boundary conditions was conducted using 
Hamilton’s principle. In this study, the face 
sheets of the sandwich plate are composed of 
FGM, while the core is made of an isotropic 
material. It was observed that porosity 
significantly impacts beams with a high side-to-
thickness ratio. Among the boundary conditions 
considered, the clamped-clamped (FCFC) 
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condition resulted in the maximum frequency, 
while the simply supported (SSSS) condition 
yielded the minimum frequency [47].   

The purpose of this study is to provide a 
mathematical model and exact solution for 
determining the natural frequency of the FG 
sandwich plate. The free vibration of a 
rectangular sandwich plate containing 
functionally graded porous metal bearing power 
law material gradation was considered. 
Parametric investigation on the sandwich 
structure was investigated by understanding the 
impact of porous index, elastic parameters, 
porosity ratio, and length-to-thickness ratio. 

In the current investigation, it was assumed 
that the plate material varies smoothly along its 
thickness. Furthermore, the analysis was 
extended for different boundary conditions 
namely CCCC, CCCS, FCFC, CSCS, and SSSS 
boundary conditions. The accuracy of the 
present methodology was verified with 
numerous methods published in the literature.  

2. Mathematical Formulations 

The FGM plate used in this study was made from 
ceramic metal. Plate dimensions a, b, and h 
indicate length, width, and thickness, 
respectively. Initially, it is assumed that the top 
surface of the tape (z = h/2) has a material 
structure that is ceramic-rich and continually 
varies from the bottom surface, which is metal-
rich. 

To describe the plate's motion, the middle 
surface is given a cartesian coordinate system (x, 
y, z) in which x and y represent the plate's in-
plane coordinates, and z is the plate's out-of- 

plane coordinates. 
Figure 1 shows the geometrical description 

of the imperfect FGM plate. Since the effects of 
Poisson's ratio variation on FG plates' response 
are minimal, it is assumed to be constant for 
convenience [48]. Classical plate theory (CPT) 
gives stress-strain relations [49]. 

σxx =
E

1 − ν2
(εxx + νεyy)

σyy =
E

1 − ν2
(εyy + νεxx)

σxy = Gγxy =
E

2(1 + ν)
γxy

 (1) 

A plate element's linear constitutive 
relations, such as its bending and twisting 
moments. In the case of pure bending, the 
equation can be written as follows: 
 

Mxx = ∫ σxxzdz

h
2

−
h
2

= −D(
∂2w

∂x2
+ ν
∂2w

∂y2
)

Myy = ∫ σyyzdz

h
2

−
h
2

= −D(ν
∂2w

∂x2
+
∂2w

∂y2
)

Mxy = ∫ σxyzdz

h
2

−
h
2

= −(1 − ν)D
∂2w

∂x ∂y

 (2) 

where D rigidity parameter of the plate, 
 

D =
Eh3

12(1−ν2)
                      (3) 

Alternatively, the second-order equilibrium 
equation in Kirchhoff plate theory can be 
expressed as follows: 

                                 

 
Fig. 1. FGM Plate 

 
 

 
 
 
 
 
 

In Eq. 4, replace bending and twisting 
moments with equivalent expressions. The 
equilibrium can be expressed in terms of 
deflections (w) of the plate as follows: 

Df (
∂4w

∂x4
+ 2
∂4w

∂x2 ∂y2
+
∂4w

∂y4
) + Io

∂2w

∂t2
= 0 (5) 

 
where, 𝐷𝑓  is the flexural rigidity of the FG plate 

and 𝐼𝑜  is the inertial coefficient. 
 
2.1 Mathematical Modeling of 
Rectangular FGM Plates 
 

It is generally possible to interpret 
continuous variations in material properties of 
FG plate constituents using an exponential law, 
sigmoid law, or power-law interpretation. 
Assuming the power-law variation in FG plates, 
we can define ceramic volume fraction (Vc) as 
follows: 
 

∂2Mxx
∂x2
− 2
∂2Mxy

∂x ∂y
+
∂2Myy

∂y2
= Io
∂2w

∂t2
 

(4) 
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Vc(z) = (
z +
h
2
h
)

k

 (6a) 

The total volume fraction of FGM is the sum 
of metal and ceramic compositions and is stated 
as: 

Vm(z) + Vc(z) = 1 (6b) 

