
Int. J. Nonlinear Anal. Appl. In Press, 1–16
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2024.34167.5098

Some new coincidence point results in partial b-metric spaces
via digraphs, L -simulation and θ-functions

Sushanta Kumar Mohanta∗, Priyanka Biswas

Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India

(Communicated by Ali Farajzadeh)

Abstract

In the present article, we introduce the concept of (α, θ, ξ)-G-contractive mappings in partial b-metric spaces endowed
with a digraph G and discuss the existence and uniqueness of points of coincidence and common fixed points for a pair
of self mappings satisfying such contractive condition. Our main result will extend several recent results including the
well-known Banach contraction theorem. Finally, we exhibit that this extension is viable which will justify the new
contractive condition.
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1 Introduction

The Banach contraction theorem [6] in complete metric spaces is one of the fundamental results in the field of fixed
point theory. This theory has enormous applications not only in different areas of mathematics but also in economics,
computer science, engineering and others. There exist a lot of generalizations of the notion of metric spaces such
as b-metric space, introduced by Bakhtin [5], partial metric space by Matthews [24], and dislocated metric space by
Hitzler et al.[19]. Combining the notions of b-metric and partial metric, Shukla [29] introduced another generalization,
called a partial b-metric and established some fixed point results in partial b-metric spaces.

Many researchers have studied the coincidence point and common fixed point results for a pair of mappings
satisfying some contractive type conditions in various spaces. In 2014, Jleli and Samet [20] presented a generalization
of the Banach contraction theorem in generalized metric spaces by using θ-contractions. After that, Ahmad et al.[2]
extended the result of Jleli and Samet [20] to metric spaces by modifying the notion of θ-contractions. In recent
investigations, the study of fixed point theory combining a graph takes a vital role in many aspects. Echenique [13]
studied fixed point theory by using graphs and then Espinola and Kirk [14] applied fixed point results in graph theory.
In [22], Khojasteh et al. introduced the concept of L -contractions and unified some existing metric fixed point results.
Motivated by the idea given in [2, 15, 22] and some recent works on partial b-metric and b-metric spaces with a graph
(see [3, 4, 7, 16, 23, 25, 26, 27, 28]), we reformulated some important coincidence point and common fixed point results
in partial b-metric spaces endowed with a digraph by using L -simulation and θ-functions. Finally, we give some
non-trivial examples to illustrate our main result.
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2 Some Basic Concepts

This section begins with some basic notations, definitions and necessary results that will be needed in the sequel.

Definition 2.1. [11] Let X be a nonempty set and b ≥ 1 be a given real number. A function d : X ×X → R+ is
said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ b (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is worth noting that the class of b-metric spaces is effectively larger than that of the ordinary metric spaces.

Definition 2.2. [24] A partial metric on a nonempty setX is a function p : X×X → R+ such that for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y;

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is called a partial metric space.

It is obvious that if p(x, y) = 0, then from (p1) and (p2), it follows that x = y. However, x = y does not imply
p(x, y) = 0.

Example 2.3. [24] Let X = [0,∞) and let p(x, y) = max {x, y} for all x, y ∈ X. Then (X, p) is a partial metric
space but p is not a metric on X.

Definition 2.4. [29] A partial b-metric on a nonempty set X is a function pb : X ×X → R+ such that for some real
number b ≥ 1 and all x, y, z ∈ X:

(pb1) pb(x, x) = pb(y, y) = pb(x, y) ⇐⇒ x = y;

(pb2) pb(x, x) ≤ pb(x, y);

(pb3) pb(x, y) = pb(y, x);

(pb4) pb(x, y) ≤ b[pb(x, z) + pb(z, y)− pb(z, z)].

The pair (X, pb) is called a partial b-metric space.

It is clear that every partial metric space is a partial b-metric space with the coefficient b = 1 and every b-metric
space is also a partial b-metric space with the same coefficient b. However, the reverse implications need not hold true,
in general.

Example 2.5. [29] Let X = R+, p > 1 a constant, and pb : X ×X → R+ be defined by

pb(x, y) = [max {x, y}]p+ | x− y |p, ∀x, y ∈ X.

Then (X, pb) is a partial b-metric space with coefficient b = 2p, but it is neither a partial metric space nor a b-metric
space.
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Example 2.6. [29] Let (X, p) be a partial metric space and pb(x, y) = (p(x, y))p, where p ≥ 1 is a real number. Then
pb is a partial b-metric with coefficient b = 2p−1.

Let (X, pb) be a partial b-metric space. For each x ∈ X and for each ϵ > 0, putB(x, ϵ) = {y ∈ X : pb(x, y) < pb(x, x) + ϵ}.
Let B = {B(x, ϵ) : x ∈ X and ϵ > 0}. Ge and Lin [17] proved that B is not a base for any topology on X. However,
they proved that B is a subbase for some topology τ on X such that (X, τ) is a T0-space.

Proposition 2.7. [17] Let (X, pb) be a partial b-metric space and (xn) be a sequence in X. If (xn) converges to
x ∈ X with respect to τ , then lim

n→∞
pb(xn, x) = pb(x, x).

The above proposition cannot be reversed(see [17]).

Definition 2.8. [29] Let (X, pb) be a partial b-metric space with coefficient b ≥ 1 and let (xn) be a sequence in X.
Then

(i) (xn) converges to a point x ∈ X if and only if lim
n→∞

pb(xn, x) = pb(x, x). This will be denoted as lim
n→∞

xn = x or

xn → x(n → ∞).

(ii) (xn) is called a Cauchy sequence if lim
n,m→∞

pb(xn, xm) exists and is finite.

(iii) (X, pb) is said to be complete if every Cauchy sequence (xn) inX, there exists x ∈ X such that lim
n,m→∞

pb(xn, xm) =

lim
n→∞

pb(xn, x) = pb(x, x).

Definition 2.9. [12] A sequence (xn) in a partial b-metric space (X, pb) is called 0-Cauchy if

lim
n,m→∞

pb(xn, xm) = 0.

The space (X, pb) is said to be 0-complete if every 0-Cauchy sequence in X converges to a point x ∈ X such that
pb(x, x) = 0, i.e., lim

n,m→∞
pb(xn, xm) = lim

n→∞
pb(xn, x) = pb(x, x) = 0.

