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Abstract

An important goal of this study is to show that a sequence x, that is made up of new iterations to fixed points of
G-nonexpansive mappings on a Banach space that has a graph does converge weakly and strongly.
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1 Introduction

Banach [§] is credited with proving the Banach contraction principle, a crucial basic theorem that is used to solve
existence problems in a wide range of mathematical fields. The theorem is presented in Banach spaces with graphs
in its most recent iteration. A generalisation of the Banach contraction principle and the notion of G-contraction
were presented by Jachymski [6] in 2008 in the context of a metric space equipped with a directed graph. In 2012,
Aleomraninejad et al. [I] showed how to use fixed point theory and graph theory to look at some iterative scheme
results for G-contractive and G-nonexpansive mappings on graphs.

Alfuraidan and Khamsi [3] were the first to talk about the idea of G-monotone nonexpansive multivalued mappings
in 2015. They are defined in a metric space with a graph. Subsequently, we established sufficient conditions for the
existence of fixed points in hyperbolic metric spaces for this type of mapping. In 2015, Alfuraidan [2] came up with a
new way to describe the G-contraction and said that on a Banach space with a graph, there must be fixed points of
G-monotone pointwise contraction mappings.

Tiammee et al. proved in their 2015 paper [II] that the Halpern iteration process and Browder’s convergence
theorem for G-nonexpansive mappings in a Hilbert space with a directed graph strongly work the way they say they
do. In 2016, Tripak [I2] proved that the weak and strong convergence theorems for G-nonexpansive mappings of a
sequence x, made by the Ishikawa iteration are correct. These mappings were defined on a uniformly convex Banach
space equipped with a directed graph and corresponded to some common fixed points. We want to show that the
Ishikawa iteration can be used to find the fixed point where three G-nonexpansive mappings meet in a closed, convex
subset C of a uniformly convex Banach space X. If the conditions are right, C' has a directed graph. This will allow
us to prove both weak and strong convergence theorems.
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2 Preliminaries

In this section, we review several common graph notation, definitions, and lemmas that are necessary for the
research that will be done in this work. These include: Let (X,d) be a metric space. If Tz = z, a point z € X is
a fixed point of a mapping T. F(T), or F(T) =z € X : Ta = z, denotes the set of fixed points of T. Think about
a directed graph. G = (V(G), E(G)) is a direct graph in which all loops are included in the set of edges F(G) and
the graph’s vertices V(G). Assume that G has no parallel edges. Then, G can be thought of as a weighted graph by
giving each edge the distance between its vertices.

Definition 2.1. [6] The conversion of a graph G is the graph obtained from G by reversing the direction of edges
denoted by G~!, and
E(G™Y) ={(z,y) € X x X|(y,2) € B(G)}.

Definition 2.2. [6] Let « and y be vertices of a graph G. A path in G from x to y of length N (N € NU{0}) is a
sequence {wi}ﬁio of N + 1 vertices for which zy = z,xny =y, and (z;,2,41) € E(G), for i =0,1,..., N — 1.

Definition 2.3. [12] A graph G is said to be connected if there is a path between any two vertices of the graph G.

Definition 2.4. [12] A directed graph G = (V(G), E(G)) is said to be transitive if for any x,y,z € V(G) such that
(z,y) and (y, z) are in E(G), we have (z, z) are in E(G).

Definition 2.5. [12] Let (X, d) be a metric space, and C' be a nonempty subset of X. A mapping T : C — C'is
called edge-preserving if
(z,y) € E(G) = (Tz,Ty) € E(G)

for all z,y € C.

Definition 2.6. [12] Let C' be a nonempty convex subset of a Banach space X and G = (V(G), E(G)) a directed
graph such that V(G) = C. Then a mapping T : C — C' is G-nonexpansive if it satisfies the following conditions:

(#) T is edge-preserving.
(#) || Te — Ty ||<|| * — y || whenever (z,y) € E(G), for any z,y € C.