The metal volume fractions are represented 
by (Vm), and (k) is the power-law variation index 
which ranges from [0, ∞]. Assigning a value of k 
= 0 defines pure ceramic, whereas assigning a 
value of k = ∞ indicates pure metal. There is an 
assumption that the top surface's material 
structure (z=h/2) varies continuously from the 
bottom surface's metal-rich surface (z = h/2). To 
describe the plate motion, the cartesian 
coordinate system (x, y, z) is used, with x and y 
representing in-plane coordinates and z 

denoting out-of-plane coordinates. The 
gradation variation along the FGM can be 
written as: 

∅(z) = (∅c − ∅m)(
z +
h
2
h
)

k

+ ∅m (7) 

In Eq.(7), ∅c and ∅m are the values of the FG 
plate's ceramic and metal material properties 
and constituents, respectively. As shown in Fig. 
1, there are variations in materials properties. 
Based on the results of Figure 2, it is shown that 
material properties obtained for the power law 
index are generally k = 0.22, 0.55, 0.6, 1, 2, and 5. 
This range of values of k confirms the presence 
of both the ceramic and metal-rich mixture 
cases.  Poisson's ratio implies a constant, while 
Young's modulus (E) and mass density (ρ) vary 
through the plate thickness.  

  

(a)  (b)  

Fig. 2. Power law variation of FG (Al/Al2O3) (a) Elastic modulus (b) Mass density 

Following is an illustration of how to derive 
the governing differential equations defining the 
free vibration of FG plates based on general 
classical plate theory (CPT). 
 

DFG = ∫
z2

(1 − νf
2)
E(z)dz

h
2

−
h
2

  

 
DFG is the flexural rigidity of the plate, 

 

DFG =
(Ec − Em)h

3

(1 − vFG
2 )
× 

{
1

k + 3
−
1

k + 2
+

1

4(k + 1)
} +

𝐸𝑚ℎ
3

12(1 − 𝑣𝐹𝐺
2 )

 

(8) 

and, 

Io = ∫ρ(z)dz

h
2

−
h
2

 (9a) 

According to the volume fraction index, the 
FGM plate's inertial coefficient Io is: 
 

Io = ∫((ρc − ρm) (
z

h
+
1

2
)
k

+ ρm)dz

h
2

−
h
2

 

= ∫((ρc − ρm) (
z

h
+
1

2
)
k

)dz

h
2

−
h
2

+ 

(9b) 



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page 

5 

∫ρmdz

h
2

−
h
2

(ρc − ρm)h

(k + 1)
+ ρmh 

 
where Ec and Em are the Young modulus of a 
ceramic and metal material considered for 
analysis. The term h measures the thickness of 
the plate. Solving the equation the following 
form was then obtained:  
 

(

 
 
 
 
 
 
 
 

(Ec − Em)h
3

(1 − vFG
2 )
(
1

(k + 3)
−
1

(k + 2)
+

1

4(k + 1)
)

+
Emh

3

12(1 − vFG
2 )

(
∂4w

∂x4
+ 2
∂4w

∂x2 ∂y2
+
∂4w

∂y4
) +

(
(ρc − ρm)h

(k + 1)
+ ρmh)

∂2w

∂t2
= 0

)

 
 
 
 
 
 
 
 

 

 

(10) 

To solve equation (10), the separation 
method can be used by assuming the function of 
deflection as: 
 

𝑤(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦). 𝑤(𝑡)                                   (11) 

 
2.2 Mathematical Model for FGM Plates with 
Porous 
 

To determine how a rectangular plate of 
length a and width b behaves as a function of x 
and y directions, consider a plate whose edges 
satisfy the boundary conditions w = 0, Mx = 0 
along x=0 or a, My = 0 at y=0, or b. Therefore, the 
governing equations can be expressed as follows 
[50]: 
 

 w(x, y) = sin
mπx

a
sin
nπy

b
 (12) 

                                                              
In the case of an FGM plate with porosity, its 

material characteristics are estimated to vary 
continuously over the thickness of the plate as 
determined by the power-law distribution (k), 
which indicates that the porosity will be 
distributed evenly inside the material based on 
its thickness. Accordingly, the variation of 
modulus and density of an FGM can be treated 
as:  
 

E(z) = Em + (Ec − Em) (
z

h
+
1

2
)
k

− (Ec + Em)
β

2
 

(13a) 

 

ρ(z) = ρm + (ρc − ρm) (
z

h
+
1

2
)
k

−

(ρc + Em)
β

2
  

(13b) 

 

 
Fig. 3. The even porosity distribution across the core 

thickness 

The parameter β in Eq. 13 represents the 
porosity fraction within the functionally graded 
(FG) core of the sandwich plate. This equation 
assumes an equal distribution of porosity 
between the metal and ceramic phases. 
 