Lemma 2.10. [12] If (X, pb) is complete, then it is 0-complete.

The converse assertion of the above lemma may not hold, in general. The following example supports this fact.

Example 2.11. The space X = [0,∞) ∩ Q with pb(x, y) = max {x, y} is a 0-complete partial b-metric space with
coefficient b = 1, but it is not complete. Moreover, the sequence (xn) with xn = 1 for each n ∈ N is a Cauchy sequence
in (X, pb), but it is not a 0-Cauchy sequence.

Remark 2.12. [29] In a partial b-metric space (X, pb), the limit of a convergent sequence need not be unique.

Definition 2.13. A sequence (xn) in a partial b-metric space (X, pb) is said to be bounded if the set {pb(xn, xm) :
n, m ∈ N} of real numbers is bounded in R, that is, there exists M > 0 such that pb(xn, xm) ≤ M for all n, m ∈ N.

Definition 2.14. [1] Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X, then x is called a
coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 2.15. [21] The mappings T, S : X → X are weakly compatible, if for every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.16. [1] Let S and T be weakly compatible self mappings of a nonempty set X. If S and T have a
unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of S and T .

Definition 2.17. [10] Let L be the family of all mappings ξ : [1,∞)× [1,∞) → R such that
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(ξ1) ξ(1, 1) = 1;

(ξ2) ξ(t, s) < s
t for all t, s > 1;

(ξ3) for any two sequences (tn), (sn) ⊆ (1,∞) with tn ≤ sn for all n ∈ N,

lim
n→∞

tn = lim
n→∞

sn > 1 ⇒ lim sup
n→∞

ξ(tn, sn) < 1.

We say that ξ ∈ L is an L -simulation function. It is to be noted that ξ(t, t) < 1 for all t > 1.

Example 2.18. [10] Let ξb, ξw, ξ : [1,∞)× [1,∞) → R be functions defined as follows, respectively:

(i) ξb(t, s) =
sk

t for all t, s ≥ 1, where k ∈ (0, 1).

(ii) ξw(t, s) =
s

tϕ(s) for all t, s ≥ 1, where ϕ : [1,∞) → [1,∞) is a nondecreasing and lower semicontinuous function

such that ϕ−1({1}) = 1.

(iii)

ξ(t, s) =


1, if (s, t) = (1, 1),

s
2t , if s < t,

sλ

t , otherwise,

for all s, t ≥ 1, where λ ∈ (0, 1).

Then ξb, ξw, ξ ∈ L .

Definition 2.19. [2] Let Θ be the set of all functions θ : (0,∞) → (1,∞) such that

(θ1) θ is nondecreasing;

(θ2) for all (tn) ⊆ (0,∞),
lim
n→∞

θ(tn) = 1 ⇐⇒ lim
n→∞

tn = 0+;

(θ3) θ is continuous on (0,∞).

Example 2.20. [2] Let θ : (0,∞) → (1,∞) be defined as θ(t) = et for all t > 0. Then θ ∈ Θ.

We now assign a digraph in a partial b-metric space as stated below.

Let (X, pb) be a partial b-metric space and ∆ = {(x, x) : x ∈ X}. Consider a digraph G such that the set V (G) of
its vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., E(G) ⊇ ∆. We also assume that G
has no parallel edges. Under these assumptions, we can identify G with the pair (V (G), E(G)). By G−1 we denote the
graph obtained from G by reversing the direction of edges, i.e., E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}. Let G̃
denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient
for us to treat G̃ as a digraph for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all graph theory books, like [8, 9, 18].

Definition 2.21. Let (X, pb) be a partial b-metric space with the coefficient b ≥ 1 and let G = (V (G), E(G)) be a
digraph. A mapping f : X → X is called a Banach G-contraction or simply G-contraction if there exists k ∈ (0, 1

b )
such that

pb(fx, fy) ≤ k pb(x, y)

for all x, y ∈ X with (x, y) ∈ E(G).

Any Banach contraction is a G0-contraction, where the graph G0 is defined by E(G0) = X ×X. But it is valuable
to note that a Banach G-contraction need not be a Banach contraction (see Remark 3.11).

Remark 2.22. If f is a G-contraction, then f is both a G−1-contraction and a G̃-contraction.
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3 Main Result

In this section we assume that (X, pb) is a partial b-metric space with the coefficient b ≥ 1 and G = (V (G), E(G))
is a reflexive digraph which has no parallel edges.

Definition 3.1. Let f, g : (X, pb) → (X, pb) be mappings with the property that pb(fx, fy) > 0 implies pb(gx, gy) >
0. Then, the mapping f is called (α, θ, ξ)-G-contractive w.r.t. the mapping g if there exist three functions θ ∈ Θ,
ξ ∈ L and α : X ×X → [0,∞) such that

ξ
(
θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))

)
≥ 1 (3.1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), pb(fx, fy) > 0 and α(gx, gy) ≥ 1.

Taking g = I, the identity map on X, the above definition gives the following definition.

Definition 3.2. Let f : (X, pb) → (X, pb) be a mapping with the property that pb(fx, fy) > 0 implies pb(x, y) > 0.
Then, the mapping f is called (α, θ, ξ)-G-contractive if there exist three functions θ ∈ Θ, ξ ∈ L and α : X×X → [0,∞)
such that

ξ
(
θ(bα(x, y)pb(fx, fy)), θ(pb(x, y))

)
≥ 1

for all x, y ∈ X with (x, y) ∈ E(G̃), pb(fx, fy) > 0 and α(x, y) ≥ 1.

Taking G = G0 in Definition 3.1, we get the following.

Definition 3.3. Let f, g : (X, pb) → (X, pb) be mappings with the property that pb(fx, fy) > 0 implies pb(gx, gy) >
0. Then, the mapping f is called (α, θ, ξ)-contractive w.r.t. the mapping g if there exist three functions θ ∈ Θ, ξ ∈ L
and α : X ×X → [0,∞) such that

ξ
(
θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))

)
≥ 1

for all x, y ∈ X with pb(fx, fy) > 0 and α(gx, gy) ≥ 1.

Let f, g : X → X be such that f(X) ⊆ g(X). Let x0 ∈ X be arbitrary. Since f(X) ⊆ g(X), there exists an
element x1 ∈ X such that gx1 = fx0. Continuing in this way, we can construct a sequence (gxn) in g(X) such that
gxn = fxn−1, n = 1, 2, 3, · · · .

