
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,917 |
تعداد دریافت فایل اصل مقاله | 7,656,370 |
New results on fractional difference triple sequences of fuzzy numbers | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 22 دی 1403 اصل مقاله (395.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.25038.2892 | ||
نویسندگان | ||
Carlos Granados* 1؛ Suman Das2، 3؛ Binod Tripathy4 | ||
1I.E.D. Camilo Torres Tenorio, Barranquilla, Colombia | ||
2Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India | ||
3Department of Education (ITEP), NIT Agartala, Jirania, 799046, Tripura, India | ||
4Department of Mathematics, Tripura University, Tripura, India | ||
تاریخ دریافت: 06 شهریور 1400، تاریخ پذیرش: 01 آذر 1400 | ||
چکیده | ||
In this paper, we introduce triple sequence spaces of fuzzy numbers defined using the fractional difference operator and Musielak-Orlicz function. Besides, some topological properties for these spaces are shown and some inclusion relations are proved. Additionally, we define and prove theorems related to $ \eta $-dual space of these spaces of fuzzy numbers. | ||
کلیدواژهها | ||
Triple sequence spaces؛ fuzzy numbers؛ dual space؛ fractional difference operator | ||
مراجع | ||
[1] H. Altinok, R. Colak, and M. Et, λ-difference sequence spaces of fuzzy numbers, Fuzzy Sets Syst. 160 (2009), no. 21, 3128–3139. [2] P. Baliarsingh, A unifying approach to the difference operators and their applications, Bol. Soc. Parana. Mat. 33 (2013), no. 1, 49–56. [3] P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput. 219 (2013), no. 18, 9737–9742. [4] P. Baliarsingh, On difference double sequence spaces of fractional order, Indian J. Math. 58 (2016), no. 3, 287–310. [5] P.Baliarsingh, On a fractional difference operator, Alexandria Eng. J. 55 (2016), no. 2, 1811–1816. [6] P. Baliarsingh, On double difference operators via four dimensional matrices, J. Indian Math. Soc. 83 (2016), no. 3-4, 209–219. [7] P. Baliarsingh and S. Dutta, On the classes of fractional order difference sequence spaces and their matrix trans[1]formations, Appl. Math. Comput. 250 (2015), 665–674. [8] P. Baliarsingh and L. Nayak, Anote on fractional difference operators, Alexandria. Eng. J. 57 (2018), no. 2, 1051–1054. [9] P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets Syst. 35 (1990)), no. 2, 241–249. [10] H. Dutta, Generalized difference sequence spaces defined by Orlicz functions and their Kothe-Toeplitz and null duals. Thai J. Math. 8 (2012), no. 1, 11–19. [11] M. Et, E. Savas, and H. Altınok, On some difference sequence spaces of fuzzy numbers, Soft Comput. 20 (2016), no. 11, 4395–4401. [12] S. Gahler, 2-metric spaces and their topological structure, Math. Nachr. 26 (1963), no. 1-4, 115–148. [13] C. Granados, A generalization of the strongly Cesaro ideal convergence through double sequence spaces, Int. J. Appl. Math. 34 (2021), no. 3, 525–533. [14] C. Granados, New notion of triple sequences on ideal spaces in metric spaces, Adv. Theory Nonlinear Anal. Appl. 5 (2021), no. 3, 363–368. [15] C. Granados and A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst. 42 (2021), 333–344. [16] A. Indumathi, N. Subramanian, and B. Hazarika, On the Borel summability method for convergence of triple sequences of Bernstein-Stancu operators of fuzzy numbers, Soft Comput. 25 (2021), 683–697. [17] P. Kumar, V. Kumar, and S.S. Bhatia, Multiple sequences of fuzzy numbers and their statistical convergence, Math. Sci. 6 (2012), no. 2, 1–7. [18] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Isr. J. Math. 10 (1971), no. 3, 379–390. [19] E. Malkowsky, M. Mursaleen, and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. Engl. Ser. 23 (2007), no. 3, 521–532. [20] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets Syst. 33 (1989), no. 1, 123–126. [21] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53 (1900), no. 3, 289–321. [22] S. Saha and S. Roy, New classes of statistically pre-Cauchy triple sequences of fuzzy numbers defined by Orlicz function, J. Math. Soc. 85 (2018), no. 3-4, 411–421. [23] E. Savas and M. Gurdal, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst. 27 (2014), no. 4, 1621–1629. [24] P. Sharma, Fractional difference double sequences of fuzzy numbers, Afrika Mate. 32 (2021), no. 7, 1465–1473. [25] S.K. Singh, S. Mishra, and P. Sharma, On difference double sequences of fractional order, AIP Conf. Proc. 1860, AIP Publishing LLC, Melville, 2017, pp. 020028-020031. [26] B.C. Tripathy and B. Sarma, On some classes of difference double sequence spaces, Fasc. Math. 41 (2009), 135–142. | ||
آمار تعداد مشاهده مقاله: 44 تعداد دریافت فایل اصل مقاله: 75 |