For the flexural rigidity of FG plate DFP,  
 

DFP =
1

(1−vFG
2 )
∫ {Em + (Ec −

h

2

−
h

2

Em) (
z

h
+
1

2
)
k

− (Ec + Em)
β

2
} z2dz    

=
(Ec−Em)h

3

(1−vFG
2 )
{
1

k+3
−
1

k+2
+

1

4(k+1)
} +  

Emh
3

12(1−vFG
2 )
−
(Ec+Em)βh

3

24(1−vFG
2 )

                                                               

(14) 

 
Moreover, the moment of inertia of a 

porosity-containing FGM plate can be expressed 
using its volume fraction index, which is 
described as follows: 

Io = ∫ ρ(z)
h

2

−
h

2

dz = ∫ (ρm + (ρc −

h

2

−
h

2

ρm) (
z

h
+
1

2
)
k

− (ρc + ρm)
β

2
)dz =

(

 (ρc−ρm) h

(k+1) 
+ ρmh

−(ρc + ρm)
βh

2

)                             

(15) 

Based on equations (10,14 and 15) and the 
general form of the deflection plate shown in 
equation (12) that meets its boundary 
conditions, the governing equation of the plate 
can be derived as described below. 

The exact solution of this equation can be 
obtained by solving it analytically. By applying 
force to the solution, one can determine the 
plate's deflection. 
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Df(
∂4w

∂x4
+ 2

∂4w

∂x2⋅∂y2
+
∂4w

∂y4
) + I0

∂2w

∂t2
= 0                                           

 

(16a) (

  
 

(Ec − Em)h
3

(1 − vFG
2 )
(
1

k + 3
−
1

k + 2
+

1

4(k + 1)
)

+
Emh

3

12(1 − vFG
2 )
−
(Ec + Em)βh

3

24(1 − vFG
2 ) )

  
 

 

(
∂4w

∂x4
+ 2

∂4w

∂x2 ⋅ ∂y2
+
∂4w

∂y4
) + 

(

(ρc−ρm)h

(k+1)
+ ρmh

−(ρc + ρm)
βh

2

)
∂2w

∂t2
=0 

(A × (
π

a
)4 + 2A × (

π

a
)2 × (

π

b
)2 +

A × (
π

b
)4)w(t) + (

(ρc−ρm)h

(k+1)
+ ρmh −

(ρc + ρm)
βh

2
)
∂2w(t)

∂t2
= 0   

(16b) 

where 

A =
(Ec − Em)h

3

(1 − vFG
2 )

 

{
1

k + 3
−
1

k + 2
+

1

4(k + 1)
} 

+
Emh

3

12(1 − vFG
2 )
−
(Ec + Em)βh

3

24(1 − vFG
2 )

 

(17) 

On solving, the following form was obtained 
as: 

ωmn
2 w(t) +

∂2w(t)

∂t2
= 0                                              (18) 

Then, the fundamental frequency can be 
given by, 

𝜔 =
𝜋2

𝑎2
(1 + 𝛾2) (

𝐴(𝑘+1)

𝜌𝑐ℎ+𝜌𝑚ℎ−(𝑘+1)(𝜌𝑐+𝜌𝑚)
𝛽ℎ

2

)

1

2

      (19) 

 

where γ =
a

b
  is the aspect ratio. For a square 

plate, the natural frequency can be obtained as, 
 

𝜔 =
2𝜋2

𝑎2
(

𝐴×(𝑘+1)

ℎ{𝜌𝑐+𝑘𝜌𝑚−(𝑘+1)(𝜌𝑐+𝜌𝑚)
𝛽

2
}
)

1

2

                    (20) 

 
where (ω) represents the natural frequency of 
the FG plate. The following formula can calculate 
the non-dimensional frequencies (ψ), 
 

𝜓 =
𝜔𝐿2

ℎ
√
∫ 𝜌(𝑧) 𝑑𝑧
ℎ/2
−ℎ/2

∫ 𝐸(𝑧) 𝑑𝑧
ℎ/2
−ℎ/2

                    (21) 