Definition 3.4. Let the mappings f, g : X → X be such that f(X) ⊆ g(X). We define CαG
fg the set of all elements

x0 of X such that for all m, n = 0, 1, 2, · · · , (gxn, gxm) ∈ E(G̃) and α(gxn, gxm) ≥ 1, for every sequence (gxn) such
that gxn = fxn−1, n = 1, 2, 3, · · · .

Taking g = I, CαG
fg becomes CαG

f which is the collection of all elements x0 of X such that (xn, xm) ∈ E(G̃) and
α(xn, xm) ≥ 1 for m,n = 0, 1, 2, · · · , where xn = fxn−1, n = 1, 2, 3, · · · .

Taking G = G0, C
αG
fg becomes Cα

fg which is the collection of all elements x0 of X such that for all m,n = 0, 1, 2, · · · ,
α(gxn, gxm) ≥ 1, for every sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · .

Before presenting our main result, we state a property of the graph G, call it Property (∗).
Property (∗): If (gxk) is a sequence in (X, pb) such that pb(gxk, x) → 0, (gxk, gxk+1) ∈ E(G̃) and α(gxk, gxk+1) ≥

1 for all k ≥ 1, then there exists a subsequence (gxki
) of (gxk) such that (gxki

, x) ∈ E(G̃) and α(gxki
, x) ≥ 1 for all

i ≥ 1.

Taking g = I, the above property reduces to Property (∗)́:

Property (∗)́: If (xk) is a sequence in a partial b-metric space (X, pb) such that pb(xk, x) → 0, (xk, xk+1) ∈ E(G̃)
and α(xk, xk+1) ≥ 1 for all k ≥ 1, then there exists a subsequence (xki

) of (xk) such that (xki
, x) ∈ E(G̃) and

α(xki , x) ≥ 1 for all i ≥ 1.

Taking G = G0 in Property (∗), we get the following property:

Property (†): If (gxk) is a sequence in (X, pb) such that pb(gxk, x) → 0 and α(gxk, gxk+1) ≥ 1 for all k ≥ 1, then
there exists a subsequence (gxki

) of (gxk) such that α(gxki
, x) ≥ 1 for all i ≥ 1.
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If (X, pb,⪯) is a partially ordered partial b-metric space, then by taking α(x, y) = 1 for all x, y ∈ X and G = G2,

where the graph G2 is defined by E(G2) = {(x, y) ∈ X×X : x ⪯ y or y ⪯ x}, the Property (∗)́ reduces to the Property
(‡) which can be stated as follows:

Property (‡): If (xk) is a sequence in a partially ordered partial b-metric space (X, pb,⪯) such that pb(xk, x) → 0
and xk, xk+1 are comparable for all k ≥ 1, then there exists a subsequence (xki

) of (xk) such that xki
, x are comparable

for all i ≥ 1.

Remark 3.5. For examples of the definitions of this section, we refer to Examples 3.7, 3.9 and 3.10.

We now present our main result.

Theorem 3.6. Let (X, pb) be a partial b-metric space with the coefficient b ≥ 1 and let G = (V (G), E(G)) be a
digraph. Let f, g : X → X be mappings with the property that pb(fx, fy) > 0 implies that pb(gx, gy) > 0. Suppose
that f is (α, θ, ξ)-G-contractive w.r.t. the mapping g. Suppose also that f(X) ⊆ g(X), g(X) is a 0-complete subspace
of X and the graph G has the Property (∗). Then f and g have a point of coincidence u(say) in g(X) with pb(u, u) = 0
if CαG

fg ̸= ∅.
Moreover, f and g have a unique point of coincidence in g(X) if the graph G has the following property:

(∗∗) If x, y are points of coincidence of f and g in g(X), then (x, y) ∈ E(G̃) and α(x, y) ≥ 1.

Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof . Suppose that CαG
fg ̸= ∅. We choose an x0 ∈ CαG

fg and keep it fixed. Since f(X) ⊆ g(X), there exists a sequence

(gxn) in X such that gxn = fxn−1, for n ∈ N and (gxn, gxm) ∈ E(G̃) and α(gxn, gxm) ≥ 1 for m,n = 0, 1, 2, · · · .
We assume that gxn ̸= gxn−1 for every n ∈ N. In fact, if gxn = gxn−1 for some n ∈ N then gxn = fxn−1 = gxn−1

which implies that gxn is a point of coincidence of f and g.

We now prove that lim
n→∞

pb(gxn−1, gxn) = 0.

First we note that for all n ∈ N, (gxn−1, gxn) ∈ E(G̃), α(gxn−1, gxn) ≥ 1 and pb(fxn−1, fxn) > 0. Therefore, it
follows from conditions (3.1) and (ξ2) that

1 ≤ ξ
(
θ(bα(gxn−1, gxn)pb(fxn−1, fxn)), θ(pb(gxn−1, gxn))

)
<

θ(pb(gxn−1, gxn))

θ(bα(gxn−1, gxn)pb(fxn−1, fxn))
.

This implies that
θ(bα(gxn−1, gxn)pb(gxn, gxn+1)) < θ(pb(gxn−1, gxn)).

Therefore, by (θ1), it follows that, for all n = 1, 2, · · · ,

bα(gxn−1, gxn)pb(gxn, gxn+1) < pb(gxn−1, gxn)

and so
pb(gxn, gxn+1) ≤ bα(gxn−1, gxn)pb(gxn, gxn+1) < pb(gxn−1, gxn). (3.2)

Hence (pb(gxn−1, gxn)) is a decreasing sequence of positive real numbers, so there exists r ≥ 0 such that

lim
n→∞

pb(gxn−1, gxn) = r.

From condition (3.2), it follows that

lim
n→∞

bα(gxn−1, gxn)pb(gxn, gxn+1) = r.

We shall show that r = 0. Assume that r > 0. Then by using conditions (θ2) and (θ3), we get

lim
n→∞

θ(pb(gxn−1, gxn)) = θ(r) > 1
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and
lim

n→∞
θ(bα(gxn−1, gxn)pb(gxn, gxn+1)) = θ(r) > 1.

