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 Modern manufacturing techniques have been significantly transformed by additive 

manufacturing (AM). Because of its capabilities like customized part manufacturing and, the 

ability to manufacture intricate and complex parts with reduced waste of material, additive 

manufacturing is becoming more popular. However, the properties of the parts manufactured 

by this method significantly vary with the variation in process parameters. Optimizing these 

parameters helps to extract enhanced mechanical properties. In addition, lattice structures 

have created new possibilities for increasing strength while lowering part weight through 

optimized lattice structures. The effect of lattice structure and process parameters on the 

specimen made using the fused deposition method (FDM) is the major focus of this study. In 

this work, three distinct TPMS-base (Triply Periodic Minimal Surfaces) lattice architectures 

are examined for a range of layer height levels. Investigations are conducted using the L9 

orthogonal array. The FDM technique uses PLA plastic filament. The Taguchi method was 

used for optimization, and samples were evaluated on the UTM and Izod impact testing 

machines. Moreover, an ML model is created by applying machine learning to the collected 

data. In tensile and impact test data, neural network and Gaussian process regression models 

showed low error rates and predicted good accuracy. The neural network model for the 

flexural test data showed a moderate level of accuracy, suggesting potential for improvement. 

The models' performance was highlighted by their low RMSE, MSE, and MAE values, which 

show that they can predict material properties. The overall findings indicated that layer 

height has less impact on tensile and flexural strength than lattice structure. In contrast to the 

lattice structure, layer height influences the toughness. 
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1. Introduction 

Diverse sectors, including fiber composite 
materials, automotive, aerospace, marine, and 
medical equipment, extensively utilize 3D 
printing technology, known for its rapid molding 
capabilities. Unlike traditional manufacturing 

methods, 3D printing offers the benefits of 
creating composite models, lowering processing 
costs, and reducing production times [1]. In fused 
deposition modeling (FDM), thermoplastic 
polymer polylactic acid (PLA) material is widely 
adopted as it is a biocompatible, biodegradable, 
and environmentally friendly plastic material [2]. 
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M. Mani et al. optimized process parameters for 
tensile strength, hardness, and surface roughness 
of the 3D-printed PLA parts using Taguchi 
analysis [3]. Several studies have been conducted 
considering different parameters like nozzle 
temperature, layer thickness, print speed, infill 
density, etc., along with lattice structures. Some 
of the lattice structures were bio-inspired by 
naturally observed patterns in bamboo [4], fish 
scale [5], chiral, starfish [6], honeycomb [7], etc. 
Various mechanical properties such as 
compression, tensile [8][9], bending [10], etc., are 
tested using different methods to find optimized 
parameters for future applications and their 
investigation suggests that lattice cell structure 
significantly affects mechanical properties. 
Vladimir Shevchenko et al. suggest that (TPMS) 
has higher mechanical characteristics and 
significantly exceeds classical cellular structures 
[11]. In one of the studies of the structure-
property relationship of cubic Bravais crystal 
lattices, Flavia Libonati et al. found that lattice 
structures behave in a way that is dominated by 
stretching [12]. Paweł Bogusz et al. conducted 
tests on five distinct stereolithography printed 
lattice structures and discovered that the 
topology and orientation of the structures had a 
significant impact on print quality [13]. Jozef 
Tkac et al. presented an experimental and 
numerical study on the mechanical properties 
and damage behavior of a 3D-printed lattice 
structure made of ABS material, showing that the 
lattice structure behaves differently for different 
densities [14]. Ibrahim M. Alarifi et al. found 
enhanced flexural and tensile strength in 
reinforced PETG/CF polymers [15]. Atikom 
Sombatmai et al. examined the post-yielding and 
failure mechanisms of additively manufactured 
TPMS lattice structures for metal and found 
gyroid lattices absorbed the highest energy [16]. 
Abdulla Almesmari et al. findings suggest that 
unit cell length is the most significant factor for 
improving specific compressive modulus [17]. An 
innovative methodology for simulating the 
breakdown of 3D-printed engineering design 
structures was created to compare the 3D-
printed PETG/CF solid structural design. In this 
attempt, Ibrahim M. Alarifi et al. determined 
improved yield strength by 23% [18]. Shaheen 
Perween et al. discovered that an essential factor 
in enhancing compressive strength is the density 
of the infill [19].  Cem Güdür et al. found that the 
gyroid lattice structure resulted in the maximum 
strength for PLA [20]. S. Higuera et al. found Sheet 
gyroid structures made from thermoplastic 
materials exhibit superior mechanical properties 
and energy absorption capabilities than EPS foam 
[21]. Ajeet Kumar et al. found the supportless 
lattice structure outperforms the BCC lattice and 
EVA foam in terms of stiffness while maintaining 