In this work, the type of sandwich plate 
considered comprised of FGM core and 
homogeneous face sheets, as shown in Fig. 4, 

and, in this case, the volume fraction of the FGM 
is taken as: 
 
𝑉1(𝑧) = 𝑉𝐿𝑃 ,                                𝑧 ∈ [ℎ1, ℎ2]         

𝑉𝑐(𝑧) = (
𝑧+
ℎ𝐹𝐺
2

ℎ𝐹𝐺
)

𝑘

, 𝑉𝑚 = (1 − 𝑉𝑐), 𝑧 ∈ [ℎ2, ℎ3] 

𝑉3(𝑧) = 𝑉𝑈𝑃,                                𝑧 ∈ [ℎ3, ℎ4]         

             (22) 

 
By assuming the skins are made from the 

same homogeneous materials, the mechanical 
properties 𝐸𝑈𝑃 = 𝐸𝐿𝑃  , 𝜐𝑈𝑃 = 𝜐𝐿𝑃=𝜐  and the 
mass density  𝜌𝑈𝑃 = 𝜌𝐿𝑃; The general 
representation of the flexural rigidity and inertia 
of the sandwich plate (𝐷SP& 𝐼SP ) can be written 
as, 
 

𝐷𝑆𝑃

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 ∫ (

𝑧2

(1 − 𝑣𝐿𝑃
2 )
𝐸(𝑧))

−
(ℎ𝐹𝐺)
2

−
(ℎ𝐹𝐺+ℎ𝐿𝑃)
2

𝑑𝑧

+
1

(1 − 𝑣𝐹𝐺
2 )

(

 
 
 

∫

 
 
 
 

(

  
 

𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)

(
𝑧

ℎ
+
1

2
)
𝑘

−

(𝐸𝑐 + 𝐸𝑚)
𝛽

2 )

  
 

(
ℎ𝐹𝐺
2
)

−(
ℎ𝐹𝐺
2
)

𝑧2

)

 
 
 

𝑑𝑧

+∫ (
𝑧2

(1 − 𝑣𝑈𝑃
2 )
𝐸(𝑧))

(
ℎ𝐹𝐺+ℎ𝑈𝑃
2

)

(
ℎ𝐹𝐺
2
)

𝑑𝑧

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 (23) 

𝐷𝑆𝑃

=
(𝐸𝑐 − 𝐸𝑚)ℎ𝐹𝐺

3

(1 − 𝑣𝐹𝐺
2 )
{
1

𝑘 + 3
−
1

𝑘 + 2

+
1

4(𝑘 + 1)
} +

𝐸𝑚ℎ𝐹𝐶
3

12(1 − 𝑣𝐹𝐺
2 )

−
(𝐸𝑐 + 𝐸𝑚)𝛽ℎ𝐹𝐺

3

24(1 − 𝑣𝐹𝐺
2 )

+
EUP

(1 − vUP
2 )
(
2(
hFG
2
+ hUP)

3

3
−
hFG
3

12
) 

(24) 

And, 
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𝐼𝑆𝑃 = ∫ 𝜌(𝑧)𝑑𝑧

ℎ
2

−
ℎ
2

=

(

 
 
 
 
 
 
 
 
 
 ∫ 𝜌(𝑧)𝑑𝑧

−(
ℎ𝐹𝐺
2
)

−(
ℎ𝐹𝐺+ℎ𝐿𝑃
2

)

+

∫

 
 
 
 
 
 
 

(

  
 

𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚)

(
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)
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𝛽
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(25a) 

If, hUP = hLP , then get, 
 

𝐼𝑆𝑃 =
(𝜌𝑐−𝜌𝑚)ℎ𝐹𝐺

(𝑘+1)
+ 𝜌𝑚ℎ𝐹𝐺 −

(𝜌𝑐 + 𝜌𝑚)
𝛽ℎ𝐹𝐺

2
+ 2𝜌ℎ𝑈𝑃              

 𝐼𝑆𝑃 =
(𝜌𝑐−𝜌𝑚)ℎ𝐹𝐺

(𝑘+1)
+ 𝜌𝑚ℎ𝐹𝐺 −

(𝜌𝑐 + 𝜌𝑚)
𝛽ℎ𝐹𝐺

2
+ 2𝜌ℎ𝑈𝑃                        

(25b)                       