Let tn = θ(bα(gxn−1, gxn)pb(gxn, gxn+1)) and sn = θ(pb(gxn−1, gxn)) for all n ∈ N. Then, tn < sn for all n ∈ N
and lim

n→∞
tn = lim

n→∞
sn > 1. From (ξ3), we obtain

1 ≤ lim sup
n→∞

ξ(tn, sn) < 1,

which is a contradiction. This implies that

lim
n→∞

pb(gxn−1, gxn) = 0 (3.3)

and so lim
n→∞

θ(pb(gxn−1, gxn)) = 1.

Next, we shall show that (gxn) is a bounded sequence in (X, pb). We argue by contradiction. If possible, suppose
that the sequence (gxn) is not bounded. Then there exists a subsequence (gxnk

) of (gxn) such that n1 = 1 and for all
k = 1, 2, · · · , nk+1 is the smallest integer satisfying

pb(gxnk+1
, gxnk

) > 1

and pb(gxl, gxnk
) ≤ 1 for all nk ≤ l ≤ nk+1 − 1.

We now compute that

1 < pb(gxnk+1
, gxnk

)

≤ bpb(gxnk+1
, gxnk+1−1) + bpb(gxnk+1−1, gxnk

)− pb(gxnk+1−1, gxnk+1−1)

≤ bpb(gxnk+1
, gxnk+1−1) + bpb(gxnk+1−1, gxnk

)

≤ bpb(gxnk+1
, gxnk+1−1) + b.

Taking limit as k → ∞ and using condition (3.3), we have

1 ≤ lim inf
k→∞

pb(gxnk+1
, gxnk

) ≤ lim sup
k→∞

pb(gxnk+1
, gxnk

) ≤ b.

We note that (gxnk+1−1, gxnk−1) ∈ E(G̃), α(gxnk+1−1, gxnk−1) ≥ 1 and

pb(gxnk+1
, gxnk

) > 1 ⇒ pb(fxnk+1−1, fxnk−1) > 0.

Using conditions (3.1) and (ξ2), we obtain

1 ≤ ξ
(
θ(bα(gxnk+1−1, gxnk−1)pb(gxnk+1

, gxnk
)), θ(pb(gxnk+1−1, gxnk−1))

)
<

θ(pb(gxnk+1−1, gxnk−1))

θ(bα(gxnk+1−1, gxnk−1)pb(gxnk+1
, gxnk

))
.

That is,
θ(bα(gxnk+1−1, gxnk−1)pb(gxnk+1

, gxnk
)) < θ(pb(gxnk+1−1, gxnk−1)).

Therefore, by using (θ1), it follows from above that

b < bα(gxnk+1−1, gxnk−1)pb(gxnk+1
, gxnk

)

< pb(gxnk+1−1, gxnk−1)

≤ bpb(gxnk+1−1, gxnk
) + bpb(gxnk

, gxnk−1)

≤ b+ bpb(gxnk
, gxnk−1).

Taking limit as k → ∞, we get
lim
k→∞

pb(gxnk+1−1, gxnk−1) = b (3.4)
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and
lim
k→∞

α(gxnk+1−1, gxnk−1)pb(gxnk+1
, gxnk

) = 1. (3.5)

Let Uk = θ(bα(gxnk+1−1, gxnk−1)pb(gxnk+1
, gxnk

)) and Vk = θ(pb(gxnk+1−1, gxnk−1)). Then Uk < Vk for all k ∈ N.
As θ is continuous, by using conditions (3.4) and (3.5), we have lim

k→∞
Uk = lim

k→∞
Vk = θ(b) > 1. By using condition

(ξ3), we have
1 ≤ lim sup

k→∞
ξ
(
Uk, Vk

)
< 1,

which is a contradiction. Thus (gxn) is a bounded sequence in (X, pb). Now, we shall show that (gxn) is a 0-Cauchy
sequence. Let

Rn = sup{pb(gxi, gxj) > 0 : i, j ≥ n}, n ∈ N.

Since the sequence (gxn) is bounded, Rn < +∞ for every n ∈ N. But (Rn) being a decreasing sequence of positive
real numbers, there exists R ≥ 0 such that

lim
n→∞

Rn = R. (3.6)

We assume that R > 0. Then by the definition of Rn, it follows that for every natural number k, there exist
nk, mk ∈ N such that mk, nk ≥ k, pb(gxmk

, gxnk
) > 0 and

Rk − 1

k
< pb(gxmk

, gxnk
) ≤ Rk.

Taking limit as k → ∞, we have
lim
k→∞

pb(gxmk
, gxnk

) = R > 0. (3.7)

We note that for every k ∈ N,

pb(gxmk
, gxnk

) > 0 ⇒ pb(fxmk−1, fxnk−1) > 0

and α(gxmk−1, gxnk−1) ≥ 1, (gxmk−1, gxnk−1) ∈ E(G̃). Using conditions (3.1) and (ξ2), we get

1 ≤ ξ
(
θ(bα(gxmk−1, gxnk−1)pb(gxmk

, gxnk
)), θ(pb(gxmk−1, gxnk−1))

)
<

θ(pb(gxmk−1, gxnk−1))

θ(bα(gxmk−1, gxnk−1)pb(gxmk
, gxnk

))
.

That is,
θ(bα(gxmk−1, gxnk−1)pb(gxmk

, gxnk
)) < θ(pb(gxmk−1, gxnk−1)).

By using (θ1) and the definition of Rn, it follows that

bpb(gxmk
, gxnk

) ≤ bα(gxmk−1, gxnk−1)pb(gxmk
, gxnk

)

< pb(gxmk−1, gxnk−1)

≤ Rk−1. (3.8)

Taking limit as k → ∞ and using conditions (3.6) and (3.7), we obtain that

bR ≤ lim inf
k→∞

pb(gxmk−1, gxnk−1) ≤ lim sup
k→∞

pb(gxmk−1, gxnk−1) ≤ R. (3.9)

If b > 1, then it follows from condition (3.9) that R = 0.

If b = 1, then lim
k→∞

pb(gxmk−1, gxnk−1) = R > 0. Also, condition (3.8) ensures that

lim
k→∞

α(gxmk−1, gxnk−1)pb(gxmk
, gxnk

) = R.
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Let Uk = θ(α(gxmk−1, gxnk−1)pb(gxmk
, gxnk

)) and Vk = θ(pb(gxmk−1, gxnk−1)). Then Uk < Vk for every k ∈ N
and lim

k→∞
Uk = lim

k→∞
Vk = θ(R) > 1. It now follows from condition (ξ3) that

1 ≤ lim sup
k→∞

ξ
(
Uk,Vk

)
< 1,

which is a contradiction and so we have R = 0. Hence, we deduce that

lim
n,m→∞

pb(gxn, gxm) = 0.