Definition 2.7. [§] Let C' be a nonempty closed convex subset of a real uniformly convex Banach space X. The
mappings T;(i = 1,2, 3) on C are said to satisfy Condition B if there exists a nondecreasing function f : [0,00) — [0, 00)
with f(0) =0 and f(r) > 0 for all » > 0 such that, for all z € C

max {|| z — T ||, |« = Tox |, [| # = Tz ||} = f(d(z, F))

where F' = F(Ty) N F(Te) N F(T5) and F(T;)(i = 1,2, 3) are the sets of fixed points of T;.

Definition 2.8. [12] Let C be a subset of a metric space (X, d). A mapping T is semicompact if for a sequence {x,,}
in C with lim, o d(2,,Tx,) = 0 there exists a subsequence {xn]} of {x,,} such that z,,, = p e C.

Definition 2.9. [2] A Banach space X is said to satisfy Opal’s property if the following inequality holds for any
distinct elements x and y in X and for each sequence {z,} weakly convergent to x where x — oo such that

liminf || z,, — 2 ||< liminf || z, —y || .
n—o0 n—oo

Definition 2.10. [I0] Let X be a Banach space. A mapping T with domain D and range R in X is demiclosed at 0
if for any sequence {z,} in D such that {z,} converges weakly to € D and {Tz,} converges strongly to 0 we have
Tz =0.

Lemma 2.11. [§] Let X be a uniformly convex Banach space, and {a,} a sequence in [4,1 — §] for some ¢ € (0,1).
Suppose that sequences {x,,} and {y,, } in X such that limsup,,_, . || Z» ||< ¢, limsup,,_, o || y» ||< cand limsup,,_, ., ||
axy, + (1 — ap)ys ||= ¢, for some ¢ > 0. Then lim, o || n — yn ||= 0.
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Lemma 2.12. [§] Let X be a Banach space, and R > 1 be a fixed number. Then X is uniformly convex if and only
if there exists a continuous, strictly increasing, and convex function g : [0, 00) — [0, 00) with g(0) = 0 such that

1Az + 1 =Ny [P <A 2 [P+ 0 =My I = A1 =Ng(| e =y |)
forall z,y € B.(0) ={z € X| ||z |[< R} and X € [0,1].

Lemma 2.13. [8] Let X be a Banach space that satisfies Opial’s property, and let {z,} be a sequence in X. Let
x,y € X such that lim, o || @, — 2 || and lim, o0 || @ — y || exist. If {z,,, } and {@y, } of {z,} converge weakly to
x and y respectively, then x = y.

3 Main results

In this section, we use the Ishikawa iteration generated from an arbitrary x for the common fixed point of three
G-nonexpansive mappings in a closed convex subset C' of a uniformly convex Banach space X furnished with a directed
graph to show both weak and strong convergence theorems.

Consider a Banach space X that has a directed graph G such that V(G) = C and E(G) is convex. Let C be
a nonempty closed convex subset of this space. Assume that G is a transitive graph. From C to C, the mappings
T;(i = 1,2,3) are G-nonexpansive, and F' = F(Ty) N F(T3) N F(T5) is nonempty. Assume that the sequence {x,} is
produced from any arbitrary xzg € C.

Tpae1 = (1 — ap)zy + T2,

where {a,}, {7y} and {8,} are real sequences in [0,1]. We first begin by proposition and lemma the following useful
results.

Proposition 3.1. Let pg € F be such that (zg,po), (Yo, 20), (20, P0), (Po, Zo), (Do, o), (Po, 20) € E(G). Then (zn,po),
(ympO)v (vap0)7 (pOa xn)7 (pOa yn)’ (o, 2n), (xm yn)v (ym mn)a (ZTH Yn) € E(G)

Proof . Let (xg,p0), (Yo, P0), (z0,p0) € E(G). Then (T120,T1po) € E(G) because T} is edge-preserving. Since pg € F,
(Thz0,p0) € E(G). By the convexity of E(G) and (T1z0,p0), (20,p0) € E(G) we have (z1,pp) € E(G). Then
(T5z1,p0) € E(G), because T3 are edge-preserving. By the convexity of E(G) and (Ts3x1,p0), (1,p0) € E(G), we
have (y1,p0) € E(G). Then (Tox1,po) € E(G), because Ty are edge-preserving. Again, by the convexity of F(G) and
(Taz1,p0), (Y1,p0) € E(G) we have(z1,p0) € E(G).