similar energy absorption capabilities [22]. Dawit 
Bogale Alemayehu et al. also found the composite 
TPMS gyroid lattice with excellent energy-
absorbing properties using PLA materials [23]. 
Tianzhen Liu et al. observed that TPMS lattices 
exhibit multi-stage energy absorption and 
tunable vibration isolation performance [24]. A. 
Viswanath et al. presented a topology 
optimization method for honeycomb cells that 
preserved the stiffness and weight of thin-walled 
single-cell lattice structures while increasing 
their buckling resistance up to 70% [25]. Sami E. 
Alkhatib et al. found the topology-optimized 
lattice structure exhibits a very high degree of 
isotropy in terms of specific energy absorption 
under high strain rates [26]. Syed Saarim Razi et 
al. suggest geometry, wall thickness, and stress 
distribution within the gyroid structure play a 
crucial role in determining its fracture behavior 
[27]. The 3D-printed lattice structures were 
examined by Chiara Ursini et al. found that the 
layering process of filament deposition was the 
cause of the anisotropic behavior [28]. Yingying 
Xue and colleagues created, produced, and 
described an improved three-dimensional 
auxetic lattice structure with better compressive 
qualities [29]. According to Dogue Qin et al., the 
TPMS-D lattice structure exhibits structural 
stability, energy absorption, and compression 
performance. When compared to the cubic lattice 
structure, they found that the TPMS-D lattice 
structure had better load-bearing and energy 
absorption capacity [30]. Hemp fiber-based 
honeycomb sandwich structures were employed 
by Sheedev Antony et al. These structures 
showed high modulus and compressive strength 
up to 47 MPa [31]. Ahmed Abu Sabir and 
colleagues' study examined the viscoelastic 
reaction of polymeric lattice structures generated 
by 3D printing. The results indicate that the 
lattice based on shells has the optimum capability 
for energy dissipation and viscoelastic behavior 
[32]. According to research by Victor Beloshenko 
et al., the gyroid architecture behaved in an 
isotropic way whereas the honeycomb 
architecture displayed anisotropic mechanical 
characteristics in tension and bending [33]. In 
their experiments with lattice cores based on BCC 
and ECC unit cells, Shu-Yu Jhou et al. discovered 
that the deformation behavior and shock 
absorption capacity of the 3D-printed polymeric 
sandwich structures were greatly impacted by 
the lattice core's design, which included the strut 
diameter, length, number, orientation, and 
apparent material stiffness [34]. The impact of 
honeycombs packed with PMI foam was 
examined by Leilei Yan et al. who found that the 
specimens' compressive strength had improved 
[35]. In their review, Niranjan Kumar Choudhry 
et al. propose that various auxetic re-entrant 
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structures produced using the FDM 3D/4D 
printing process can lead to an improvement in 
energy absorption performance [36]. According 
to George Razvan Buican, the mechanical 
characteristics of FFF-printed components can be 
enhanced by switch architectures reinforced 
with carbon fiber and glass fiber polymers [37]. 
To compare a hyperbolic chiral lattice with a BCC 
lattice, Qingguo He et al. created a unique hybrid 
metamaterial and found that it was more 
resistant to cyclic compressive pressures [38]. 
When Abdelrahman et al. compared a non-
Voronoi honeycomb lattice to a Voronoi 
honeycomb lattice, they found enhanced 
mechanical properties [39]. Jacob Peloquin et al. 
developed a machine-learning model that 
predicted Young's modulus, yield strength, and 
fracture strength of the 3D printed photopolymer 
gyroid lattices, with R2 values above 0.87 [40]. 
When Pritam Poddar et al. compared their 
readings to other published work on carbon fiber 
polymer lattice structures, they discovered 
outstanding relative compressive strength and 
modulus values for carbon composite octet truss 
structures made using axial lattice extrusion [41]. 
Adithya Challapalli et al. found a new ideal unit 
cell by using a dataset from FEA in machine 
learning, and they claimed a 300% increase in 
buckling load [42]. According to Rafael Santiago, 
the absorption rate of TPMS-based lattices that 
are functionally graded increased by 18% [43]. 
To predict the dimensional variation in parts 
produced through FDM 3D printing, Prairit 
Sharma et al. developed a machine-learning 
model. They discovered that the effect of wall 
thickness varied between the two materials, ABS 
parts had lower deviation than PLA parts, and 
inner diameters had higher deviation than outer 
diameters [44]. Murugan Jayasudha et al. 
discovered that the XGBoost regression model 
significantly outperformed linear regression, 
random forest, AdaBoost, and gradient boosting 
in terms of R-squared, RMSE, and MAE metrics 
when it came to accurately predicting the tensile 
strength of 3D printed parts [45]. 

After reviewing the previous work, it was felt 
that the Gyroid lattice structure, Cubic lattice 
structure, BCC lattice structure, and Honeycomb 
structure are extensively studied by many 
researchers with minor modifications. Apart 
from this most studies have performed only 
compression tests for identifying the strength of 
different lattice structures. The Review suggests 
that a concurrent study of various TPMS-based 
lattice structures manufactured by the FDM 
process is needed. This study introduces a novel 
lattice structure (Gyroid, Cross, and Schwarz P) 

optimized for additive manufacturing, which has 
not been previously analyzed in combination 
with varying layer heights. The investigation of; 
how layer height influences tensile, impact, and 
flexural properties across these complex 
geometries represents an innovative approach 
that bridges the gap between structural design 
and material performance. This research 
highlights the synergy between lattice geometry 
and 3D printing parameters, contributing to 
advancements in customized AM designs for real-
world applications. In this regard, the Taguchi 
method and Machine learning were used to 
optimize the parameters. To validate the results 
experimental tests were carried out. 

2. Materials and Methods 

In this study specimens were prepared as per 
the ASTM standards and experiments were 
conducted. To conduct the experiments the 
following methodology was adopted starting 
from material selection to deciding the geometry 
of the lattice structure. The following subsections 
define the materials used for this study as well as 
the methods and parameters employed in 
specimen manufacturing. It also describes the 
Taguchi method as well as machine learning used 
in the study. 

2.1. Materials 

The thermoplastic polymer polylactic acid 
(PLA) is frequently utilized in the fused 
deposition modeling technique. PLA is a 
thermoplastic polymer composed of renewable 
basic resources that are biodegradable. Corn 
starch is fermented to make PLA. PLA is 
inexpensive and comes in a variety of colors. 
Table 1 presents PLA's characteristics [1]. For 
this study, PLA is preferred as it offers excellent 
manufacturability with good mechanical 
properties and lower warping during printing 
complex lattice structures. Compared to ABS, PLA 
not only offers higher stiffness and tensile 
strength but also provides dimensional stability. 

2.2. Fused Deposition Modeling 

A large range of thermo-plastics, including 
some industrial-grade polymers that offer 
strength superior to Aluminium, may be printed 
in three dimensions using FDM technology. A 3D 
printer called the Flashforge Guider-II is utilized 
to create specimens. Table 2 shows the important 
printing parameters of the 3D printer    

 
 

Table 1. Properties of PLA material [1]
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Shore-D 

 
130– 180OC 60– 65OC 185OC 1.24 – 1.26 0.37 –0.41% 61 – 66 MPa 59 Sh D 

fabrication. According to the manufacturer's 
catalog, the nozzle temperature is kept at 220OC 
because any deviation from this norm could 
result in prints of subpar quality. Additionally, 
the infill density is maintained at 100% because 
PLA material should fill the full volume of the 
lattice structure. For the specimens to retain 
sufficient strength in their walls during testing, a 
shell thickness of 1.2 mm is maintained. 

Table 2. Printing Parameters 

Parameters Values 
Print temperature  2200C 
Print speed 80mm/s 
Nozzle diameter 0.4 mm 
Shell thickness 1.2 mm 
Infill pattern  line 
Infill density 100% 

2.3. Lattice Structure 

Gyroid, Cross, and Schwarz-P lattice 
structures were chosen based on their 
remarkable geometric properties and a broad 
range of applications in additive manufacturing. 
Triply periodic minimal surface (TPMS) 
structures, gyroid and Schwarz-P lattices have 
effective stress distribution and isotropic 
mechanical characteristics, which make them 
perfect for high-performance and lightweight 
designs. With its intersecting struts, the Cross 
lattice offers increased energy absorption 
capacity in addition to greater tensile and flexural 
strength. Their choice ensures applicability to 
both theoretical research and real-world 
scenarios in domains like biomedical, 
automotive, and aerospace engineering. Triply 
Periodic Minimal Surfaces (TPMS) surfaces have 
zero mean curvature at all points and repeat 
periodically in three dimensions. Because of their 
limited surface area, they have a high mechanical 
efficiency and are perfect for strong, lightweight 
lattice constructions. For use in biomechanics, 
aerospace, and lightweight structures, TPMS-
based lattice structures are being researched 
extensively. For the internal structure of the 
specimen, cells based on the Gyroid, Cross, and 
Schwarz-P TPMS are chosen. One of the most 
well-known TPMS is the Gyroid, which is 
distinguished by its intricate, non-self-
intersecting surfaces. Since there is no direct 
contact between the two distinct interwoven 

volumes that make up its structure, it is a bi-
continuous structure. It offers harmony between 
fluid permeability and mechanical strength. 
Studies indicate that the intricate geometry of 
gyroid-based devices contributes to their 
anisotropic mechanical behavior. Unlike the 
Gyroid, the Schwarz-P surface has a simpler 
shape and splits space into two connected zones. 
Because of its symmetry, Schwarz-P lattice 
structures are well-known for their isotropic 
characteristics. It has low density and high 
mechanical rigidity. A less well-known yet 
intriguing minimum surface with a distinctive 
crisscrossing pattern is the Cross TPMS. It is a 
Schwarz P surface variation. It provides rigidity 
and high energy absorption.  