Therefore, (gxn) is a 0-Cauchy sequence in g(X). As g(X) is 0-complete, there exists an u = gν ∈ g(X) for some
ν ∈ X such that gxn → u and pb(u, u) = 0. Therefore,

lim
n,m→∞

pb(gxn, gxm) = lim
n→∞

pb(gxn, u) = pb(u, u) = 0.

By Property (∗) there exists a subsequence (gxni
) of (gxn) such that (gxni

, gν) ∈ E(G̃) and α(gxni
, gν) ≥ 1,

for all i ≥ 1. Next, we shall show that f and g have a point of coincidence in g(X). Let us consider the collection
P = {pb(fxni

, fν) > 0 : i ∈ N}. For pb(fxni
, fν) ∈ P , we obtain from condition (3.1) that

1 ≤ ξ
(
θ(bα(gxni

, gν)pb(fxni
, fν)), θ(pb(gxni

, gν))
)

<
θ(pb(gxni

, gν))

θ(bα(gxni
, gν)pb(fxni

, fν))
.

That is,
θ(bα(gxni

, gν)pb(fxni
, fν)) < θ(pb(gxni

, gν)).

Therefore, by using (θ1), it follows that

bpb(fxni
, fν) ≤ bα(gxni

, gν)pb(fxni
, fν) < pb(gxni

, gν).

If pb(fxni
, fν) ̸∈ P , then

0 = pb(fxni
, fν) ≤ pb(gxni

, gν).

Thus,
bpb(fxni , fν) ≤ pb(gxni , gν) for all i ∈ N.

Now,

0 ≤ pb(fν, gν)

≤ bpb(fν, fxni) + bpb(fxni , gν)− pb(fxni , fxni)

≤ pb(gxni , gν) + bpb(fxni , gν)

= pb(gxni , gν) + bpb(gxni+1, gν).

Taking limit as i → ∞, we obtain that
pb(fν, gν) = 0.

Hence, we get fν = gν = u. Therefore, u is a point of coincidence of f and g.

For uniqueness, we assume that there exists u∗ ∈ X such that fx = gx = u∗ for some x ∈ X with pb(u
∗, u∗) = 0

and u ̸= u∗. By property (∗∗), we have (u, u∗) ∈ E(G̃) and α(u, u∗) ≥ 1. Then,

1 ≤ ξ
(
θ(bα(gν, gx)pb(fν, fx)), θ(pb(gν, gx))

)
= ξ

(
θ(bα(u, u∗)pb(u, u

∗)), θ(pb(u, u
∗))
)

<
θ(pb(u, u

∗))

θ(bα(u, u∗)pb(u, u∗))
.
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That is,
θ(bα(u, u∗)pb(u, u

∗)) < θ(pb(u, u
∗)).

This gives that bpb(u, u
∗) ≤ bα(u, u∗)pb(u, u

∗) < pb(u, u
∗), a contradiction. Hence, u = u∗. Therefore, f and g have a

unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 2.16, f and g have a unique common fixed point in g(X). □

We give some examples to illustrate our main result.

Example 3.7. Let X = [0,∞) and define pb : X ×X → R+ by pb(x, y) = [max {x, y}]2+ | x− y |2 for all x, y ∈ X.
Then (X, pb) is a 0-complete partial b-metric space with the coefficient b = 4. Let G be a digraph such that V (G) = X
and E(G) = ∆ ∪ {(0, 1

n ) : n = 1, 2, 3, · · · }. Let f, g : X → X be defined by

fx =


x
5 , if x ̸= 2

5 ,

1, if x = 2
5

and gx = 5x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and pb(fx, fy) > 0 ⇒ pb(gx, gy) > 0. Let α : X×X → [0,∞)
be defined by

α(x, y) =

 1, if x, y ∈ [0, 1],

1
2 , otherwise.

We note that there exists x0(= 0) ∈ X such that x0 ∈ CαG
fg . Let ξ : [1,∞)× [1,∞) → R be defined by ξ(t, s) = s

1
2

t ,

for all t, s ≥ 1 and θ : (0,∞) → (1,∞) be defined by θ(t) = et for all t > 0.

For x = 0, y = 1
5n , n ∈ N, we have gx = 0, gy = 1

n , fx = 0, fy = 1
25n and so (gx, gy) ∈ E(G̃), α(gx, gy) = 1. We

now compute that

pb(fx, fy) = pb(0,
1

25n
) =

2

625n2
> 0, pb(gx, gy) = pb(0,

1

n
) =

2

n2
.

So (θ(pb(gx, gy)))
1
2 = e

1
n2 , θ(bα(gx, gy)pb(fx, fy)) = e

8
625n2 . Since 1

n2 > 8
625n2 ⇒ e

1
n2 > e

8
625n2 , we have

ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) =
(θ(pb(gx, gy)))

1
2

θ(bα(gx, gy)pb(fx, fy))

=
e

1
n2

e
8

625n2

> 1.

Moreover, for 0 < x = y ≤ 1
5 , we have (gx, gy) ∈ E(G̃), α(gx, gy) = 1 and pb(fx, fy) = pb(

x
5 ,

x
5 ) = x2

25 > 0,

pb(gx, gy) = pb(5x, 5x) = 25x2. So (θ(pb(gx, gy)))
1
2 = e

25x2

2 , θ(bα(gx, gy)pb(fx, fy)) = e
4x2

25 . From 25x2

2 > 4x2

25 , we

have e
25x2

2 > e
4x2

25 , and so,

ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) =
(θ(pb(gx, gy)))

1
2

θ(bα(gx, gy)pb(fx, fy))

=
e

25x2

2

e
4x2

25

> 1.

Therefore,
ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) > 1

for all x, y ∈ X with (gx, gy) ∈ E(G̃), α(gx, gy) ≥ 1 and pb(fx, fy) > 0.

