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ON THE FIXED POINT OF ORDER 2

M. ALIMOHAMMADY 1 AND A. SADEGHI2

Abstract. This paper deals with a new type of fixed point, i.e; ”fixed point of
order 2” which is introduced in a metric space and some results are achieved.

1. Introduction

In 1922, Banach proved the following famous fixed point theorem [1]. Let (X, d)
be a complete metric space, T : X → X be a contraction, there exists a unique
fixed point x0 ∈ X of T . This theorem, called the Banach contraction principle is
a forceful tool in nonlinear analysis. This principle has many applications and is
extended by several authors: Caristi [2], Edelstein [4], Ekeland [5, 6], Khan[9], Meir
and Keeler [12], Nadler [13] and others. These theorems are also extended; see [3,
7, 8, 10, 15, 16, 17, 18] and others.
Many expressions and generalizations of Banach fixed point theorem were derived
in recent years. The results presented in this paper extend properly the Banach
contraction principle.
As we have experience with zero’s of a map of order 2, we want to introduce a fixed
point of order 2 for a map. Our idea goes back to special case in R, which if a real
map on R has a fixed point of order 2 means that this map is tangent to axis y = x.
Therefore, the derivative of map (if exists) is equal to 1 at this point.

2. Main Results

Definition 2.1. Suppose that (X, d) is a metric space, T : X → X is a function
and x0 ∈ X is a fixed point for T . We call x0 is a fixed point of order 2 if it is not
alone point and the following satisfies:

lim
x→x0

d(Tx, x0)

d(x, x0)
= 1.

We remember the following definitions. We will show that for the case (a) there
is not fixed point of order 2 but in two other cases there is fixed point of order 2.

Definition 2.2. Suppose that (X, d) is a metric space, T : X → X is a function.
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• (a) T is a contraction, if there exist k ∈ [0, 1) such that d(Tx, Ty) ≤ kd(x, y)
for all x,y in X.
• (b) T is a contractive mapping, if d(Tx, Ty) < d(x, y) for all x,y in X which
x 6= y.
• (c) T is a non-expansive mapping, if d(Tx, Ty) ≤ d(x, y) for all x,y in X.

In the following we consider first some properties for fixed point of order 2.

Proposition 2.3. If x0 ∈ X is a fixed point of order 2 for T on X. Then T is
continuous at x0.

Proof.
limn→∞ d(Tx, x0)) = limx→x0

d(Tx,x0)
d(x,x0)

d(x, x0) = limx→x0
d(Tx,x0)
d(x,x0)

limx→x0 d(x, x0) = 0.

Proposition 2.4. Let (X, d) be a metric spaces and T : X → X be a function such
that x0 ∈ X is a fixed point for f , not alone point for X and a alone point for T (X).
Then x0 is not fixed point of order 2 for T .

Proof. According to assume the x0 is a alone point for T (X). There is a neigh-
borhood of x0, like N(x0) such that N(x0)

⋂
T (X) = {x0} and each x ∈ N(x0)

implies that d(Tx, x0) = 0. Therefore, limx→x0
d(Tx,x0)
d(x,x0)

= 0, i.e; x0 is not a fixed

point of order 2 for T .

Proposition 2.5. Suppose that x0 ∈ X be a fixed point for Ti : X → X which

i = 1, ..., n (n ∈ N) and also limx→x0
d(Tix,x0)
d(x,x0)

= λi. Then x0 is a fixed point of order

2 for T1T2...Tn if and only λ1λ2...λn = 1.

Proof. Ti is continuous at x0 for all i = 1, ..., n, by a simple change of variable,
that

lim
x→x0

d(Tk(Tk+1...Tnx), x0)

d(Tk+1...Tnx, x0)
= lim

t→x0

d(Tkt, x0)

d(t, x0)
and the last limit is equal with λk for k = 1, ..., n. Hence,

lim
x→x0

d(T1T2...Tnx, x0)

d(x, x0)
= lim

x→x0

d(T1(T2...Tn)x, x0)

d(T2...Tn, x0)

d(T2(T3...Tn), x0)

d(T3...Tn, x0)
...
d(Tnx, x0)

d(x, x0)

= λ1λ2...λn.