Next, we assume that (zx,po), (Y, Po), (2k,p0) € E(G). Then (T12,p0) € E(G) since T;’s are edge-preserving. By
the convexity of E(G) and (112, p0), (2k,p0) € E(G), we have (xg41,p0) € E(G). Then (Tsxk4+1,p0) € E(G), because
T3 is edge-preserving. By the convexity of E(G) and (T32x41,00), (Xk+1,P0) € E(G), we have (yx+1,p0) € E(G). Then
(Tazk41,p0) € E(G), because Ts is edge-preserving. By the convexity of E(G) and (Texk+1,p0), (Yk+1,00) € E(G),
we have (zx+1,p0) € E(G).

Hence, by induction, (2,,p0), (Yn,P0), (zn,p0) € E(G). Using a similar argument, an assumption that (po, o),

(panO)v (vaZO) S E(G), we can show that (p()vl'n)v (vayn)v (vaZn) S E(G) Therefore, (xnvyn)a (yn7xn)7 (vayn) €
E(G) by the transitivity of G. O

Lemma 3.2. Let po € F. Suppose that (2o, po), (Y0, P0), (20, P0); (Po, o), (Pos Yo)s (Po, 20) € E(G), for arbitrary z¢ €
C'. Then lim,_, || zn — po || exists.

Proof . Consider

| Yn —po | =l (1 = Bn)2n + BuT320 — po ||
< (X = Bn)(@n —po) | + [ Bu(Tszn — T3po) |
=l (1 = Ba)(@n —po) || +6n | (T5zn — T3po) ||
<[ (#n — po) = Bul(®n —po) || +Bn || (xn — po) ||
=(1=8n) || (xn —po) | +Bn || (xn — po) |l
=l xn —po || -
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By the G-nonexpansiveness of T; together with || v,

| 20 —

— Do ||S|| Tn

Po H _H 1- ’Yn)yn + nToxn —
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— po || we have

o |l

(
<I (X =) (yn —po) | + | v (T22n — Topo) ||
= (1 =9)(¥n —po) | +7n || (T2xn — T2po) ||
< (X =9)(Yn = po) |+ || (20 = po) |
=l (Yn —P0) = Yn(yn —p0) || +¥n || (xn = po) ||
=1 =) | (Yo —po) I +7n [ (xn —p0) ||
<A =) | (@ —po) | +vn || (xn —po) |l
= zn —po || -

By the G-nonexpansiveness of T; together with || z,

—po |l =l (1= an)zn +

<= an)(zn -

=1l ( )(zn —
( )

SH ]-_an Zn —

H Tn+1
1—a,
=l (zn

—po |l
— Po ||'

:H Zn
< zn

We have | ns1 — po 1|l # — po [l Then {|| 2
particular, the sequence {z,} is bounded. O

—po [I<[lzn

7p0) 7an(zn
=1 —an) [ (zn

—po ||} is decreasing. Thus lim, o || Zn

— po || we have

anTizn —po ||

po) || + [l an(T12n — Tipo) ||
po) || +aw || (T12n — T1po) ||
po) Il +am || (zn = po) ||
—po) [ +amn || (zn — po) |l
= po) ||+ || (zn = po) |l

— po || exists. In

Lemma 3.3. Let X be uniformly convex Banach space, and let C be a closed convex subset of X ,{c,}, {Bn}, {7} C

[0,1 — 6] for some 6 € (0
2o € C. Then lim, oo || 2, — Thxy ||= 0, limy, o || Zn

Proof .Let lim, 00 || Zn

| ©r

—Tox, [|=0, and lim, o0 || zn

— Tizy || <[ zn
< zp

—po || + |l po
—poll+ 1l po—zn |-

1 .
75)7 and (anPO)a (y07p0)7 (ZOap0)7 (p0,$0), (panO)a (p07Z0) S E(G)7 for arbltrary Do € F and