 
The governing equation of plate now 

becomes (suppose m=n=1), 

𝐷𝑠𝑝 (
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2⋅𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
) + 𝐼0

𝜕2𝑤

𝜕𝑡2
= 0    

𝐷𝑆𝑃 = (
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2⋅𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
) +

((
(𝜌𝑐−𝜌𝑚)ℎ𝐹𝐺

(𝑘+1)
+ 𝜌𝑚ℎ𝐹𝐺 − (𝜌𝑐 +

𝜌𝑚))
𝛽

2
ℎ𝑃𝐺 + 2𝜌ℎ𝑈𝑃)

𝜕2𝑤

𝜕𝑡2
= 0        

(26)                       

FG sandwich plate with porous metal and 
Kirchhoff parallel plate, which are simply 
supported, can be related by equation (26). 
Using the comparison method, eq. (26) with a 
general equation of motion of SDF for free 
vibration of the structure. 

When m = n = 1, one can find the 
fundamental vibration frequency. As a square 
plate has a square base, finding the fundamental 
natural frequency is straightforward. 
 

 
Fig. 4. PFGM rectangular sandwich plate geometry 
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(27) 

where 

𝐶 =

(

 
 
 
 
 
 
 

(𝐸𝑐 − 𝐸𝑚)ℎ𝐹𝐺
3

(1 − 𝑣𝐹𝐺
2 )

{
1

𝑘 + 3
−
1

𝑘 + 2
+

1

4(𝑘 + 1)
}

+
𝐸𝑚ℎ𝐹𝐺

3

12(1 − 𝑣𝐹𝐺
2 )
−
(𝐸𝑐 + 𝐸𝑚)𝛽ℎ𝐹𝐺

3

24(1 − 𝑣𝐹𝐺
2 )

+
𝐸𝑈𝑃

12(1 − 𝑣𝑈𝑃
2 )
{(ℎ𝐹𝐺 + 2ℎ𝑈𝑃)

3 − ℎ𝐹𝐺
3 }
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 (28) 

 

𝜓 =
𝜔𝐿2

ℎ
√
∫ 𝜌(𝑧) 𝑑𝑧
ℎ/2
−ℎ/2

∫ 𝐸(𝑧) 𝑑𝑧
ℎ/2
−ℎ/2

    

 

(29) 

For convergence, the frequency parameter is: 
 

2.3 Numerical Investigation 
 

By using finite element analysis, engineers 
can mathematically recreate the behavior of 
existing engineering systems. This means that 
the study must represent a physical prototype 
with an accurate mathematical model [51]. 
Numerical calculations are performed to 
determine the critical value of the natural 
frequency in which the ANSYS program provides 
stable performance in a sandwich plate 
structure made of FGM [52- 54]. Figure 1 
illustrates the FG system employed in this 
analysis. SOLID186 elements with eight nodes 
are used to mesh the model as shown in Fig. 1. A 
mesh convergence test was performed to 
investigate the suitable mesh size to be used for 
carrying out the parametric studies. A 
comparison of sandwich flexural conductivity 
using functionally graded finite elements is 
carried out. Stipulations are linked between 
sandwich glue layers and between layers and 
skins to prevent genealogical development for 
each other at the connecting areas. 

The numerical solution included drawing the 
structure after selecting the element types and 
then adding the mechanical properties of 
structural materials. As a part of loadings, the 
boundary condition was specified and no 
external forces were applied to perform the 
modal analysis. Because the free vibration 
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analysis ignores all the forces and so the analysis 
reveals the internal characteristics of the system. 
The results of the present study were first 
compared with those published in the literature 
by solving general equations of motion for plate 
structures. This is done to determine if there is a 
discrepancy in the results calculated. This aligns 

with the analytical solution, indicating a 
sandwich plate structure with functionally 
graded material (FGM) cores and the influence 
of porosity. 
 
 

 

 

3. Results and Discussion  

 
This work aims to analyze the free vibration 
analysis of an FG sandwich plate structure made 
of porous metal through an analytical approach. 
The results of the evaluation included the 
natural frequency and mode shapes of the 
simply supported FG sandwich plate with 
various parameters, such as the thickness of the 
FGM core, the thickness of the face sheet, and the 
aspect ratio. There are two types of plate parts, 
upper and lower, and ceramic and metals are 
considered in the FGM part. To verify the results, 
ANSYS software is used for numerical 
simulation, and multiple curves are drawn 
following the simulation. As shown in Table 1, 
FG plates and face sheets have a wide range of 
material characteristics. There are 4 dimensions 
of the plates a=b=0.5m, the power-law index k = 
(0, 0.5, 1, 2, and 5), and the porosity factor i = (0 
to 0.4).  