Proposition 2.6. Let x0 ∈ X be a fixed point for Ti : X → X for i = 1, ..., n and
n ∈ N .
• (a) If x0 is fixed point order 2 for all Ti, then x0 is fixed point of order 2 for
T1T2...Tn.
• (b) If x0 is fixed point order 2 for T1T2 and T2, then x0 is fixed point of order

2 for T1.

Proof. (a) By proposition 2.3.

(b) x0 is fixed point order 2 for T1T2 and T2. Thus, limx→x0
d(T1T2x,x0)
d(x,x0)

= 1, limx→x0
d(T2x,x0)
d(x,x0)

=

1. Since T is continuous at x0 for t = T2x.

1 =
limx→x0

d(T1T2x,x0)
d(x,x0)

limx→x0
d(T2x,x0)
d(x,x0)

= lim
x→x0

d(T1T2x, x0)

d(T2x, x0)
= lim

t→x0

d(T1t, x0)

d(t, x0)
.
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Proposition 2.7. Suppose that x0 is not alone point and is a fixed point for Ti :
X → X for i = 1, ..., n and n ∈ N .
• (a) If Ti be a contractive mapping or non-expansive mapping for all i = 1, ..., n

and limx→x0
d(Tix,x0)
d(x,x0)

= λi. Then x0 ∈ X is a fixed point of order 2 for T1T2...Tn
if and only if x0 is a fixed point of order 2 for all Ti.

• (b) If limx→x0
d(T1x,x0)
d(x,x0)

= λ then x0 is a fixed point of order 2 for T1 if and only

if x0 be a fixed point of order 2 for T n1 , where n is arbitrary positive integer.
• (c) If T1 be a contractive mapping or non-expansive mapping, then x0 is a fixed

point of order 2 for T1 if and only if there exist n ∈ N such that x0 be a fixed
point of order 2 for T n1 .

Proof. (a) Let Ti be a contractive mapping for all i = 1, ..., n. If x0 is a fixed
point of order 2 for all Ti then by proposition 2.5, x0 is a fixed point of order 2
for T1T2...Tn. Now assume that x0 is a fixed point of order 2 for T1T2...Tn, then by

proposition 2.4, 1 = limx→x0
d(T1T2...Tnx,x0)

d(x,x0)
= λ1λ2...λn. But all Ti are contractive

mappings so d(T1x,x0)
d(x,x0)

< 1 which implies that λi ≤ 1 for all i = 1, ..., n. Hence,

λ1 = λ2 = ... = λn = 1. Proof for non-expansive is similar.

(b) By proposition 2.4, limx→x0
d(Tn

1 x,x0)

d(x,x0)
= λn. Then λn = 1 if and only if λ = 1

because λ ≥ 0.
(c) Let T1 be a contractive mapping and there exists n ∈ N such that x0 is a fixed
point of order 2 for T n1 . T1 is a contractive mapping, so

d(T n1 x, x0) < ... < d(T1x, x0) < d(x, x0)

1 = limx→x0
d(T n1 x, x0)

d(x, x0)
≤ limx→x0

d(T1x, x0)

d(x, x0)
≤ 1.

Therefore, limx→x0
d(T1x,x0)
d(x,x0)

= 1.

Proposition 2.8. Suppose that (X, d) is a metric space, T : X → X is a function
and x0 ∈ X is a fixed point for T . If T is a contraction then x0 is not a fixed point
of order 2 for T .

Proof. Since T is a contractive mapping so there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X. Therefore, d(Tx,x0)
d(x,x0)

≤ α < 1 and x0 can not

be a fixed point of order 2 for T .