Figures 1 (a), (b), and (c) show the standard 
specimens created as per the ASTM-D standard. 
Figures 2 (a) to (i), illustrate how specimens are 
modeled in Fusion 360 software and then 
transformed into STL files. Flashprint Slicing 
software is used to process these STL files 
further. Table 3 provides modeling parameters 
for the lattice structure.  

Table 3. Modeling parameters 

Parameters Values 
Lattice cell size 5mm 
Cell Position Vertical 
Cell solidity 0.6 
Face thickness on all sides 1 mm 
Blend distance 0 mm 
Surface solidity 1 

 

 
(a) 

 
(b) 

 
(C) 

Fig. 1. (a) ASTM D638 (b) ASTM D790 (c) ASTM D256 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 2. STL Files (a) Tensile Test Specimen Gyroid Cell (b) 
Tensile Test Specimen Cross Cell (c) Tensile Test Specimen 
Schwarz P Cell (d) Flexural Test Specimen Gyroid Cell (e) 

Flexural Test Specimen Cross Cell (f) Flexural Test Specimen 
Schwarz P Cell (d) Izod Impact Test Specimen Gyroid Cell (e) 
Flexural Test Specimen Cross Cell (f) Flexural Test Schwarz P 

Specimen Cell 

The structure in individual lattice cells has a 5 
mm dimension. Cell size is typically important for 
balancing mechanical properties, such as 
stiffness and energy absorption. The orientation 
of the lattice cells is vertical, meaning the cell's 
axis aligns along the vertical direction (Z-axis) in 
the coordinate system. Cell orientation is 
important as it can influence the anisotropy of the 
structure. Cell solidity defines the ratio of solid 
material to void space within each lattice cell. A 
solidity of 0.6 or 60% is maintained to ensure that 
enough material is available to sustain various 
loading conditions. The intersections of the 
lattice structure's walls have sharp edges when 
the blend distance is zero. Surface solidity of 1 

indicates that the external surfaces are 
completely solid, without any pores or voids. 
 

2.4 Design of Experiment in Taguchi Analysis 

Using Minitab, the experiment's design (DOE) 
was carried out. Two factors and a three-level 
design have been selected for Taguchi selection. 
The first variable is layer height, which has three 
levels: 0.1, 0.2, and 0.3 mm. The second variable 
is the selection of a TPMS-based cell, which has 
three levels: Gyroid, Cross, and Schwarz P. 
Previous work in this field served as the basis for 
choosing the levels. Lastly, optimization has been 
done to the L9 orthogonal array. Table 4 presents 
DOE in depth. Tensile, impact, and flexural 
strengths are measured on each L9 orthogonal 
array. 

Table 4. Taguchi L9 Experimental Design (DOE) 

Lattice Layer height 
Gyroid 0.1 
Gyroid 0.2 
Gyroid 0.3 
Cross 0.1 
Cross 0.2 
Cross 0.3 
Schwarz P 0.1 
Schwarz P 0.2 
Schwarz P 0.3 

 
As per the suggested L9 array, specimens are 
fabricated using FDM technology. A total of 27 
samples were printed and are shown in Figure 3. 

 
(a) 

 
(b) 
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(c) 

Fig. 3. (a)Tensile Test Specimens (b) Izod Impact Test 
Specimens (c) Flexural Test Specimens 

2.5 Machine Learning 

Machine learning has made it possible to 
recognize intricate patterns with a vast amount of 
data. Two types of learning can be distinguished: 
supervised learning and unsupervised learning. 
While unsupervised learning uses machine 
learning algorithms to analyze and cluster 
unlabeled data sets, supervised learning uses 
labeled data sets [2]. In this investigation, 
supervised learning is used to feed the original 
values. The supervised machine learning class 
includes the linear regression approach. The 
technique helps in the estimation or explanation 
of a particular numerical value based on a set of 
data. A dataset can be modeled using linear 
regression using the line's mathematical 
equation: y = mx + c. Building efficient models for 
predicting the dependent attributes from a class 
of attribute variables is the main goal of linear 
regression. Finding a positive correlation 
between two variables is the method's goal if they 
move in tandem and find a negative correlation in 
a case when one variable increases and the other 
decreases. Y = b0 + b1x is the statistical equation 
for linear regression, where x and y are the 
independent and dependent variables, 
respectively [45]. The results obtained are used 
for determining the predicted values using 
regression learning in MATLAB. 

2.6 Experimental Setup 

To assess the specimens' tensile strength, 
elongation at break, and modulus of elasticity, 
tensile testing was carried out in accordance with 
ASTM D638. Samples in the shape of dumbbells 
were prepared to the standard sizes indicated in 
Figure 1(a) and fitted in a tensile testing 
apparatus. Tensile strength is measured using 
UTM (model No. STS 248). A constant rate of 
extension of 10 mm/min was applied until the 
specimens fractured. The tensile strength, 
elongation, and Young's modulus were recorded, 
providing critical insights into the material's 
ability to withstand stretching forces.  

The ASTM D256 Izod impact test was utilized 
to evaluate impact resistance. To concentrate 

tension and start a fracture, specimens were 
prepared as indicated in Figure 1(c). After that, 
the samples were clamped vertically, and the 
notched region was struck by a pendulum swing. 
A one Joule hammer is used to record impact 
strength. By measuring the energy absorbed 
during fracture, the toughness and resistance to 
impact forces of the material were determined. 
Understanding plastic’s behavior under abrupt 
loads requires the results of this test.  

Similarly, a 10 kN load was applied at a rate of 
5 mm/min to determine the bending stress. For 
this test, a three-point bending fixture is utilized. 
ASTM D790 was used to assess the polymers' 
flexural qualities. In a three-point bending test, 
rectangular specimens as shown in Figure 1(b) 
were supported at both ends and had a load 
applied midway with the aid of a three-point 
bending fixture. The specimen was loaded 
continuously at a rate of 5 mm/min until it either 
fractured or reached a predetermined limit for 
deflection. The stiffness and resistance to 
bending under the load of the material were 
ascertained using the obtained flexural strength 
and modulus values. Figure 4 (a), (b), and (c) 
show the setup for tensile, Izod, and three-point 
bending tests. 