Any sequence (gxn) with the property pb(gxn, x) → 0, (gxn, gxn+1) ∈ E(G̃) and α(gxn, gxn+1) ≥ 1 for all n ≥ 1
must be either the zero sequence or a sequence of the following form

gxn =

 0, if n is odd,

1
n , if n is even
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where the words ‘odd’ and ‘even’ are interchangeable. Also, pb(gxn, x) → 0 ensures that x = 0 and consequently, it
follows that Property (∗) holds true. Moreover, f and g are weakly compatible. Thus, we have all the conditions of
Theorem 3.6 and 0 is the unique common fixed point of f and g in g(X) with pb(0, 0) = 0.

Remark 3.8. It is worth mentioning that in the example given above, f is not a Banach G-contraction. If we take
x = y = 2

5 , then

pb(fx, fy) = pb(1, 1) = 1 =
25

4
.
4

25
> k pb(x, y)

for any k ∈ (0, 1
b ).

To examine the necessity of the weak compatibility condition in Theorem 3.6, let us consider the following example.

Example 3.9. Let X = R and define pb : X × X → R+ by pb(x, y) =| x − y |3 for all x, y ∈ X. Then (X, pb)
is a 0-complete partial b-metric space with the coefficient b = 4. Let G be a digraph such that V (G) = X and
E(G) = ∆ ∪ {(x, y) : (x, y) ∈ [0, 1]× [0, 1]}. Let f, g : X → X be defined by

fx =


x
3 , if x ̸= 2

3 ,

1, if x = 2
3

and gx = 5x − 14 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and pb(fx, fy) > 0, these imply that pb(gx, gy) > 0.
Let α : X ×X → [0,∞) be defined by

α(x, y) =

 1, if x, y ∈ [0, 1],

1
2 , otherwise.

Then it is easy to verify that there exists x0(= 3) ∈ CαG
fg . Let ξ : [1,∞) × [1,∞) → R be defined by ξ(t, s) = s

1
3

t

for all t, s ≥ 1 and θ : (0,∞) → (1,∞) be defined by θ(t) = et, for all t > 0.

If 14
5 ≤ x, y ≤ 3, x ̸= y, then (gx, gy) ∈ E(G̃), α(gx, gy) = 1 and pb(fx, fy) > 0. We now compute that

bpb(fx, fy) = 4pb(
x
3 ,

y
3 ) = 4

27 | x − y |3= 4
3375pb(gx, gy). From 1

3pb(gx, gy) > 4
3375pb(gx, gy), we have e

1
3pb(gx,gy) >

e
4

3375pb(gx,gy), and then

ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) =
(θ(pb(gx, gy)))

1
3

θ(bα(gx, gy)pb(fx, fy))

=
e

1
3pb(gx,gy)

e
4

3375pb(gx,gy)

> 1.

Therefore,
ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) > 1

for all x, y ∈ X with (gx, gy) ∈ E(G̃), α(gx, gy) ≥ 1 and pb(fx, fy) > 0. Moreover, any sequence (gxn) with
the property that (gxn, gxn+1) ∈ E(G̃) and α(gxn, gxn+1) ≥ 1 for all n ≥ 1 must be a sequence in [0, 1]. Also,
pb(gxn, x) → 0 ⇒| gxn−x |→ 0 ⇒ x ∈ [0, 1] which ensures that Property (∗) holds true. Furthermore, f(3) = g(3) = 1
but g(f(3)) ̸= f(g(3)), i.e., f and g are not weakly compatible. However, all other conditions of Theorem 3.6 are
fulfilled. We observe that 1 is the unique point of coincidence of f and g without being any common fixed point.

The following example shows that Theorem 3.6 remains invalid without the Property (∗).

Example 3.10. Let X = [0,∞) and define pb : X ×X → R+ by pb(x, y) =| x − y |2 for all x, y ∈ X. Then (X, pb)
is a 0-complete partial b-metric space with the coefficient b = 2. Let G be a digraph such that V (G) = X and
E(G) = ∆ ∪ {(x, y) : (x, y) ∈ (0, 1]× (0, 1]}. Let f, g : X → X be defined by

fx =


x
8 , if x ̸= 0,

1, if x = 0
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and gx = x
2 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and pb(fx, fy) > 0 ⇒ pb(gx, gy) > 0. Let α : X×X → [0,∞)

be defined by

α(x, y) =

 1, if x, y ∈ [0, 1],

1
2 , otherwise.

Then there exists x0(=
1
2 ) ∈ X such that x0 ∈ CαG

fg . Let ξ : [1,∞)× [1,∞) → R be defined by ξ(t, s) = s
3
4

t for all

t, s ≥ 1 and θ : (0,∞) → (1,∞) be defined by θ(t) = et for all t > 0. For x, y ∈ X with (gx, gy) ∈ E(G̃), α(gx, gy) ≥ 1
and pb(fx, fy) > 0, we have x ̸= y, x, y ∈ (0, 2] and bpb(fx, fy) =

1
8pb(gx, gy). Then

3
4pb(gx, gy) >

1
8pb(gx, gy) implies

e
3
4pb(gx,gy) > e

1
8pb(gx,gy), and we obtain

ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) =
(θ(pb(gx, gy)))

3
4

θ(bα(gx, gy)pb(fx, fy))

=
e

3
4pb(gx,gy)

e
1
8pb(gx,gy)

> 1.

We now show that the Property (∗) does not hold true. For xn = 2
n , gxn = 1

n and hence pb(gxn, 0) → 0. Also,

(gxn, gxn+1) ∈ E(G̃) and α(gxn, gxn+1) = 1 for all n ∈ N. But there exists no subsequence (gxni
) of (gxn) such

that (gxni
, 0) ∈ E(G̃). We observe that f and g have no point of coincidence in g(X). This proves that Theorem 3.6

remains invalid without the Property (∗).

Remark 3.11. In Example 3.10, f is not a Banach contraction. In fact, for x = 0, y = 1, we have

pb(fx, fy) = pb

(
1,

1

8

)
=

(
7

8

)2

=

(
7

8

)2

pb(x, y) > k pb(x, y)

for any k ∈ (0, 1
b ).

But f is a Banach G-contraction since for all x, y ∈ X with (x, y) ∈ E(G), we have

pb(fx, fy) =
1

64
pb(x, y),

where 1
64 ∈ (0, 1

b ).