 
Table 1. Material properties of the (Al/Al2O3) FG sandwich 

plates 

Property 

FG plate 
Face 
Sheets Aluminium 

(Al) 
Ceramic 
(Al2O3) 

Young’s modulus 
(GPa) 

70 380 210 

Mass density 
(kg/m3) 

2702 3800 7800 

Poisson's ratio 0.3 0.3 0.3 

 

Tables 2, 3, and 4 present highly accurate 
Kirchhoff (classical thin) plate frequencies for 
various parameters such as aspect ratio, 
thickness ratios, and porous factor, these results 
are useful for examining convergence and 
accuracy. The frequency parameters can be 
calculated according to the following formula 
[54], 
 

𝜓 =
𝜔𝐿2

ℎ
√
𝜌𝑜

𝐸0
    (30) 

where ω is the natural frequency, 𝜌𝑜 = 1 kg/m
3, 

Eo = 1 GPa 

A mathematical model is described in Table 2 
which predicts the natural frequency of square 
FGM sandwich plates without pores based on 
the same design and features of the sandwich 
plates. Slenderness ratios (a/h) of 10 and 100 as 
well as the volume fraction index (k) of 0 and 0.5 
in addition to the current study results are used 
to assess previous studies. 
Table 3, shows the results of the frequency 
parameter for four different aspect ratios, 
porous factors, and power-law indexes. It is 
noticed that increasing the grading indices 
decreases the natural frequency which improves 
the porous parameter due to the decreased 
material rigidity. In addition, as can be seen from 
Table 3, when frequency values are low (lower 
modes of frequency or thin plates), the analytical 
solution proposed by CPT is close to the 
proposed method, whereas, for higher mode 
frequencies and higher plate thickness, CPT will 

Fig. 5. The FG plate model with boundary conditions Fig. 6. The mesh was created for the desired model 
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have a larger error percentage. It appears there 
is an apparent error of 25% between the 
numerical and analytical solutions at (a=10 h), 
which is dependent on the power-law index and 
porous factor. 

The current analysis confirms the validity of 
the proposed approach. The impact of various 
boundary conditions such as CCCC, CCCS, CSCS, 
SSSS, and FCFC was studied and presented in 
Table 4. Out of these, the frequency is maximum 
for CCCC followed by CCCS, CSCS, SSSS, and 
FCFC. Also, the effects of the porous factor and 
gradient index were studied in which it was 
found that increasing the porosity fraction 
increases the natural frequency of an FG plate 
while the geometry parameter (k) increment 
reduces the natural frequency.  
 

Figures 7 and 8 demonstrate the analytical 
and numerical results of the frequency at β=0 
and, k=0, for various FGM thicknesses. 
Increasing the FGM thickness increases the plate 
thickness thereby increasing the natural 
frequency. Also, it can be seen that beyond a 
certain value of grading index (k) no changes in 
the magnitude of frequency were seen.  The 
effect of various face sheet thicknesses (0.5, 0.75, 
1, 2, and 2.5 mm) is presented in Figure 9. In 
contrast, in Fig. 10, the analytical results of the 
frequency at β=0 for various FGM thickness 
ratios are drawn, and it is concluded that the 
fundamental frequency increases with 
increasing porous factor. It is interesting to note 
that, here, beyond a/h=20, the change in 
frequency is insignificant.  
 

Figure 11 presents a 3D surface plot 
illustrating the frequency parameter of a 
functionally graded square sandwich plate. This 
analysis was conducted using MATLAB code 
results for a porosity level (β = 0) and a face 
sheet thickness of 2 mm, across various power-
law indices (k ranging from 0 to 100). Similarly, 
Figure 12 displays the plate's frequency 
parameter at a porosity level of (β = 0.1). The 
findings show that the frequency parameter 

increases with higher porosity and geometrical 
properties due to the enhanced stiffness of the 
plate. Conversely, it decreases as the volume 
fraction index increases. 