 
 

(a) 
 
 

 
(b) 
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(c) 

Fig. 4. (a) Tensile Test Setup (b) Izod Impact Test Setup (c) 
Flexural Test Setup 

3. Results and Discussion 

After testing the FDM 3D printed specimens 
for tensile, impact, and Izod tests, the following 
results were recorded. For a tensile test 
maximum stress sustained by the specimen 
before breaking was recorded. In the Izod test the 
energy absorbed as well as the impact strength of 
the specimen was noted down. Whereas in the 
flexural test by three-point bending load flexural 
strength was reported for each of the specimens. 
Table 6 shows these results.   

The mechanical property data for the Gyroid, 
Cross, and Schwarz P lattice structures at varying 
layer heights are shown in Table 5. Tensile 
strength, impact energy, Izod impact strength, 
and flexural strength are among the mechanical 
attributes that are tested. The highest tensile 
strength (23.34 MPa) is found for the Cross lattice 
with a 0.1 mm layer height followed by Schwarz 
P (13.01 MPa) and Gyroid (6.23 MPa) for the 
same layer height. 

Table 5. Test Results 
 

Lattice 
Layer 
height 

Tensile 
Strength 
in (MPa) 

Impact 
energy 

(J) 

Izod 
impact 

Strength 
J/m 

Flexural 
Strength 

(MPa) 

Gyroid 0.3 5.48 0.02 3.84 13.46 

Gyroid 0.2 5.9 0.08 15.3 15.38 

Gyroid 0.1 6.23 0.12 23 16.02 

Cross 0.3 16.23 0.04 7.6 41.66 

Cross 0.2 21.43 0.1 19.2 41.34 

Cross 0.1 23.34 0.13 25 48.39 

Schwarz 
P 

0.3 9.72 0.04 7.6 26.6 

Schwarz 
P 

0.2 10.79 0.07 13.4 28.84 

Schwarz 
P 

0.1 13.01 0.1 19.2 29.48 

 
Comparing the values of tensile strength 

obtained by TPMS-based lattice structure with 

values obtained by  BCC lattice structure [9] [20], 
it is found that TPMS-based lattice structure gives 
better tensile strength. Impact energy (0.13 J) is 
maximum for the Cross lattice with 0.1 mm layer 
height and lowest (0.02 J) for the Gyroid with 0.3 
mm layer height. The gyroid has the lowest 
resistance (3.84 J/m) at 0.3 mm, whereas the 
Cross lattice with 0.1 mm layer height exhibits 
the maximum Izod impact strength (25 J/m), 
suggesting good resistance. At 0.1 mm layer 
height (48.39 MPa), the Cross lattice performs 
better than the Gyroid, which is the least effective 
(13.46 MPa) at 0.3 mm layer height. Generally 
increased strength is observed in tensile, impact, 
and flexural loading in all lattices when the layer 
height is decreased from 0.3 mm to 0.1 mm. Cross 
lattice is a great option for applications needing 
structural integrity because it performs better 
than the other structures in most categories, 
particularly in tensile, impact, and flexural 
strength. Gyroid lattice exhibits weaker 
mechanical properties, especially at greater layer 
heights, indicating that it might not be as 
appropriate for load-bearing applications, but it 
might still be useful for other purposes, such as 
lightweight design. 

Analysis of this result was carried out in two 
ways, the first was Taguchi and the second was 
machine learning. 

3.1. Taguchi Analysis 

Minitab software is used to optimize the 
obtained results through Taguchi analysis. 
Greater S/N ratios are used under Taguchi 
analysis because stronger specimens were 
predicted. Response tables for means and signal-
to-noise ratio are displayed in Tables 6 and 7, 
respectively.  Figures 5, 6, and 7 illustrate the 
effects of the S/N ratio and the means for the 
tensile, impact, and flexural tests, respectively.  

Table 6.  Response Table Signal to Noise Ratio 

Level 

Tensile Test 
Izod Impact 

Test 

Flexural Test 

Lattice 

Structure 

Layer 

Height 

Lattice 

Structure 

Layer 

Height 

Lattice 

Structure 

Layer 

Height 

1  15.36  21.85  20.87  26.95  23.47  29.06  

2  26.06  20.90  23.75  23.97  32.81  28.42  

3  20.90  19.58  21.94  15.64  29.03  27.82  

Delta  10.70  2.27  2.88  11.31  9.33  1.24  

Rank  1  2  2  1  1  2  

 

Table 7.  Response Table for Means 

Level Tensile Test 
Izod Impact 

Test 

Flexural Test 
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Lattice 

Structure 

Layer 

Height 

Lattice 

Structure 

Layer 

Height 

Lattice 

Structure 

Layer 

Height 

1  5.870  14.193  14.047  22.400  14.95  31.30  

2  20.333  12.707  17.267  15.967  43.80  28.52  

3  11.173  10.477  13.400  6.347  28.31  27.24  

Delta  14.463  3.717  3.867  16.053  28.84  4.06  

Rank  1  2  2  1  1  2  

 

 
(a) 

 

 
(b) 

Fig. 5. (a) Main Effects of Plot for S/N ratios (b)Main Effects 
of Plot for Means for Tensile Test 

 

It can be seen from Figures 5 (a) and (b), that 
the cross lattice has the highest mean S/N ratio, 
suggesting that when compared to Gyroid and 
Schwarz-P, this structure performs best in terms 
of lowering variability or enhancing robustness. 
The S/N ratio falls as layer height rises from 0.1 
mm to 0.3 mm, suggesting that lower layer 
heights yield more stable and consistent 
structures. This is probably because fine layers 
will improve performance by adding more 
material and decreasing voids in the structure. 

Figures 6 (a) and (b) reveal that the Cross 
structure outperforms the Gyroid and Schwarz-P 
structures in terms of robustness under impact 
loading. It does this by displaying a slightly higher 
mean S/N ratio. 
 

 
(a) 

 
(b) 

 
Fig. 6. (a) Main Effects of Plot for S/N ratios (b)Main Effects 

of Plot for Means for Impact Test 

Like the results of tensile loading, in this case, 
the S/N ratio decreases as layer height increases, 
suggesting that mechanical properties will be 
better at lower layer heights. There is a 
considerable decrease in the S/N ratio as the 
layer height increases (to 0.2 and 0.3 mm). As a 
result, impact resistance varies more when layer 
heights are higher, probably because more voids 
occur. The Cross structure's superior mean 
performance in impact resistance highlights its 
appropriateness for applications requiring the 
absorption of energy. 

