
تعداد نشریات | 21 |
تعداد شمارهها | 641 |
تعداد مقالات | 9,361 |
تعداد مشاهده مقاله | 68,020,502 |
تعداد دریافت فایل اصل مقاله | 28,634,395 |
Numerical Investigation of Seismic Performance of Steel Concentrically Braced Frames Subjected to Critical Consecutive Earthquakes | ||
Journal of Rehabilitation in Civil Engineering | ||
مقاله 35، دوره 13، شماره 4 - شماره پیاپی 40، بهمن 2025، صفحه 207-228 اصل مقاله (1.41 M) | ||
نوع مقاله: Regular Paper | ||
شناسه دیجیتال (DOI): 10.22075/jrce.2025.35507.2179 | ||
نویسندگان | ||
Sahar Rouzrokh1؛ Elham Rajabi2؛ Gholamreza Ghodrati Amiri* 3 | ||
1M.Sc. Student, Natural Disasters Prevention Research Center, School of Civil Engineering, Iran University of Science & Technology, Tehran, Iran | ||
2Assistant Professor, Qualitative and Quantitative Analysis of Fluids and Environmental Research Group, Department of Civil Engineering, Tafresh University, 39518-79611 Tafresh, Iran | ||
3Professor, Natural Disasters Prevention Research Center, School of Civil Engineering, Iran University of Science & Technology, Tehran, Iran | ||
تاریخ دریافت: 21 مهر 1403، تاریخ بازنگری: 24 آبان 1403، تاریخ پذیرش: 25 دی 1403 | ||
چکیده | ||
This paper evaluates the effect of critical successive-shocks on the seismic performance of steel concentrically braced frames (CBFs) for significant structural design parameters such as behavior factor(R), displacement amplification factor (Cd), maximum drift and damage index (DI). For this purpose, three CBFs with 3,7and 11-stories are investigated using IDA, nonlinear dynamic analysis (NDA) under recorded critical seismic scenarios with/without successive-shocks and pushover. Results show that the average of R-factors has a 14% reduction rate under successive earthquakes compared with that of individual earthquakes. While Cd is not significantly affected by successive shocks, the occurrence of secondary-shocks increased DI by 1.8 times. In severer cases, the maximum drift is increased by up to 2 times. Finally, the sensitivity of seismic demand parameters to periods, PGA of first and second-shock is also evaluated by training an ideal ANN and proposing the empirical equations. Moreover, the effect of artificial successive shocks is examined on the seismic performance of CBFs. Despite what is necessitated in the seismic design codes, considering a constant value as R-factor for the whole steel structure cannot lead to the proper design of these structures especially under successive scenarios. Also, the use of artificial consecutive earthquakes can cause the inadequate assessment of seismic performance. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Critical successive earthquakes؛ Seismic demand parameters؛ Ideal artificial neural networks؛ Empirical equation؛ Damage index | ||
مراجع | ||
[1] Gautam D, Rodrigues H, Bhetwal KK, Neupane P, Sanada Y. Common structural and construction deficiencies of Nepalese buildings. Innov Infrastruct Solut 2016;1. doi:10.1007/s41062-016-0001-3.
[2] Rajabi ES-S of R and SF under CM-AGM, Amiri GG. Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions. J Rehabil Civ Eng 2022;10. doi:10.22075/JRCE.2021.22564.1487.
[3] Pu W, Li Y. Evaluating structural failure probability during aftershocks based on spatiotemporal simulation of the regional earthquake sequence. Eng Struct 2023;275. doi:10.1016/j.engstruct.2022.115267.
[4] Ke K, Zhou X, Zhu M, Yam MCH, Zhang H. Seismic demand amplification of steel frames with SMAs induced by earthquake sequences. J Constr Steel Res 2023;207. doi:10.1016/j.jcsr.2023.107929.
[5] Fang C, Ping B, Zheng Y, Ping Y, Ling H. Seismic fragility and loss estimation of self-centering steel braced frames under mainshock-aftershock sequences. J Build Eng 2023;73. doi:10.1016/j.jobe.2023.106433.
[6] Narayan S, Shrimali MK, Bharti SD, Datta TK. Effects of aftershocks on the performance of steel building frames. Structures 2023;56. doi:10.1016/j.istruc.2023.104959.