Proposition 2.9. Suppose that x0 ∈ X be a fixed point of order 2 for T : X → X,
where T is one-to-one and g is left inverse of T . Then x0 is also a fixed point of
order 2 for g.
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Proof. It is clear that x0 is a fixed point for g. On the other hand, since T is
continuous at x0 for t = Tx so

1 = lim
x→x0

d(Tx, x0)

d(x, x0)
= lim

x→x0

d(g(T (Tx), x0)

d(gT (x), x0)

= lim
t→x0

d(gT (t), x0)

d(g(t), x0)

= lim
t→x0

d(t, x0)

d(g(t), x0)
= lim

t→x0

1
d(g(t),x0)
d(t,x0)

.

Therefore, limt→x0
d(g(t),x0)
d(t,x0)

= 1.

In the following we give another condition for the fixed point of order 2.

Proposition 2.10. Suppose that x0 is not alone point and is a fixed point for T :
X → X.
• (a) If limx→x0

d(Tx,x)
d(x,x0)

= 0 then x0 is a fixed point of order 2 for T .

• (b) If limx→x0
d(Tx,x)
d(Tx,x0)

= 0 then x0 is a fixed point of order 2 for T .

Proof.
(a) Using | d(Tx, x0)− d(x, x0) |≤ d(Tx, x),

1− d(Tx, x)

d(x, x0)
≤ d(Tx, x0)

d(x, x0)
≤ 1 +

d(Tx, x)

d(x, x0)
,

limx→x0
d(Tx,x0)
d(x,x0)

= 1.

(b) Using | d(Tx, x0)− d(x, x0) |≤ d(Tx, x),

1− d(Tx, x)

d(Tx, x0))
≤ d(x, x0)

d(Tx, x0)
≤ 1 +

d(Tx, x)

d(Tx, x0)
.

This shows that limx→x0
d(x,x0)
d(Tx,x0)

= 1. Therefore, limx→x0
d(Tx,x0)
d(x,x0)

= 1.

Proposition 2.11. Suppose that x0 is a fixed point for T : X → X and ϕ : X → R+

is a real valued function.

• (a) If x0 be a fixed point of order 2 for T then limx→x0
d(Tx,x)
d(x,x0)

≤ 2.

• (b) If d(Tx, x) ≤ ϕ(x)−ϕ(Tx) ≤ d(x, x0) for all x in X then x0 is a fixed point

of order 2 for T if and only if limx→x0
d(Tx,x)
d(x,x0)

= 0.

Proof.
(a) From the inequality d(Tx, x) ≤ d(Tx, x0) + d(x, x0),

d(Tx, x)

d(x, x0)
≤ d(Tx, x0)

d(x, x0)
+ 1.
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Therefore, limx→x0
d(Tx,x)
d(x,x0)

≤ 2.

(b) From inequality d(Tx, x) ≤ ϕ(x)− ϕ(Tx) ≤ d(x, x0),

d(x, Tx) + d(Tx, T 2x) + ...+ d(T n−1x, T nx) ≤
n∑
i=1

ϕ(T i−1x)− ϕ(T ix)

= ϕ(x)− ϕ(T nx)

and

d(T n−1x, T nx)

d(x, x0)
=

d(T n−1x, T nx)

d(T n−1x, T n−2x0)

d(T n−1x, T n−2x0)

d(T n−2x, T n−3x0)
, ...,

d(T 2x, Tx0)

d(Tx, x0)

d(Tx, x0)

d(x, x0)

=
d(T n−1x, T nx)

d(T n−1x, x0)

d(T n−1x, x0)

d(T n−2x, x0)
...,

d(T 2x, x0)

d(Tx, x0)

d(Tx, x0)

d(x, x0)
,

since limx→x0
d(Tn−1x,Tnx)
d(Tn−1x,x0)

= limx→x0
d(Tx,x)
d(x,x0)

and limx→x0
d(Tn−kx,x0)
d(Tn−k−1x,x0)

= 1 which k =

1, 2, ..., n − 1, so limx→x0
d(Tn−1x,Tnx)

d(x,x0)
= limx→x0

d(Tx,x)
d(x,x0)

. From inequality d(Tx, x) ≤
ϕ(x)− ϕ(Tx). It is clear that ϕ(T nx) is strict decreasing.

n lim
x→x0

d(Tx, x)

d(x, x0)
≤ lim

x→x0

ϕ(x)− ϕ(T nx)

d(x, x0)

≤ lim
x→x0

ϕ(x)− ϕ(T nx)

ϕ(x)− ϕ(Tx)

≤ lim
x→x0

ϕ(x)− ϕ(T nx)

ϕ(x)− ϕ(T nx)
= 1.