The cross lattice has the largest S/N ratio, 
demonstrating superior performance in terms of 
robustness and uniformity under flexural stress, 
as shown in Figures 7 (a) and (b). The Gyroid 
structure has the lowest S/N ratio, indicating that 
its flexural performance may be more variable 
than that of the Schwarz-P structure, which 
displays a moderate S/N ratio. The findings 
support the hypothesis that lower layer heights 
enhance consistency and overall mechanical 
performance by demonstrating that a 0.1 mm 
layer height yields the maximum flexural 
strength. Larger layer heights may cause 
structural defects that lessen the lattice's 
capacity to endure loading conditions, according 
to all three results. 
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(a) 

 
(b) 

Fig. 7. (a) Main Effects of Plot for S/N ratios (b)Main Effects 
of Plot for Means for Flexural Test 

Tables 6 and 7 present data that demonstrates 
the influence of lattice structure and layer height 
on mechanical parameters, including but not 
limited to tensile strength, Izod impact strength, 
and flexural strength. With the greatest S/N ratio 
and mean values in all studies, lattice structure is 
consistently found to be the most significant 
component. The level 3 lattice structure performs 
better than the others, demonstrating that its 
design maximizes mechanical strength. The 
material properties are mostly determined by the 
lattice structure, as demonstrated by the greater 
influence of lattice structure (Delta = 10.70 for 
tensile strength) over layer height (Delta = 2.27), 
as indicated by the Delta values. Even while layer 
height is secondary, it does affect performance, 
especially in tests of tensile and flexural strength. 
The study recommends concentration on lattice 
structure to improve the mechanical properties 
of materials that are 3D printed. 

3.2. Analysis by Machine Learning by Using 

Linear Regression 

MATLAB is used for determining simple linear 
regression models. Results obtained during the 
experiment are used to generate the ML model. 
Table 9 shows a summary of the model developed 
along with their accuracy. 

Tensile test, Izod impact test, and flexural test 
results are the three types of mechanical tests for 
which Table 8 presents the performance of 

several machine learning models. Based on the 
unique features of each mechanical test and the 
advantages of each model, the choice was made 
to employ neural networks for tensile and 
flexural testing and Gaussian Process Regression 
(GPR) for impact testing. GPR is superior at 
managing uncertainty and sparsity in the highly 
variable and stochastic data found in Izod impact 
testing, but neural networks are great at 
collecting complicated, high-dimensional 
correlations in well-structured data (such as 
tensile and flexural tests). This customized 
strategy provides peak model performance and 
precise forecasts. The neural network model is an 
example of a computer model that draws 
inspiration from the composition and operations 
of the human brain. Layers of networked nodes, 
or neurons, make up its structure. Through 
training, the neurons process incoming data and 
identify patterns. When it comes to managing 
intricate, non-linear relationships in data, neural 
networks are very effective. For regression tasks, 
the Gaussian Process Regression (GPR) method 
yields a probabilistic, non-parametric model. It 
assumes that every collection of points in the 
input space has a joint Gaussian distribution. It 
establishes a distribution over functions, and 
conditioning this distribution on observable data 
allows predictions to be produced. Regression 
models' performance in statistics and machine 
learning are frequently assessed using 
parameters indicated in Table 8. When evaluating 
a model's predictive power, each indicator has a 
unique importance. The square root of the 
average squared difference between the expected 
and actual data is called the Root Mean Squared 
Error (RMSE).  Larger errors are penalized more 
severely, and it indicates the average size of the 
prediction errors based on their squared values. 
A measure of how much of the variance in the 
dependent variable can be predicted from the 
independent variables is called the coefficient of 
determination, or R-squared. The average of the 
squared discrepancies between the expected and 
actual values is known as the mean squared 
error, or MSE. The average of the absolute 
discrepancies between the expected and actual 
values is known as the mean absolute error, or 
MAE. Without considering the direction of the 
errors, it calculates the average magnitude of 
errors in a series of forecasts.  On the other hand, 
greater R-squared values suggest better 
accuracy.  

The input layer of the trained neural network 
for the tensile test and the flexural test contains 2 
nodes; one is categorical (lattice structure) and 
the other is numerical (layer height). 

 

Table 8: Summary of the ML Models 
 

Parameters Tensile Test Izod Impact Test Flexural Test 
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Neural 
Network 
(Validation) 

Neural 
Network 
(Test) 

Gaussian 
Process 
Regression 
(Validation) 

Gaussian 
Process 
Regression 
(Test) 

Neural 
Network 
(Validation) 

Neural 
Network 
(Test) 

RMSE 1.8381 0.00068 1.6857 0.00267 6.1058 0.42666 

R-Squared 0.93 0.99 0.96 0.99 0.77 0.99 

MSE 3.3786 0.00000046 2.8415 0.00000713 37.281 0.18204 

MAE 1.3717 0.00053 1.3417 0.00206 5.2246 0.28444 

 
Three fully connected hidden layers are 

present, with each layer containing 10 neurons. 
All three layers use the ReLU (Rectified Linear 
Unit) activation function. The output layer 
consists of one node having a single neuron with 
a linear activation function. The Gaussian Process 
Regression (GPR) model used for the Izod impact 
test employs a probabilistic approach, providing 
accurate predictions. A constant basis function is 
used to define the mean of the Gaussian process. 
Matern 5/2 Kernel is used to ensure flexibility 
and smoothness for capturing non-linear 
relationships in the experimental data. The 
isotropic kernel is used to ensure uniform scaling 
across all input dimensions, reducing complexity 
and improving generalization. 

Lower MAE, MSE, and RMSE values indicate 
better model performance. Table 9's lower MAE, 
MSE, and RMSE values indicate that the model 
was produced with accurate performance. 
 

 
 

(a) 

 

 

(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 
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(f) 

Fig. 8. Tensile Test Plots (a) Response Plot for original data 
set (b) Predicted Versus Actual Plot (c) Response Plot (d) 

Validation Residual plot for predictions (e) Test residual plot 
for predictions (f) Test Predicted Versus Actual Plot   

A neural network machine learning model for 
forecasting a material's tensile strength is 
demonstrated in Figures 8 (a) and (b). In Figure 
8(a), the blue dots represent the actual measured 
tensile strengths, while the yellow points reflect 
the predicted tensile strengths. The difference 
between these points indicates the error or 
departure between the actual and expected 
values. Because most of the forecasts are within a 
reasonable range of the actual values, the neural 
network model in Figure 8(b) worked admirably. 
Since tensile testing measures a material's ability 
to withstand deformation under stress, minor 
errors in model prediction could result from 
differences in the homogeneity of the material or 
from external test conditions like humidity, 
temperature, etc., which neural networks might 
find difficult to fully generalize. 

The Gaussian Process Regression model 
works exceptionally well in estimating Izod 
impact strength, with most of the projected 
values nearly matching the true values. The 
deviation in Figure 9(b) indicates a little 
tendency for the model to underestimate lower 
impact strength values. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
(e) 
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(f) 

Fig. 9. Izod Test Plots (a) Response Plot for original data 
set (b) Predicted Versus Actual Plot (c) Response Plot (d) 

Validation Residual plot for predictions (e) Test residual plot 
for predictions (f) Test Predicted Versus Actual Plot 

Gaussian Process Regression (GPR) performs 
well here, likely due to the smoothness 
assumption of the kernel function used (Matern 
5/2). Figure 9(a) illustrates the substantial error 
at record 1, which may indicate anomalies in the 
data or a constraint in the model's ability to learn 
across specific impact strength ranges. 

