- Bañobre-López, M., Teijeiro, A. and Rivas, J., 2013. Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology & Radiotherapy, 18(6), pp.397-400.
- Chenthamara, D., Subramaniam, S., Ramakrishnan, S.G., Krishnaswamy, S., Essa, M.M., Lin, F.H. and Qoronfleh, M.W., 2019. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials research, 23(1), p.20.
- Din, F.U., Aman, W., Ullah, I., Qureshi, O.S., Mustapha, O., Shafique, S. and Zeb, A., 2017. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International journal of nanomedicine, pp.7291-7309.
- Shokri, A.J., Tavakoli, M.H., Sabouri Dodaran, A. and Khezrabad, A., 2019. A numerical study of the effect of the number of turns of coil on the heat produced in the induction heating process in the 3d model. Iranian Journal of Physics Research, 18(3), pp.408-419.
- Wu, K. and Wang, J.P., 2017. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields. AIP Advances, 7(5).
- Shah, R.R., Davis, T.P., Glover, A.L., Nikles, D.E. and Brazel, C.S., 2015. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Journal of magnetism and magnetic materials, 387, pp.96-106.
- Briceño, S., Hernandez, A.C., Sojo, J., Lascano, L. and Gonzalez, G., 2017. Degradation of magnetite nanoparticles in biomimetic media. Journal of Nanoparticle Research, 19, pp.1-10.
- Liu, X., Zhang, Y., Wang, Y., Zhu, W., Li, G., Ma, X., Zhang, Y., Chen, S., Tiwari, S., Shi, K. and Zhang, S., 2020. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 10(8), p.3793.
- Mohapatra, J. and Liu, J.P., 2018. Rare-earth-free permanent magnets: the past and future. Handbook of magnetic materials, 27, pp.1-57.
- Dennis, C.L. and Ivkov, R., 2013. Physics of heat generation using magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 29(8), pp.715-729.
- Dennis, C.L. and Ivkov, R., 2013. Physics of heat generation using magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 29(8), pp.715-729.
- Shokri, A. J., Saeedyan, Sh., Heidari, H., Azizi, A., Gilani, Z., (2024). Two-dimensional simulation of breast tissue tumor treatment using magnetic nanoparticles' Journal of Experimental Animal Biology, 4(1), pp. 21-26.
- Salloum, M., Ma, R. and Zhu, L., 2008. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 24(7), pp.589-601.
- Jordan, A. K., Maier-Hauff, J., 2007. Magnetic nanoparticles for intracranial thermotherapy Nanosci. Nanotechnol. pp. 4604–4606.
- Dughiero, F. and Corazza, S., 2005. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment. Medical and Biological Engineering and Computing, 43, pp.40-46.
- Zhao Q. Wang L. Cheng R. Mao L. Arnold RD. Howerth EW. Chen ZG. Platt S., 2012. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics. Vol.12, pp.27–38.
- Byrd, B.K., Krishnaswamy, V., Gui, J., Rooney, T., Zuurbier, R., Rosenkranz, K., Paulsen, K. and Barth, R.J., 2020. The shape of breast cancer. Breast cancer research and treatment, 183, pp.403-410.
- Heidari, H., Tavakoli, M.H., Shokri, A., Mohamad Moradi, B., Mohammad Sharifi, O. and Asaad, M.J.M., 2020. 3D simulation of the coil geometry effect on the induction heating process in Czochralski crystal growth system. Crystal Research and Technology, 55(3), p.1900147.
- Tucci, C., Trujillo, M., Berjano, E., Iasiello, M., Andreozzi, A. and Vanoli, G.P., 2021. Pennes’ bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Scientific reports, 11(1), p.5272.
- Spirou, S.V., Basini, M., Lascialfari, A., Sangregorio, C. and Innocenti, C., 2018. Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials, 8(6), p.401.
- Singh, S. and Repaka, R., 2017. Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation. Applied Thermal Engineering, 125, pp.443-451.
- Mamiya, H. and Jeyadevan, B., 2019. Design criteria of thermal seeds for magnetic fluid hyperthermia-from magnetic physics point of view. In Nanomaterials for magnetic and optical hyperthermia applications(pp. 13-39). Elsevier.
- Laurent, S., Dutz, S., Häfeli, U.O. and Mahmoudi, M., 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science, 166(1-2), pp.8-23.
- Tang, Y., Flesch, R.C. and Jin, T., 2017. Numerical investigation of temperature field in magnetic hyperthermia considering mass transfer and diffusion in interstitial tissue. Journal of Physics D: Applied Physics, 51(3), p.035401.
- Cao, T.L., Le, T.A., Hadadian, Y. and Yoon, J., 2021. Theoretical analysis for using pulsed heating power in magnetic hyperthermia therapy of breast cancer. International Journal of Molecular Sciences, 22(16), p.8895.
|