— Tgl'n ||: 0

—po ||= k. If k=0, then by the G-nonexpansiveness of T; we have

= Ty, ||

If £ > 0, by the G-nonexpansiveness of T; and lemma [2.11} we have

| @1 —po I =I (1 = an)zn + anTize — po ||
=|| (1 = an)zn + anpo — anpo + anTizn —po |1
= (1 = an)zn — (1 — an)po — anpo + anTi2y ||2
=] (1 = @) (20 — po) + an(Tizn — po) [I”
< o || Trzn = po 7 +(1 = an) | 20 = po [I” —an(l = an)g(|l (Trzn = po) — (20 — po) )
= Qn || Tizn — po ”2 Jr(l - an) || Zn — Po ”2 *O‘n(l - Oén)g(H Tizp — 2n ”)

=10 |I” —an(1 = an)g(l| Trzn — 2 |)

= po [I* —an(1 = an)g(l| Trzn — za )

— Po ||2 _a7z(1 - an)g(H Tizp — zp H)

= ap || Trzn — Tipo ||2 +(1—an) || 25

< ap || 20 —Ppo ”2 +(1 —an) || zn

= an || 2n — po H2 + || 20 — po ”2 —an || zn
=l 2n — po ”2 —an (1= an)g([| Thizn — 20 [])
<Il zn = po 1 =0%9(|| Trzn — 2 )

<l @n —po |I> =6°g(Il Trzn — 2n |)).
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Thus

lim 6%g(|| T1z — 2n [|) < lim || @, —po || = lim || 241 = po |2
n—00 n—00 n—o00

=0.

Hence limy, o0 g(|| Th2n — 2n ||) = 0. Since g is strictly increasing and continuous at 0,

lim || Tyz, — 2z |= 0. (3.1)
n—oo

By the G-nonexpansiveness of T; and lemma [2.11] we have

| Znt1 —po | = [| (1 = an)zn + anTizn — po ||
= || (1 = an)zn + anpo — anpo + anTizn — po ||
= (1= an)zn — (1 = an)po — anpo + anTizy, ||
= | (1 = an)(zn — po) + an(—po + T1zn) |
= H (1 - an)(zn - pO) + an(len —po) ||
= || (1 = an)(2n — po) + an(T12n — Tipo) ||
< | (A =an)(zn —po) | + || n(Trzn — T1po) ||
= (1 —an)(zn —po) | +an | (T1zn — Tipo) ||
< (1= an)(zn = po) | +an || (zn = po) |
(1= an) || (zn = po) Il +om || (20 — po) ||
=l zn —po |l
Thus k = liminf, o0 || @ny1 — po ||< Iiminf, oo || 2n — po ||. Since || 2, — po |<|| 2 — po ||, limsup,,_, |
zZn — po ||[< limsup,,_, || ©n — po ||= k. Consider
k= lm |2 —po |

nhﬁrrg() | (1 =vn)yn +T22n — po ||

= lim ” (1 - 'Yn)(yn _pO) + 'Yn(T2-Tn _pO) || .
n— o0

Since liInsupn—)oo H Toan — po H: limsupn%oo || Toxn — Topo ||S limsupnﬁoo H Tn — Po ||: k, limsupnﬁoo ||
Yn — po ||< limsup,,_, || n — po ||= k and by lemma we have

lim || T2, — yn ||= 0. (3.2)
n—oo

By the G-nonexpansiveness of T; and lemma we have

|20 = po | =Il (1 = ¥n)yn + WMoz — po ||
=[| Yn — YYn + WmT2xn — po ||
=[l Yn — po + Y (T2xn — yn) ||
<[yn —po | + | v (Tozn — yn) |
=l yn = o | +7n || Toxn — yn |
<[ yn —po I + | Town —yn | -