Figures 10(a) and (b) show that the neural 
network model has a modest level of predictive 
ability for flexural strength. Figure 10(b) shows a 
pattern of underestimate because of the model's 
difficulties with greater strength values, despite 
its accuracy for lower strength levels (below 30 
MPa). The model might not generalize well over 
the whole dataset, especially for records with 
high flexural strength values, as indicated by the 
inaccuracies in Figure 10(a). For lower flexural 
strength values, the neural network model 
performs satisfactorily; but, for higher values, it 
underperforms, suggesting that the model's 
complexity or training data coverage may be 
limited. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
(e) 
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(f) 

Fig. 10. Flexural Test Plots (a) Response Plot for original 
data set (b) Predicted Versus Actual Plot (c) Response Plot 

(d) Validation Residual plot for predictions (e) Test residual 
plot for predictions (f) Test Predicted Versus Actual Plot 

Several variables, such as material stiffness, 
geometry, and loading circumstances, affect the 
flexural test, which quantifies a material's 
resistance to bending. Despite their strength, 
neural networks might find it difficult to capture 
these intricate relationships, which could result 
in increased errors. 

 Using strategies like dropout or L2 
regularization can increase the neural network 
model's lower accuracy. Model performance may 
be improved by adjusting hyperparameters such 
as the number of neurons, learning rate, or 
activation functions. Using a larger and more 
varied dataset in conjunction with this training 
could increase the model's robustness. By 
machine learning standards, the dataset of nine 
experiments is modest, which may limit the 
learned models' generality and resilience. 
However, the existing dataset still offers useful 
insights because of the controlled experiments, 
the application of domain expertise, and the 
possibility of future dataset growth.  

4. Conclusions 

This experiment's goal was to determine how 
the FDM 3D printing process's lattice structure 
and processing settings affected the mechanical 
qualities of tensile strength, impact strength, and 
flexural strength. To optimize those properties 
lattice cell and layer height were the variables 
used for sample fabrication. Impact testing 
devices from Izod and UTM were used to evaluate 
specimen samples made from PLA. The Taguchi 
method was used to analyze the impacts. The 
results of the investigation indicated that the best 
combination of cross-cell and layer height, or 0.1 
mm, produced the highest tensile, impact, and 
flexural strengths. 

Tensile, impact, and flexural strength 
readings of 21.43 MPa, 25 J/m, and 48.39 MPa 

respectively provided by the aforementioned 
combination set are better than those of other 
sets of combinations. Higher Delta values and 
rank 1 for the tensile and flexural tests suggest 
that lattice structure is the more significant factor 
affecting the S/N   ratios and the mean values. 
Higher Delta values and rank 1 in the Izod impact 
test suggest that layer height is the more 
significant factor affecting both the S/N ratios 
and the mean values. 

When a neural network model was applied to 
tensile test data, the results showed low error 
rates, with an R-squared value of 0.93 indicating 
accuracy and low Root Mean Square Error 
(RMSE) and Mean Squared Error (MSE) values of 
1.8381 and 3.3786, respectively. Furthermore, 
the model's capacity to accurately anticipate the 
results of tensile tests is further supported by the 
Mean Absolute Error (MAE) of 1.3717. When the 
Gaussian Process Regression model was used to 
analyze the data from the Izod impact test, the 
results showed a high degree of accuracy (R-
squared = 0.96, RMSE = 1.6857, and MSE = 
2.8415), indicating a low prediction error of the 
model. The model's accuracy in predicting the 
results of impact tests is shown by its MAE of 
1.3417. 

R-squared value of 0.77, or 77% of the 
variance in the flexural test data, was predicted 
by the neural network model. With an MSE of 
37.281 and an RMSE of 6.1058, a larger 
prediction error is indicated. The average 
absolute deviation (MAE) between the predicted 
and actual values is 5.2246. Overall, the model 
shows a moderate level of accuracy, there is 
scope for an improvement in predicting flexural 
test results.  

Considering the dataset's limitations, the 
knowledge acquired through this investigation 
provides a strong foundation for incorporating 
machine learning into workflows for materials 
testing and optimization. The results highlight 
the significance of model selection and how 
machine learning has the potential to 
revolutionize material characterization methods. 
By revealing hidden correlations between 
material compositions and performance through 
model training on a larger and more varied 
dataset, we can design high-performance PLA-
based materials for use in the automotive, 
packaging, and medical device industries. 

Funding Statement 

This research did not receive any specific 
grant from funding agencies in the public, 
commercial, or not-for-profit sectors. 

Conflicts of Interest 



 

14 

The author declares that there is no conflict of 
interest regarding the publication of this article. 

References 

[1] Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S. and 

Hao, W. (2020). Effect of process parameters on 

mechanical properties of 3D printed PLA lattice 

structures. Composites Part C: Open Access, 

[online] 3, p.100076. 

doi:https://doi.org/10.1016/j.jcomc.2020.1000

76. 

[2] Md Mazedur Rahman, Sultana, J., Saiaf Bin 

Rayhan and Ahmed, A. (2023). Optimization of 

FDM manufacturing parameters for the 

compressive behavior of cubic lattice cores: an 

experimental approach by Taguchi method. The 

International Journal of Advanced Manufacturing 

Technology. 

doi:https://doi.org/10.1007/s00170-023-

12342-9. 

[3] Mani, M., Karthikeyan, A.G., Kalaiselvan, K., 

Muthusamy, P. and Muruganandhan, P. (2022). 

Optimization of FDM 3-D printer process 

parameters for surface roughness and 

mechanical properties using PLA 

material. Materials Today: Proceedings. 

doi:https://doi.org/10.1016/j.matpr.2022.05.42

2. 

[4] Jing, S., Li, W., Ma, G., Cao, X., Zhang, L., Fang, 

L., Meng, J., Shao, Y., Shen, B., Zhang, C., Li, H., Wan, 

Z. and Xiao, D. (2023). Enhancing Mechanical 

Properties of 3D Printing Metallic Lattice 

Structure Inspired by Bambusa 

Emeiensis. Materials, 16(7), pp.2545–2545. 

doi:https://doi.org/10.3390/ma16072545. 

[5] Ramakrishna Doodi and Gunji Bala Murali 

(2023). Prediction and experimental validation 

approach to improve performance of novel 

hybrid bio-inspired 3D printed lattice structures 

using artificial neural networks. Scientific 

Reports,13(1). 

doi:https://doi.org/10.1038/s41598-023-

33935-0. 

[6] Namvar, N., Moloukzadeh, I., Zolfagharian, A., 

Demoly, F. and Bodaghi, M. (2023). Bio-inspired 

design, modeling, and 3D printing of lattice-based 

scale model scooter decks. The International 

Journal of Advanced Manufacturing Technology. 

doi:https://doi.org/10.1007/s00170-023-

11185-8. 

