
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,930 |
تعداد دریافت فایل اصل مقاله | 7,656,389 |
New results on fractional calculus and integral transform with extended Mittag-Leffler type function | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 14 دی 1403 اصل مقاله (458.06 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.25243.2966 | ||
نویسندگان | ||
Sunil Kumar Sharma1؛ Vinod Gill2؛ Dinesh Kumar* 3؛ Norbert Sudland4 | ||
1Department of Mathematics, Arya College of Engineering, RIICO Industrial Area, Kukas, Delhi Road, Jaipur–302028 (Raj.), India | ||
2Department of Mathematics, Government College Nalwa (Hisar), Haryana-125037, India | ||
3Department of Applied Sciences, College of Agriculture, Agriculture University Jodhpur, Jodhpur–342304 (Raj.), India | ||
4Aage GmbH, Rontgenstraße 24, 73431 Aalen (Wurttemberg), Germany | ||
تاریخ دریافت: 23 آبان 1400، تاریخ پذیرش: 30 مرداد 1403 | ||
چکیده | ||
In the present article, we obtain new results, based on an extended Mittag-Leffler type function. We also investigate some integral transforms and generalized integral formulas for this function, and established results are expressed in terms of the Wright generalized hypergeometric type function. Some presumably new and known interesting special cases are also deduced. | ||
کلیدواژهها | ||
Generalized Wright hypergeometric function؛ extended Mittag-Leffler function؛ fractional calculus operators؛ integral transforms؛ generalized beta and gamma functions | ||
مراجع | ||
[1] P. Agarwal, M. Chand, and E.T. Karimov, Certain image formulas of generalized hypergeometric functions, Appl. Math. Comput. 266 (2015), 763–772. [2] P. Agarwal, Q. Al-Mdallal, Y.J. Cho, and S. Jain, Fractional differential equations for the generalized Mittag[1]Leffler function, Adv. Difference Equ. 2018 (2018), 1–8. [3] M. Arshad, S. Mubeen, K.S. Nisar, and G. Rahman, Extended Wright-Bessel function and its properties, Commun. Korean Math. Soc. 33 (2018), no. 1, 143–155. [4] J. Choi, K.B. Kachhia, J.C. Prajapati, and S.D. Purohit, Some integral transforms involving extended generalized Gauss hypergeometric functions, Commun. Korean Math. Soc. 31 (2016), no. 4, 779–790. [5] L. Debnath and D. Bhatta, Integral Transform and Their Applications, 2nd edition, C.R.C. Press, London, 2007. [6] R.K. Gupta, B.S. Shaktawat, and D. Kumar, Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function, J. Rajasthan Acad. Phys. Sci. 15 (2016), no. 3, 117–126. [7] R.K. Gupta, B.S. Shaktawat, and D. Kumar, Marichev-Saigo-Maeda fractional calculus operators involving generalized Mittag-Leffler function, J. Chem. Bio. Phys. Sci. Sec. C 6 (2016), no. 2, 556–567. [8] A. Kilicman and H. Eltayeb, On a new integral transform and differential equations, Math. Probl. Eng. 2010 (2010), 1–13. [9] V. Kiryakova, Generalized Fractional Calculus and Application, Wiley and Sons Inc., New York, 1994. [10] V. Kiryakova, On two Saigo’s fractional integral operators in the class of univalent functions, Fract. Cal. Appl. Anal. 9 (2006), no. 2, 161–176. [11] D. Kumar, On certain fractional calculus operators involving generalized Mittag-Leffler function, Sahand Commun. Math. Anal. 3 (2016), no. 2, 33–45. [12] D. Kumar, An extension of the τ -Gauss hypergeometric functions and its properties, Math. Sci. Appl. E-Notes 5 (2017), no. 1, 57–63. [13] D. Kumar, J. Choi and, H.M. Srivastava, Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function, Nonlinear Funct. Anal. Appl. 23 (2018), no. 3, 455–471. [14] D. Kumar, R.K. Gupta, and D.S. Rawat, Marichev–Saigo–Maeda fractional differential operator involving Mittag–Leffler type function with four parameters, J. Chem. Bio. Phys. Sci. Sec. C 7 (2017), no. 2, 201–210. [15] D. Kumar, R.K. Gupta, B.S. Shaktawat, and J. Choi, Generalized fractional calculus formulas involving the product of Aleph-function and Srivastava polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 4, 701–717. [16] D. Kumar and S. Kumar, Fractional integrals and derivatives of the generalized Mittag-Leffler type function, Int. Sch. Res. Not. 2014 (2014), 1–5. [17] D. Kumar and S.D. Purohit, Fractional differintegral operators of the generalized Mittag-Leffler type function, Malaya J. Mat. 2 (2014), no. 4, 419–425. [18] D. Kumar, J. Ram, and J. Choi, Dirichlet averages of generalized Mittag–Leffler type function, Fractal Fract. 6 (2022), no. 6, 297. [19] D. Kumar and R.K. Saxena, Generalized fractional calculus of the M-series involving F3 hypergeometric function, Sohag J. Math. 2 (2015), no. 1, 17–22. [20] A.M. Mathai, R.K. Saxena, and H.J. Houbold, The H-Functions, Theory and Applications, Springer, New York, 2010. [21] N. Menaria, S.D. Purohit, and D. Kumar, On fractional integral inequalities involving the Saigo’s fractional integral operators, J. Sci. Arts 37 (2016), no. 4, 289–294. [22] M.A. Ozarslan and B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl. 2014 (2014), 1–10. [23] E. Ozergin, M.A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), 4601–4616. [24] R.K. Parmar, A class of extended Mittag-Leffler functions and their properties related to integral transforms and fractional calculus, Mathematics 3 (2015), 1069–1082. [25] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler functions in the kernel, Yokohama Math. J. 19 (1971), 7–15. [26] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Rep. College General Edu. 1 (1978), 135–143. [27] R.K. Saxena and D. Kumar, Generalized fractional calculus of the Aleph-function involving a general class of polynomials, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 5, 1095–1110. [28] B.S. Shaktawat, R.K. Gupta, and D. Kumar, Generalized fractional kinetic equations and its solutions involving generalized Mittag-Leffler function, J. Rajasthan Acad. Phys. Sci. 16 (2017), no. 1-2, 63–74. [29] S.C. Sharma and M. Devi, Certain properties of extended Wright generalized hypergeometric function, Ann. Pure Appl. Math. 9 (2015), 45–51. [30] S.K. Sharma and A.S. Shekhawat, A unified presentation of generalized fractional integral operators and H[1]function, Glob. J. Pure Appl. Math. 13 (2017), no. 2, 393–403. [31] S.K. Sharma and A.S. Shekhawat, Some fractional results based on extended Gauss hypergeometric functions and integral transform, J. Mech. Cont.& Math. Sci. 14(4) (2019), 538–557. [32] I.N. Sneddon, The Use of Integral Transform, Tata McGraw-Hill, New Delhi, India, 1979. [33] H.M. Srivastava, R.K. Parmar, and P. Chopra, A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms 1 (2012), no. 3, 238–258. [34] E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. Lond. Math. Soc. 38 (1935), no. 2, 257–270. [35] E.M. Wright, The asymptotic expansion of the generalized hypergeometric function II, Proc. London Math. Soc. 46 (1935), no. 2, 389–408. | ||
آمار تعداد مشاهده مقاله: 34 تعداد دریافت فایل اصل مقاله: 134 |