[7] Hoveidae N, Radpour S. Performance evaluation of buckling-restrained braced frames under repeated earthquakes. Bull Earthq Eng 2021;19. doi:10.1007/s10518-020-00983-0.
[8] Goda K, Taylor CA. Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes. Earthq Eng Struct Dyn 2012;41. doi:10.1002/eqe.2188.
[9] Veismoradi S, Cheraghi A, Darvishan E. Probabilistic mainshock-aftershock collapse risk assessment of buckling restrained braced frames. Soil Dyn Earthq Eng 2018;115. doi:10.1016/j.soildyn.2018.08.029.
[10] Banayan-Kermani A, Bargi K. Seismic collapse assessment of intermediate RC moment frames subjected to mainshock-aftershock sequences. Results Eng 2023;20. doi:10.1016/j.rineng.2023.101629.
[11] Kouhestanian H, Razmkhah MH, Shafaei J, Pahlavan H, Shamekhi Amiri M. Probabilistic Evaluation of Seismic Performance of Steel Buildings with Torsional Irregularities in Plan and Soft Story under Mainshock-Aftershock Sequence. Shock Vib 2023;2023. doi:10.1155/2023/9549121.
[12] Andalib Z, Ali Kafi M, Bazzaz M, Momenzadeh S. Numerical evaluation of ductility and energy absorption of steel rings constructed from plates. Eng Struct 2018;169. doi:10.1016/j.engstruct.2018.05.034.
[13] Bazzaz M, Andalib Z, Kheyroddin A, Kafi MA. Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system. Steel Compos Struct 2015;19. doi:10.12989/scs.2015.19.4.917.
[14] Bazzaz M, Andalib Z, Kafi MA, Kheyroddin A. Evaluating the performance of OBS-C-O in steel frames under monotonic load. Earthq Struct 2015;8. doi:10.12989/eas.2015.8.3.699.
[15] Andalib Z, Kafi MA, Kheyroddin A, Bazzaz M. Experimental investigation of the ductility and performance of steel rings constructed from plates. J Constr Steel Res 2014;103. doi:10.1016/j.jcsr.2014.07.016.
[16] Bazzaz M, Kafi MA, Kheyroddin A, Andalib Z, Esmaeili H. Evaluating the seismic performance of off-centre bracing system with circular element in optimum place. Int J Steel Struct 2014;14. doi:10.1007/s13296-014-2009-x.
[17] Bazzaz M, Kheyroddin A, Kafi MA, Andalib Z. Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames. Steel Compos Struct 2012;12. doi:10.12989/scs.2012.12.5.445.
[18] Loulelis D, Hatzigeorgiou GD, Beskos DE. Moment resisting steel frames under repeated earthquakes. Earthq Struct 2012;3. doi:10.12989/eas.2012.3.3_4.231.
[19] Shokrabadi M, Burton H V. Building service life economic loss assessment under sequential seismic events. Earthq Eng Struct Dyn 2018;47. doi:10.1002/eqe.3045.
[20] Hu J, Wen W, Zhai C, Pei S, Ji D. Seismic resilience assessment of buildings considering the effects of mainshock and multiple aftershocks. J Build Eng 2023;68. doi:10.1016/j.jobe.2023.106110.
[21] Ghaderi M, Gholizadeh S. Mainshock–aftershock low-cycle fatigue damage evaluation of performance-based optimally designed steel moment frames. Eng Struct Low-Cycle Fatigue Damage Eval Performance-Based Optim Des Steel Moment Fram 2021;237. doi:10.1016/j.engstruct.2021.112207.
[22] Rajabi E, Golestani Y. Study of steel buildings with LCF system under critical mainshock-aftershock sequence: Evaluation of fragility curves and estimation of the response modification factor by artificial intelligence. Structures 2023;56. doi:10.1016/j.istruc.2023.105044.
[23] Rajabi E, Ghodrati Amiri G. Behavior factor prediction equations for reinforced concrete frames under critical mainshock-aftershock sequences using artificial neural networks. Sustain Resilient Infrastruct 2022;7. doi:10.1080/23789689.2021.1970301.
[24] Abdollahzadeh G, Sadeghi A. Earthquake recurrence effect on the response reduction factor of steel moment frame. Asian J Civ Eng 2018;19. doi:10.1007/s42107-018-0079-3.