4 An Application

In this section we apply Theorem 3.6 to study the existence and uniqueness of solution of an integral equation.
The main aim of this section is to present an existence and uniqueness theorem for unique solution of the following
integral equation

x(t) =

∫ ξ

0

K(t, r, x(r))dr, (4.1)

where ξ > 0 and K : [0, ξ]× [0, ξ]× R → R, x : [0, ξ] → R are functions.

Let X = C[0, ξ] be the set of all real valued continuous functions defined on [0, ξ]. We define pb : X ×X → R+ by

pb(x, y) = sup
0≤t≤ξ

| x(t)− y(t) |p for all x, y ∈ X,

where p > 1. Then it is easy to verify that (X, pb) is a 0-complete partial b-metric space with the coefficient b = 2p−1.
In the following theorem X represents this partial b-metric space.

Theorem 4.1. Suppose that X = C[0, ξ] and the following hypotheses hold:

(i) K : [0, ξ]× [0, ξ]× R → R is continuous;
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(ii) for all t, r ∈ [0, ξ], there exists a continuous function η : [0, ξ]× [0, ξ] → R such that

| K(t, r, x(r))−K(t, r, y(r)) |≤ β
1
p η(t, r) | x(r)− y(r) | for all x, y ∈ X (4.2)

and

sup
0≤t≤ξ

∫ ξ

0

η(t, r)dr ≤ 1, (4.3)

where 0 < β < 1
b .

Then the integral equation (4.1) has a unique solution in X.

Proof . Let f : X → X be defined by (fx)(t) =
∫ ξ

0
K(t, r, x(r))dr for all x ∈ X and for all t ∈ [0, ξ]. Then the

existence of a solution to the integral equation (4.1) is equivalent to the existence of a fixed point of f .

Utilizing conditions (4.2) and (4.3), for all x, y ∈ X and t ∈ [0, ξ], we compute that

| (fx)(t)− (fy)(t) |p =

∣∣∣∣∣
∫ ξ

0

(K(t, r, x(r))−K(t, r, y(r)))dr

∣∣∣∣∣
p

≤

(∫ ξ

0

| K(t, r, x(r))−K(t, r, y(r)) | dr

)p

≤

(∫ ξ

0

β
1
p η(t, r) | x(r)− y(r) | dr

)p

= β

(∫ ξ

0

η(t, r)(| x(r)− y(r) |p)
1
p dr

)p

≤ β

(∫ ξ

0

η(t, r)(pb(x, y))
1
p dr

)p

= βpb(x, y)

(∫ ξ

0

η(t, r)dr

)p

≤ βpb(x, y).

Therefore,
pb(fx, fy) = sup

0≤t≤ξ
| (fx)(t)− (fy)(t) |p≤ βpb(x, y), for all x, y ∈ X, (4.4)

where 0 < β < 1
b . We note that pb(fx, fy) > 0 implies that pb(x, y) > 0. Let ξ : [1,∞) × [1,∞) → R be defined by

ξ(t, s) = sk

t for all t, s ≥ 1, where k = bβ ∈ (0, 1) and θ : (0,∞) → (1,∞) be defined by θ(t) = et, for all t > 0. Let
us take g = I, the identity map on X, G = G0, where G0 is the complete graph (X,X ×X) and α(x, y) = 1 for all
x, y ∈ X. It now follows from condition (4.4) that for pb(fx, fy) > 0, we have

ebα(gx,gy)pb(fx,fy) ≤ ebβpb(gx,gy) =
(
epb(gx,gy)

)bβ
=
(
epb(gx,gy)

)k
,

where k = bβ ∈ (0, 1). This implies that

θ(bα(gx, gy)pb(fx, fy)) ≤ (θ(pb(gx, gy)))
k
.

This proves that
ξ(θ(bα(gx, gy)pb(fx, fy)), θ(pb(gx, gy))) ≥ 1

for all x, y ∈ X with pb(fx, fy) > 0. Thus all the hypotheses of Theorem 3.6 holds good and hence f has a unique
fixed point x (say) in X. This means that x is the unique solution for the integral equation (4.1). □



14 Mohanta, Biswas

5 Some Consequences of the Main Result

In this section we exhibit some important fixed point results which will justify the extension of our main result.

Theorem 5.1. Let (X, pb) be a 0-complete partial b-metric space with the coefficient b ≥ 1 and let G = (V (G), E(G))
be a digraph. Let f : X → X be a mapping with the property that pb(fx, fy) > 0 implies that pb(x, y) > 0. Suppose

that f is (α, θ, ξ)-G-contractive and the graph G has the Property (∗)́. Then f has a fixed point u(say) in X with
pb(u, u) = 0 if CαG

f ̸= ∅.
Moreover, f has a unique fixed point in X if the graph G has the following property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃) and α(x, y) ≥ 1.

Proof . The proof follows from Theorem 3.6 by taking g = I, the identity map on X. □

Theorem 5.2. Let (X, pb) be a partial b-metric space with the coefficient b ≥ 1 and let f, g : X → X be mappings
with the property that pb(fx, fy) > 0 implies that pb(gx, gy) > 0. Suppose that f is (α, θ, ξ)-contractive w.r.t. the
mapping g. Suppose also that f(X) ⊆ g(X), g(X) is a 0-complete subspace of X and α has the Property (†). Then f
and g have a point of coincidence u(say) in g(X) with pb(u, u) = 0 if Cα

fg ̸= ∅. Moreover, f and g have a unique point
of coincidence in g(X) if α has the following property:

If x, y are points of coincidence of f and g in g(X), then α(x, y) ≥ 1.

Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in g(X).

Proof . The proof can be obtained from Theorem 3.6 by considering G = G0, where G0 is the complete graph
(X,X ×X). □

Theorem 5.3. Let (X, pb) be a 0-complete partial b-metric space and let f : X → X be a mapping with the property
that pb(fx, fy) > 0 implies that pb(x, y) > 0. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bpb(fx, fy)), θ(pb(x, y))) ≥ 1,

for all x, y ∈ X and pb(fx, fy) > 0. Then f has a unique fixed point u(say) in X with pb(u, u) = 0.