Figures 13 and 14 show analytical and 
numerical results for four values of aspect ratios 
(a/b = 0.75, 1, 1.5, and 2). The results show a 
good match with a maximum error percentage 
of 6 %. In Fig. 15, the effect of the layer on the 
natural frequency for different aspect ratios of 
FGM rectangular plate at k = 0.5 and 5 with 
various thickness ratios was found. At the same 
time, Fig. 16 identifies the variation of the 
fundamental natural frequencies for different 
layers of FGM square plate layers at k = 0.5 for 
different thickness ratios; the figures show that 
there are no significant changes in the plate 
frequencies that occurred with increasing the 
layers, the reason may be due to the effective 
materials properties of the FG plate remains the 
same regardless the number of layers.  

 
Table 2. Comparisons of non-dimensional fundamental 
frequency parameters of imperfect FGM sandwich plates 

with different thickness ratios (a/h), porosity, and power-
law exponents (k) 

 
a/h Ref. k=0 k=0.5 k=1 k=5 
10 [56] 1.8269 1.5768 1.4415 1.1757 

[25] 1.8269 1.5768 1.4415 1.1757 
[57] 1.8245 1.5746 1.4394 1.1740 
[58] 1.8242 1.5726 1.4371 1.1715 
Pres. 1.8205 1.5682 1.4280 1.1699 

100 [56] 1.8884 1.6192 1.4756 1.1970 

[25] 1.8884 1.6192 1.4756 1.1970 

[57] 1.8883 1.6192 1.4756 1.1970 
[58] 1.8883 1.6192 1.4756 1.1970 
Pres. 1.8851 1.6177 1.4658 1.1676 

 
 
 
 
 
 
 
 
 

 
 

Table 3. The first nondimensional frequencies of square plates of (Al/Al2O3) are computed analytically and numerically for a wide 
range of power-law exponents (k) and porosity parameters (β) 

 
a/h Porosity Power law index (k) 

0 0.5 1 2 5 10 

Ana. Num. Ana. Num. Ana. Num. Ana. Num. Ana. Num. Ana. Num. 
10 0 1.851 1.783 1.657 1.633 1.586 1.526 1.533 1.393 1.456 1.221 1.374 1.122 

0.1 1.872 1.804 1.666 1.644 1.589 1.528 1.530 1.382 1.445 1.187 1.353 1.071 
0.2 1.898 1.828 1.676 1.656 1.593 1.530 1.528 1.367 1.432 1.143 1.328 1.000 
0.5 2.004 1.927 1.723 1.713 1.610 1.638 1.516 1.292 1.365 1.268 1.187 1.137 

20 0 1.855 1.836 1.689 1.704 1.630 1.612 1.588 1.502 1.527 1.366 1.463 1.291 
0.1 1.874 1.855 1.698 1.715 1.636 1.617 1.590 1.499 1.525 1.349 1.455 1.264 
0.2 1.895 1.876 1.709 1.728 1.643 1.623 1.593 1.494 1.522 1.327 1.445 1.227 
0.5 1.982 1.960 1.756 1.782 1.672 1.648 1.608 1.471 1.510 1.565 1.399 1.457 
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50 0 1.940 1.935 1.833 1.850 1.799 1.794 1.777 1.732 1.746 1.719 1.711 1.701 
0.1 1.957 1.952 1.846 1.864 1.812 1.806 1.789 1.741 1.757 1.724 1.720 1.709 
0.2 1.975 1.971 1.861 1.880 1.825 1.820 1.802 1.781 1.768 1.749 1.729 1.717 
0.5 2.044 2.038 1.916 1.937 1.876 1.869 1.850 1.840 1.812 1.793 1.767 1.749 

100 0 2.201 2.208 2.198 2.188 2.135 2.129 2.129 2.128 2.118 2.120 2.102 2.078 
0.1 2.220 2.229 2.166 2.170 2.152 2.160 2.146 2.151 2.136 2.129 2.120 2.097 
0.2 2.239 2.241 2.185 2.176 2.171 2.180 2.166 2.149 2.155 2.090 2.139 2.112 
0.5 2.306 2.297 2.249 2.251 2.236 2.229 2.231 2.229 2.221 2.199 2.204 2.211 

 
Table 4. The nondimensional fundamental frequency of square Al/Al2O3 Sandwich plates (face sheet thickness 2mm) with varying 

porosity factors, power-law indices, and BCs. 
 