[25] Amiri GG, Dana FM. Introduction of the most suitable parameter for selection of critical earthquake. Comput Struct 2005;83. doi:10.1016/j.compstruc.2004.10.010.
[26] Hatzigeorgiou GD. Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes. Comput Struct 2010;88. doi:10.1016/j.compstruc.2009.11.006.
[27] Gholhaki M, Pachideh G, Lashkari R, Rezayfar O. Behaviour of buckling-restrained brace equipped with steel and polyamide casing. Proc Inst Civ Eng Struct Build 2021;174. doi:10.1680/jstbu.19.00206.
[28] Pachideh G, Gholhaki M, Kafi M. Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper. Steel Compos Struct 2020;36. doi:10.12989/scs.2020.36.2.197.
[29] Deierlein GG, Reinhorn AM, Willford MR. Nonlinear Structural Analysis For Seismic Design: A Guide for Practicing Engineers. Design 2010.
[30] Kim J, Choi H. Response modification factors of chevron-braced frames. Eng Struct 2005;27. doi:10.1016/j.engstruct.2004.10.009.
[31] Uang C. Establishing R (or Rw) and Cd Factors for Building Seismic Provisions. J Struct Eng 1991;117:19–28. doi:10.1061/(ASCE)0733-9445(1991)117:1(19).
[32] Park Y, Ang AH ‐S. Mechanistic Seismic Damage Model for Reinforced Concrete. J Struct Eng 1985;111. doi:10.1061/(asce)0733-9445(1985)111:4(722).
[33] Hait P, Sil A, Choudhury S. Damage assessment of low to mid rise reinforced concrete buildings considering planner irregularities. Int J Comput Methods Eng Sci Mech 2020;22. doi:10.1080/15502287.2020.1856971.
[34] Pachideh G, Gholhaki M, Saedi Daryan A. Analyzing the damage index of steel plate shear walls using pushover analysis. Structures 2019;20. doi:10.1016/j.istruc.2019.05.005.
[35] Maulana TI, Enkhtengis B, Saito T. Proposal of damage index ratio for low-to mid-rise reinforced concrete moment-resisting frame with setback subjected to uniaxial seismic loading. Appl Sci 2021;11. doi:10.3390/app11156754.
[36] Lakhade SO, Kumar R, Jaiswal OR. Estimation of drift limits for different seismic damage states of RC frame staging in elevated water tanks using Park and Ang damage index. Earthq Eng Eng Vib 2020;19. doi:10.1007/s11803-020-0554-1.
[37] Carrillo J, Oyarzo-Vera C, Blandón C. Damage assessment of squat, thin and lightly-reinforced concrete walls by the Park & Ang damage index. J Build Eng 2019;26. doi:10.1016/j.jobe.2019.100921.
[38] Chen Z, Li X, Wang W, Li Y, Shi L, Li Y. Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network. Reliab Eng Syst Saf 2023;231. doi:10.1016/j.ress.2022.108980.
[39] Rastin Z, Ghodrati Amiri G, Darvishan E. Generative Adversarial Network for Damage Identification in Civil Structures. Shock Vib 2021;2021. doi:10.1155/2021/3987835.
[40] Zhang X, Li ZX, Shi Y, Wu C, Li J. Fragility analysis for performance-based blast design of FRP-strengthened RC columns using artificial neural network. J Build Eng 2022;52. doi:10.1016/j.jobe.2022.104364.
[41] Leung CK, Ng MY, Luk HC. Empirical Approach for Determining Ultimate FRP Strain in FRP-Strengthened Concrete Beams. J Compos Constr 2006;10. doi:10.1061/(asce)1090-0268(2006)10:2(125).
[42] Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthq Eng Struct Dyn 2002;31:491–514. doi:10.1002/eqe.141.
[43] FEMA. Multi-hazard loss estimation methodology, earthquake model, 1. HAZUS-MH2.1. Dep Homel Secur Fed Emerg Manag Agency Mitig Div Washington, DC 2013.
[44] Atkinson GM. Earthquake time histories compatible with the 2005 NBCC Uniform Hazard Spectrum. Can J Civ Eng 2009;36. | ||
آمار تعداد مشاهده مقاله: 139 تعداد دریافت فایل اصل مقاله: 31 |