Hence, limx→x0
d(Tx,x)
d(x,x0)

≤ 1
n
. Since n is arbitrary positive integer, limx→x0

d(Tx,x)
d(x,x0)

= 0.

In the following we prove common fixed point of order 2.

Proposition 2.12. Suppose that (X, d) is a metric space, f, g : X → X are two
function and x0 ∈ X is a fixed point for f such that f, g satisfies

d(f(x), g(x)) ≤ d(f(x), x) ≤ ϕ(x)− ϕ(f(x)) ≤ d(x, x0)

limx→x0
d(f(x),x0)
d(x,x0)

≥ 1 .

for all x in X. Then x0 is a common fixed point of order 2 for f, g.

Proof. First we show that x0 is a fixed point of order 2 for f . From inequality
d(f(x), x) ≤ ϕ(x)− ϕ(f(x)) ≤ d(x, x0) we have

d(x, f(x)) + d(f(x), f 2(x)) + ...+ d(fn−1(x), fn(x)) ≤
n∑
i=1

ϕ(f i−1(x))− ϕ(f i(x))

= ϕ(x)− ϕ(fn(x))
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and

d(fn−1(x), fn(x))

d(x, x0)
=

d(fn−1(x), fn(x))

d(fn−1(x), fn−2(x0()

d(fn−1(x), fn−2(x0))

d(fn−2(x), fn−3(x0))
...
d(f 2(x), f(x0))

d(f(x), x0)

d(f(x), x0)

d(x, x0)

=
d(fn−1(x), fn(x))

d(fn−1(x), x0)

d(fn−1(x), x0)

d(fn−2(x), x0)
...
d(f 2(x), x0)

d(f(x), x0)

d(f(x), x0)

d(x, x0)
.

Since limx→x0
d(fn−1(x),fn(x))
d(fn−1(x),x0)

= limx→x0
d(f(x),x)
d(x,x0)

and limx→x0
d(fn−k(x),x0)
d(fn−k−1(x),x0)

= λ which

k = 1, 2, ..., n− 1, we see that

lim
x→x0

d(f(x), x)

d(x, x0)
(1 + λ+ λ2 + ...+ λn) ≤ lim

ϕ(x)− ϕ(fn(x))

d(x, x0)
.

But ϕ(fn(x)) is strict decreasing so,

lim
x→x0

d(f(x), x)

d(x, x0)
(1 + λ+ λ2 + ...+ λn) ≤ lim

x→x0

ϕ(x)− ϕ(fn(x))

d(x, x0)

≤ lim
x→x0

ϕ(x)− ϕ(fn(x))

ϕ(x)− ϕ(f(x))

≤ lim
x→x0

ϕ(x)− ϕ(fn(x))

ϕ(x)− ϕ(fn(x))
= 1,

and also limx→x0
d(f(x),x)
d(x,x0)

≤ 1
(1+λ+λ2+...+λn)

, but λ ≥ 1 and n is arbitrary positive

integer. Then limx→x0
d(f(x),x)
d(x,x0)

= 0 and proposition 2.9 implies that x0 is a fixed

point of order 2 for f . Now, we show that x0 is a fixed point of order 2 for g. It is
clear that x0 is a fixed point for g, because d(f(x), g(x)) ≤ d(f(x), x) and x0 is fixed
point for f . From inequality d(f(x), g(x)) ≤ d(f(x), x) and triangle inequality,

0 ≤ d(g(x), x)

d(x, x0)
≤ d(g(x), f(x))

d(x, x0)
+
d(f(x), x)

d(x, x0)
≤ 2

d(f(x), x)

d(x, x0)
.

Therefore, limx→x0
d(g(x),x)
d(x,x0)

= 0 and x0 is a fixed point of order 2 for g.
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