BC's (k) Porosity coefficient 
0 0.1 0.2 0.3 0.4 0.5 

CCCC 0 2.574 2.591 2.610 2.631 2.653 2.678 
0.5 2.435 2.446 2.457 2.469 2.481 2.494 
1 2.341 2.345 2.349 2.406 2.356 2.357 
2 2.227 2.223 2.217 2.255 2.197 2.178 
5 2.087 2.072 2.046 2.011 1.940 1.902 
10 2.009 1.981 1.938 1.839 1.826 1.814 

CCCS 0 2.306 2.321 2.339 2.354 2.378 2.401 
0.5 2.183 2.193 2.204 2.216 2.229 2.243 
1 2.100 2.106 2.112 2.117 2.123 2.128 
2 2.003 2.003 2.001 1.998 1.993 1.985 
5 1.886 1.876 1.862 1.840 1.793 1.786 
10 1.823 1.805 1.777 1.707 1.705 1.705 

CSCS 0 2.176 2.192 2.209 2.228 2.249 2.271 
0.5 2.065 2.076 2.088 2.101 2.116 2.131 
1 1.990 1.998 2.006 2.014 2.023 2.033 
2 1.904 1.907 1.909 1.911 1.911 1.910 
5 1.802 1.797 1.789 1.777 1.746 1.739 
10 1.747 1.736 1.719 1.669 1.659 1.652 

SSSS 0 1.935 1.952 1.971 1.991 2.014 2.038 
0.5 1.850 1.864 1.880 1.897 1.916 1.937 
1 1.794 1.806 1.820 1.834 1.850 1.869 
2 1.731 1.741 1.751 1.762 1.774 1.787 
5 1.659 1.664 1.669 1.673 1.669 1.663 
10 1.621 1.623 1.531 1.606 1.599 1.589 

FCFC 0 1.356 1.363 1.371 1.379 1.389 1.399 
0.5 1.274 1.277 1.280 1.284 1.288 1.291 
1 1.218 1.218 1.218 1.217 1.216 1.217 
2 1.153 1.148 1.143 1.136 1.127 1.116 
5 1.074 1.064 1.049 0.987 1.004 0.998 
10 1.031 1.015 0.995 0.959 0.949 0.940 

 
 

  

Fig. 7. Analytical results of the fundamental frequency at β=0  Fig. 8. Numerical results of the fundamental frequency at β=0  
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Fig. 9. Analytical results of the fundamental frequency at β=0  Fig. 10. Analytical results of the fundamental frequency 

parameter at β=0  

 

 

Fig. 11. Analytical natural frequency results at β=0 and k=0, for 

various FGM thicknesses 

Fig. 12. Analytical results of the natural frequency at β=0 

  

Fig. 13. Analytical results of the non-dimensional frequency of 

rectangular sandwich plates with various aspect ratios 

Fig. 14. Numerical results of the non-dimensional frequency 

of rectangular sandwich plates with different aspect ratios. 
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Fig. 15. The natural frequency of different numbers of layers of 

rectangular FGM plates at k=0.5. 

Fig. 16. The natural frequencies of FGM square plates for 

different numbers of layers at k = 0.5. 

Conclusion  

The present study examines the free 
vibrations of the FGM sandwich plate, assuming 
that the material properties vary depending on 
the thickness with power distribution. Analytical 
solutions for free vibration analysis of simply 
supported plates are shown to demonstrate the 
accuracy of the proposed methodology. In the 
current study, the numerical results are 
obtained using ANSYS. Verification studies with 
some literature give accurate results for other 
plate theories for specific aspect ratio values and 
porous factors. Moreover, the exact relationship 
provides a practical way to check analytical 
results and software validity, convergence, and 
accuracy. From the above results, it can be 
concluded that: 
1. Sandwich plates with a higher porous factor 

exhibit higher natural frequencies, while 

sandwich plates with a higher power-law index 

exhibit lower natural frequencies. 

2. Analytical results and those obtained 

numerically are very closely aligned; the error 

percentages are not greater than 6%. As the 

thickness ratio increases, the error will increase; 

for example, when the thickness ratio (a/h) is 

five, Kirchhoff's theory will produce an error of 

22%. 

3. Regardless of the layer thickness, the natural 

frequency of the FGM sandwich plate remains 

the same. 

4. CCCC's frequency parameter is higher than 

CCCS's, and this condition is higher than CSCS's, 

etc., as shown in Table 4. The frequency 

parameter for CCCC increases with the 

restrictions to the boundary conditions. 
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