Thus

lim ||z, —po | < lim (|| Yo —po || + || Toxn — yn [|)
n— oo n— o0
= lim || yn—po || + Um | Tox, — yn ||
oo n—oo
= lim || yn—po || -

n—oo
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Since || Zp+1 — po ||<|| 2n — po ||, implies that

k= lm ||zpe1 —po |[|< lim || 2 —po |I< lm || yn — po || -
3 o0 n—oo n—oo

n—

Since H Yn — PO HS” ITn — Po Ha we have

lim || yn —po [|< lim || 2, —po ||= k.
n—oo n— o0
Consider
k= lim |y, —po |
n—o0
= lim ” (1 - ﬂn)xn + 6nT3xn — Po H
n— oo
= lim || (1 - Bn)(xn - pO) + 6n(T3xn - pO) H .
n—oo
Since limsup,,_, . || T3z, — po ||= limsup,, , o || T32n — T5po ||< limsup,, o || zn — 0o |= &,

limsup || z,, —po |I< k
n—oo

and by Lemma [2.11] we have
lim || Tsx, — 2z, ||=0.
n—oo

By the G-nonexpansiveness of T; and equation we have

| yn —zn | =l (1 = Bn)rn + BuT3zn — 0 ||
= Bn(T3zn — zn) ||
<[| Tsan — xn ||
=0.

Thus
| Y —2n [|=0.

By the G-nonexpansiveness of T; and equation [3.2] and we have

| ¥ — Toyn || = Yn — Tozn + Tozy — Toyy ||
<Ny — Toxn || + || Tozn — Toyn ||
<[l yn — Towp H + H In = Yn H
=0.

Thus
|| ¥n — Toyn [|=0.

By the G-nonexpansiveness of T;, equations [3.4] and [3.5] we have

| 2 — Towy || = @ — Y + yn — Toyn + Toyn — Tozy ||

S” Tn — Yn ” + ” Yn — T2yn ” + ” TQyn - Tan ”

<lan =yn |+ 11 yn = Toyn | + 1] yn — 20 ||
=0.

Thus
lim || , — Tz, ||=0.
n—roo

Singthong, Laolue
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By the G-nonexpansiveness of T; and equation [3.2] we have

[ @n = zn | =l 2n = (1 = )y + mT2zn) |
SH Tn — Yn ” + || TnYn — 'YnTan) ||
=Tn H Yn — Toxy ”
<[l yn — Town ||
=0.
Thus
| 2 — 2 [|= 0. (3.7)

By the G-nonexpansiveness of T; and equation [3.2] we have

| 20 = Yn | =l (1 = 90)yn + ¥ T2zn — yn ||
=Yn || T2%n — Y ||
<|| Tozn — yn |
=0.

Thus
[ 20— yn = 0. (3.8)

By the G-nonexpansiveness of T}, equations and we have

| Zn = Toyn | = 2n — 20+ 20 — T12n + T12 — T1yn ||
<z —zn | + | 20 = Trzn || + || Trzn — Tayn ||
Nan—znll+ 11 2o —Tr2n | + | 20— yn |l
=0.

Thus
” Tn — len H: 0. (39)

By the G-nonexpansiveness of T; and equations [3.9] 3.4} we have
H zn, —Thxp || :” Tn — len + len —Tiz, H
S|| Tn — le’ﬂ || + || len - len ||

SH Tp — T1yn ” + ” Yn — T ||
=0.

Thus
le | zn, — Thzy ||=0. (3.10)

By equation and [3.10] we have lim, oo || n — ThZn ||= 0, limy oo || 2 — Tz, ||= 0, lim, oo ||
Tn — T3zy ||= 0. O

Lemma 3.4. Suppose that X satisfies the Opial’s property and let (o, po), (yo, Po), (20, 0), (Po, Zo), (Po, Yo), (Po, 20) €

E(G), for pg € F and arbitrary xg € C. Then I — T;’s, for i = 1,2,3 are demiclosed.

Proof . Suppose that {z,} is a sequence in C that converges weakly to v. From Lemma we get lim, o0 |
xyn — Ty, ||= 0. Suppose for contradiction that v # T;v. By Opial’s property, we have

limsup |, —v | < limsup || 2, — Tyv ||
n— oo n—oo

< limsup(|| n — Tizp || + || Tizn — Tiv ||)

n— oo

< limsup || @n—v |,
n— o0

a contradiction. Hence, v = T;v. This implies that I — T; is demiclosed. [
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1
Theorem 3.5. Suppose that X is uniformly convex, and {a,},{Bn}, {vn} C [§,1 — 4], for some § € (0, 5),Ti (i =
1,2,3) satisfies Condition B and (xq,p), (yo,D), (z0,P), (P, Z0), (P, Y0), (P; 20) € E(G), for each p € F and arbitrary
2o € C. Then {x,} converges strongly to a common fixed point of T;.