Proof . The proof follows from Theorem 3.6 by taking g = I, G = G0 and α(x, y) = 1 for all x, y ∈ X. □

Theorem 5.4. Let (X, pb) be a partial b-metric space and let f, g : X → X be mappings with the property that
pb(fx, fy) > 0 implies that pb(gx, gy) > 0. Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

θ(bpb(fx, fy)) ≤ (θ(pb(gx, gy)))
k

for all x, y ∈ X and pb(fx, fy) > 0. If f(X) ⊆ g(X) and g(X) is a 0-complete subspace of X, then f and g have a
unique point of coincidence u(say) in g(X) with pb(u, u) = 0. Moreover, if f and g are weakly compatible, then f and
g have a unique common fixed point in g(X).

Proof . The proof can be obtained from Theorem 3.6 by considering G = G0, ξ = ξb and α(x, y) = 1, for all x, y ∈ X.
□

Theorem 5.5. Let (X, pb) be a 0-complete partial b-metric space and let f : X → X be a mapping with the property
that pb(fx, fy) > 0 implies that pb(x, y) > 0. Suppose that there exists θ ∈ Θ such that

θ(bpb(fx, fy)) ≤
θ(pb(x, y))

ϕ(θ(pb(x, y)))
,

for all x, y ∈ X and pb(fx, fy) > 0, where ϕ : [1,∞) → [1,∞) is a nondecreasing and lower semicontinuous function
such that ϕ−1({1}) = 1. Then f has a unique fixed point in X with pb(u, u) = 0.

Proof . The proof follows from Theorem 3.6 by taking G = G0, g = I, ξ = ξw and α(x, y) = 1 for all x, y ∈ X. □

The following is the b-metric version of Banach contraction theorem.
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Theorem 5.6. Let (X, d) be a complete b-metric space and let f : X → X be a mapping satisfying

d(fx, fy) ≤ βd(x, y),

for all x, y ∈ X, where β ∈ (0, 1
b ) is a constant. Then f has a unique fixed point in X.

Proof . The conclusion of the theorem follows from Theorem 3.6 by taking G = G0, g = I, ξ = ξb, θ(t) = et, for all
t > 0 and α(x, y) = 1, for all x, y ∈ X. □

Remark 5.7. Theorem 5.6 shows that our main result is a generalization of the well known Banach contraction
theorem.

Theorem 5.8. Let (X, d) be a complete b-metric space endowed with a partial ordering ⪯ and let f : X → X be a
mapping. Suppose that there exist ξ ∈ L and θ ∈ Θ such that

ξ(θ(bd(fx, fy)), θ(d(x, y))) ≥ 1

for all comparable elements x, y ∈ X and d(fx, fy) > 0. Suppose also that the triple (X, d,⪯) has the Property (‡).
If there exists x0 ∈ X such that xn, xm are comparable for all n, m = 0, 1, 2, · · · , where xn = fxn−1, for all n ∈ N,
then f has a fixed point in X. Moreover, f has a unique fixed point in X if the following property holds:

If x, y are fixed points of f in X, then x and y are comparable.

Proof . The proof can be obtained from Theorem 3.6 by taking g = I, α(x, y) = 1 for all x, y ∈ X and G = G2,
where the graph G2 is defined by E(G2) = {(x, y) ∈ X ×X : x ⪯ y or y ⪯ x}. □

Remark 5.9. It is worth noting that we can obtain several important fixed point results in metric, partial metric
and b-metric spaces by suitable choices of ξ, θ and α.
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Math. 3 (1922), 133–181.

[7] F. Bojor, Fixed point of φ-contraction in metric spaces endowed with a graph, Ann. Univ. Cralova, Math. Comput.
Sci. Ser. 37 (2010), 85–92.

[8] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New
York, 1976.

[9] G. Chartrand, L. Lesniak, and P. Zhang, Graph and digraph, CRC Press, New York, NY, USA, 2011.

[10] S.H. Cho, Fixed point theorems for L -contractions in generalized metric spaces, Abstr. Appl. Anal. 2018 (2018),
Article ID 1327691, 6 pages.



16 Mohanta, Biswas

[11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav 1 (1993), 5–11.

[12] N.V. Dung and V.T.L. Hang, Remarks on partial b-metric spaces and fixed point theorems, Mate. Vesnik 69
(2017), 231–240.

[13] F. Echenique, A short and constructive proof of Tarski’s fixed point theorem, Int. J. Game Theory 33 (2005),
215–218.

[14] R. Espinola and W.A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topol. Appl. 153
(2006), 1046–1055.

[15] A. Farajzadeh, M. Delfani, and S. Suantai, A modification of simulation function and its applications to fixed
point theory, Thai J. Math. 20 (2022), 1471–1477.

[16] A. Farajzadeh, M. Delfani, and Y.H. Wang, Existence and uniqueness of fixed points of generalized F -contraction
mappings, J. Math. 2021 (2021), Article ID 6687238, 9 pages.

[17] X. Ge and S. Lin, A note on partial b-metric spaces, Mediterr. J. Math. 13 (2016), 1273–1276.

[18] J.I. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, New York, NY, USA, 1999.

[19] P. Hitzler and A.K. Seda, Dislocated topologies, J. Electr. Eng. 51 (2000) 3–7.

[20] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014),
8 pages.

[21] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4
(1996), 199–215.

[22] F. Khojasteh, S. Shukla, and S. Radenovic, A new approach to the study of fixed point theorems via simulations,
Filomat 29 (2015), 1189–1194.

[23] U. Maheswari, M. Ravichandran, A. Anbarasan, L. Rathour, and V.N. Mishra, Some results on coupled fixed
point on complex partial b-metric space, GANITA 71 (2021), 17–27.

[24] S. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1994), 183–197.

[25] S.K. Mohanta, Common fixed points in b-metric spaces endowed with a graph, Math. Vesnik 68 (2016), 140–154.

[26] S.K. Mohanta, Some fixed point theorems using wt-distance in b-metric spaces, Fasciculi Math. 54 (2015), 125–140.

[27] S. Moshokoa and F. Ncongwane, On completeness in strong partial b-metric spaces, strong b-metric spaces and
the 0-Cauchy completions, Topol. Appl. 275 (2020), 107011.

[28] G.S. Saluja, Coupled fixed point results for contractive type conditions in partial b-metric spaces, Annals Math.
Comp. Sci. 14 (2023), 12–28

[29] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math. 11 (2014), 703–711.


	Introduction
	Some Basic Concepts
	Main Result
	An Application
	Some Consequences of the Main Result