[7] Harish, A., Alsaleh, N.A., Mahmoud Ahmadein, 

Elfar, A.A., Djuansjah, J., Hany Hassanin, 

Mahmoud Ahmed El-Sayed and Essa, K. (2024). 

Designing Lightweight 3D-Printable Bioinspired 

Structures for Enhanced Compression and 

Energy Absorption Properties. Polymers, 16(6), 

pp.729–729. 

doi:https://doi.org/10.3390/polym16060729. 

[8] Fongsamootr, T., Thawon, I., Tippayawong, N., 

Tippayawong, K.Y. and Suttakul, P. (2022). Effect 

of print parameters on additive manufacturing of 

metallic parts: performance and sustainability 

aspects. Scientific Reports, [online] 12(1), 

p.19292. doi:https://doi.org/10.1038/s41598-

022-22613-2. 

[9] Barbosa, W.S., Gioia, M.M., Temporão, G.P., 

Meggiolaro, M.A. and Gouvea, F.C. (2022). Impact 

of multi-lattice inner structures on FDM PLA 3D 

printed orthosis using Industry 4.0 

concepts. International Journal on Interactive 

Design and Manufacturing (IJIDeM), 17(1), 

pp.371–383. 

doi:https://doi.org/10.1007/s12008-022-

00962-6. 

[10] Li, B. and Shen, C. (2022). Solid Stress-

Distribution-Oriented Design and Topology 

Optimization of 3D-Printed Heterogeneous 

Lattice Structures with Light Weight and High 

Specific Rigidity. Polymers, 14(14), p.2807. 

doi:https://doi.org/10.3390/polym14142807. 

[11] Shevchenko, V., Sergey Balabanov, Maxim 

Sychov and Lyutsiya Karimova (2023). 

Prediction of Cellular Structure Mechanical 

Properties with the Geometry of Triply Periodic 

Minimal Surfaces (TPMS). ACS Omega, 8(30), 

pp.26895–26905. 

doi:https://doi.org/10.1021/acsomega.3c01631

. 

[12] Libonati, F., Graziosi, S., Ballo, F., Mognato, M. 

and Sala, G. (2021). 3D-Printed Architected 

Materials Inspired by Cubic Bravais Lattices. ACS 

Biomaterials Science & Engineering. 

doi:https://doi.org/10.1021/acsbiomaterials.0c

01708. 

[13] Bogusz, P., Popławski, A., Stankiewicz, M. and 

Kowalski, B. (2022). Experimental Research of 

Selected Lattice Structures Developed with 3D 

Printing Technology. Materials, 15(1), p.378. 

doi:https://doi.org/10.3390/ma15010378. 

[14] Jozef Tkáč, Samborski, S., Katarína Monková 

and H. Dębski (2020). Analysis of mechanical 

properties of a lattice structure produced with 

the additive technology. Composite Structures, 



 

15 

242, pp.112138–112138. 

doi:https://doi.org/10.1016/j.compstruct.2020.

112138. 

[15] Alarifi, I.M. (2023). Mechanical properties 

and numerical simulation of FDM 3D printed 

PETG/carbon composite unit structures. Journal 

of Materials Research and Technology. 

doi:https://doi.org/10.1016/j.jmrt.2023.01.043. 

[16] Atikom Sombatmai, Krisda Tapracharoen, 

Vitoon Uthaisangsuk, Sabeur Msolli and 

Patcharapit Promoppatum (2024). Post-yielding 

and failure mechanism of additively 

manufactured triply periodic minimal surface 

lattice structures. Results in Engineering, [online] 

23, pp.102364–102364. 

doi:https://doi.org/10.1016/j.rineng.2024.1023

64. 

[17] Abdulla Almesmari, Sheikh-Ahmad, J., Jarrar, 

F. and Shrinivas Bojanampati (2022). Optimizing 

the specific mechanical properties of lattice 

structures fabricated by material extrusion 

additive manufacturing. Journal of Materials 

Research and Technology, [online] 22, pp.1821–

1838. 

doi:https://doi.org/10.1016/j.jmrt.2022.12.024. 

[18] Alarifi, I.M. (2023). PETG/carbon fiber 

composites with different structures produced 

by 3D printing. Polymer Testing, 120, p.107949. 

doi:https://doi.org/10.1016/j.polymertesting.2

023.107949. 

[19] Perween, S., Fahad, M. and Khan, M.A. 

(2021). Systematic Experimental Evaluation of 

Function Based Cellular Lattice Structure 

Manufactured by 3D Printing. Applied Sciences, 

11(21), p.10489. 

doi:https://doi.org/10.3390/app112110489. 

[20] Cem GÜDÜR, Türker TÜRKOĞLU and EREN, 

İ. (2023). Effect of Lattice Design and Process 

Parameters on the Properties of PLA, ABS AND 

PETG Polymers Produced by Fused Deposition 

Modelling. Journal of Materials and Mechatronics 

A, 4(2), pp.561–570. 

doi:https://doi.org/10.55546/jmm.1357217. 

[21] Higuera, S., Miralbes, R. and Ranz, D. (2021). 

Mechanical properties and energy–absorption 

capabilities of thermoplastic sheet gyroid 

structures. Mechanics of Advanced Materials and 

Structures, pp.1–15. 

doi:https://doi.org/10.1080/15376494.2021.19

19803. 

[22] Kumar, A., Verma, S. and Jeng, J.-Y. (2020). 

Supportless Lattice Structures for Energy 

Absorption Fabricated by Fused Deposition 

Modeling. 3D Printing and Additive 

Manufacturing. 

doi:https://doi.org/10.1089/3dp.2019.0089. 

[23] Alemayehu, D.B. and Todoh, M. (2024). 

Enhanced Energy Absorption with Bioinspired 

Composite Triply Periodic Minimal Surface 

Gyroid Lattices Fabricated via Fused Filament 

Fabrication (FFF). Journal of Manufacturing and 

Materials Processing, 8(3), p.86. 

doi:https://doi.org/10.3390/jmmp8030086. 

[24] Liu, T., Zhao, W., Yao, Y., Lin, C., Zhao, H. and 

Cai, J. (2024). Mechanical and shape-memory 

properties of TPMS with hybrid configurations 

and materials. International Journal of Smart and 

Nano Materials, pp.1–25. 

doi:https://doi.org/10.1080/19475411.2024.24

10289. 

[25] Viswanath, A., Khalil, M., Khan, A., Fahad Al 

Maskari, Cantwell, W.J. and Khan, K.A. (2024). A 

novel design strategy to enhance buckling 

resistance of thin-walled single-cell lattice 

structures via topology optimisation. Virtual and 

Physical Prototyping, 19(1). 

doi:https://doi.org/10.1080/17452759.2024.23

45390. 

[26] Alkhatib, S.E., Xu, S., Lu, G., Karrech, A. and 

Sercombe, T.B. (2024). Rate-dependent 

behaviour of additively manufactured topology 

optimised lattice structures. Thin-Walled 

Structures, 198, p.111710. 

doi:https://doi.org/10.1016/j.tws.2024.111710. 