Proof . Let p € F. From Lemma [3.2] we have

1) {x,} is bounded,

2) limy, o0 || @ — p || exists ,

3) | nt1 —p |I<|| & — p || for all n > 1.

We imply that d(z,41, F) < d(z,, F). Since T; satisfies Condition B and lim, . || 2, — Tiz, ||= 0, we get
limy, o0 f(d(zpn, F)) = 0. Thus lim,_,o d(z,, F) = 0 exists. Hence, there are a subsequence {z,,} of {z,} and a
sequence {py} C F such that

1
|, = b IS 5

Put ng41 = ng + d for some k > 1. Then

1
| Trppr = Pk IS Trgrd—1 = Pr |1 <I| Ty, — p1c (IS o

Thus
| P —pe | = | Phr1 — Ty + Tny — i ||
< N pksr — ooy |+ [ 2oy — pr ||
1 1
< 9k+1 + ok
- 3
- 9k+1"

So that {pi} is a Cauchy sequence. We assume that p, — v € C as n — oo. Since F is closed, v € F. Hence
X, — v as k — oo. Since lim,,_, || z, — v || exists, the conclusion follows. [J

1
Theorem 3.6. Suppose that X is uniformly convex, and {a,}, {8.}, {vn} C [d,1 — 8], for some ¢ € (0, 5) , T;, for

i = 1,2,3 is semicompact, {z, } dominates C' and (2o, po), (Y0, Po), (20, 0), (Po: Zo), (Po,0), (Po, Z0) € E(G), for po € F
and arbitrary x¢ € C. Then {z,} converges strongly to a common fixed point of T;.

Proof . Suppose that 75 is semicompact, by Lemma and Lemma we have a sequence {z, } is bounded for all

n>1and lim, o || 2, — Tiz, ||= 0, by Tb is semicompact there exist v € C' and a subsequence {z,, } of {z,} such
that x,, — v as k — oo and lim,, e || Zn, — Tizn, ||= 0. Consider
”vifriv ” vaxnk+xnk7,‘rimnk+Tix"k7T%v H

< o =an | + | 2o = Tiwn,, || + || Tizn, — Tiv ||

Since zp, — v and lim, o || @n, — Tizn, ||= 0, we have || v — Tjv ||= 0, that is v = T;v. Thus, v € F. Since
limy, 0 d(zy,, F) = 0, it follows by repeating the same argument as in the proof of Theorem that {x,} converges
strongly to a common fixed point of T;. [J

. If X sat-

isfies Opial’s property, I—T; is demiclosed at zero for each ¢, F is dominated by x, and (2o, po), (yo, Po), (20, P0), (Po, To),
(po,Y0), (Po, 20) € E(G), for pg € F and arbitrary xg € C. Then {z,} converges weakly to a common fixed point of
T..

1
Theorem 3.7. Suppose that X is uniformly convex. Then, {ay}, {Bn}, {1} C [0,1—4], for some ¢ € (0, 5)

Proof . By Lemma for each v € F, lim, ;o || 2, — v || exists. Let {z,,} and {z,,} be subsequences of the
sequence {x,} with {x,,} converges weakly to v; and {w,,} converges weakly to vo. Notice that, by Lemma
lim,, 0o || n — Tixy ||= 0. Thus

lim || zp, — Tizn, || = 0.

k—o0
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This imply that || z,, — Tz, || 0asn — co and limj_,o || @5, — Tixp, ||= 0. Then || z,; — Tz, [|— 0 as
n — 0o. Since I — T; is demiclosed at zero and X satisfies Opial’s property, T;v1 = vy and Tyvs = ve. By Lemmal[3.4]
we have v1,vs € F. In particular, v; = vy by Lemma Thus, {z,} converges weakly to a common fixed point of
T;. O
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