[27] Syed Saarim Razi, Pervaiz, S., Rahmat Agung 

Susantyoko and Mozah Alyammahi (2024). 

Optimization of Environment-Friendly and 

Sustainable Polylactic Acid (PLA)-Constructed 

Triply Periodic Minimal Surface (TPMS)-Based 

Gyroid Structures. Polymers, 16(8), pp.1175–

1175. 

doi:https://doi.org/10.3390/polym16081175. 

[28] Ursini, C. and Collini, L. (2021). FDM 

Layering Deposition Effects on Mechanical 

Response of TPU Lattice Structures. Materials, 

14(19), p.5645. 

doi:https://doi.org/10.3390/ma14195645. 

[29] Xue, Y., Gao, P., Zhou, L. and Han, F. (2020). 

An Enhanced Three-Dimensional Auxetic Lattice 

Structure with Improved Property. Materials, 



 

16 

13(4), pp.1008–1008. 

doi:https://doi.org/10.3390/ma13041008. 

[30] Qin, D., Sang, L., Zhang, Z., Lai, S. and Zhao, Y. 

(2022). Compression Performance and 

Deformation Behavior of 3D-Printed PLA-Based 

Lattice Structures. Polymers, [online] 14(5), 

pp.1062–1062. 

doi:https://doi.org/10.3390/polym14051062. 

[31] Antony, S., Cherouat, A. and Montay, G. 

(2020). Fabrication and Characterization of 

Hemp Fibre Based 3D Printed Honeycomb 

Sandwich Structure by FDM Process. Applied 

Composite Materials, 27(6), pp.935–953. 

doi:https://doi.org/10.1007/s10443-020-

09837-z. 

[32] Abusabir, A., Khan, M.A., Asif, M. and Khan, 

K.A. (2022). Effect of Architected Structural 

Members on the Viscoelastic Response of 3D 

Printed Simple Cubic Lattice 

Structures. Polymers, 14(3), p.618. 

doi:https://doi.org/10.3390/polym14030618. 

[33] Beloshenko, V., Beygelzimer, Y., Chishko, V., 

Savchenko, B., Sova, N., Verbylo, D., Voznyak, A. 

and Vozniak, I. (2021). Mechanical Properties of 

Flexible TPU-Based 3D Printed Lattice 

Structures: Role of Lattice Cut Direction and 

Architecture. Polymers, 13(17), p.2986. 

doi:https://doi.org/10.3390/polym13172986. 

[34] Shu-Yu Jhou, Hsu, C.-C. and Yeh, J.-C. (2021). 

The Dynamic Impact Response of 3D-Printed 

Polymeric Sandwich Structures with Lattice 

Cores: Numerical and Experimental 

Investigation. Polymers, 13(22), pp.4032–4032. 

doi:https://doi.org/10.3390/polym13224032. 

[35] Yan, L., Zhu, K., Zhang, Y., Zhang, C. and 

Zheng, X. (2020). Effect of Absorbent Foam Filling 

on Mechanical Behaviors of 3D-Printed 

Honeycombs. Polymers, 12(9), p.2059. 

doi:https://doi.org/10.3390/polym12092059. 

[36] Choudhry, N.K., Panda, B. and Dixit, U.S. 

(2023). Energy Absorption Characteristics of 

Fused Deposition Modeling 3D Printed Auxetic 

Re-entrant Structures: A Review. Journal of 

Materials Engineering and Performance, 32(20), 

pp.8981–8999. 

doi:https://doi.org/10.1007/s11665-023-

08243-3. 

[37] Buican, G.R., Zaharia, S.-M., Pop, M.A., Chicos, 

L.-A., Lancea, C., Stamate, V.-M. and Pascariu, I.S. 

(2021). Fabrication and Characterization of 

Fiber-Reinforced Composite Sandwich 

Structures Obtained by Fused Filament 

Fabrication Process. Coatings, 11(5), p.601. 

doi:https://doi.org/10.3390/coatings11050601. 

[38] He, Q., Hou, Y., Li, X., Li, S. and Meng, L. 

(2023). Investigation on the Compressive 

Behavior of Hybrid Polyurethane(PU)-Foam-

Filled Hyperbolic Chiral Lattice 

Metamaterial. Polymers, 15(9), pp.2030–2030. 

doi:https://doi.org/10.3390/polym15092030. 

[39] Abdelrahman Mohamed Ragab, Mahdi, E., 

Kas Oosterhuis, Dean, A. and John-John Cabibihan 

(2023). Mechanical and energy absorption 

properties of 3D-printed honeycomb structures 

with Voronoi tessellations. Frontiers in 

Mechanical Engineering, 9. 

doi:https://doi.org/10.3389/fmech.2023.12048

93. 

[40] Peloquin, J., Kirillova, A., Rudin, C., L. 

Catherine Brinson and Gall, K. (2023). Prediction 

of tensile performance for 3D printed 

photopolymer gyroid lattices using structural 

porosity, base material properties, and machine 

learning. Materials & Design, 232, pp.112126–

112126. 

doi:https://doi.org/10.1016/j.matdes.2023.112

126. 

[41] Poddar, P., Olles, M. and Cormier, D. (2022). 

Mechanical Response of Carbon Composite Octet 

Truss Structures Produced via Axial Lattice 

Extrusion. Polymers, 14(17), p.3553. 

doi:https://doi.org/10.3390/polym14173553. 

[42] Adithya Challapalli and Li, G. (2021). 

Machine learning assisted design of new lattice 

core for sandwich structures with superior load 

carrying capacity. Scientific Reports, 11(1). 

doi:https://doi.org/10.1038/s41598-021-

98015-7. 

[43] Santiago, R., Ramos, H., AlMahri, S., Banabila, 

O., Haleimah Alabdouli, Lee, D.-W., Aziz, A., 

Rajput, N., Alves, M. and Guan, Z. (2023). 

Modelling and optimisation of TPMS-based 

lattices subjected to high strain-rate impact 

loadings. International journal of impact 

engineering, 177, pp.104592–104592. 

doi:https://doi.org/10.1016/j.ijimpeng.2023.10

4592. 

[44] Sharma, P., Vaid, H., Vajpeyi, R., Shubham, P., 

Agarwal, K.M. and Bhatia, D. (2022). Predicting 

the dimensional variation of geometries 

produced through FDM 3D printing employing 

supervised machine learning. Sensors 



 

17 

International,3,p.100194. 

doi:https://doi.org/10.1016/j.sintl.2022.10019

4. 

[45] Jayasudha, M., Elangovan, M., Mahdal, M. and 

Priyadarshini, J. (2022). Accurate Estimation of 

Tensile Strength of 3D Printed Parts Using 

Machine Learning Algorithms. Processes, 10(6), 

p.1158. 

doi:https://doi.org/10.3390/pr10061158. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


