
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,968 |
تعداد دریافت فایل اصل مقاله | 7,656,405 |
کنترل کمپرسور و دمای مرجع برای یخچال خانگی با استفاده از سیستمهای فازی | ||
مدل سازی در مهندسی | ||
دوره 23، شماره 80، فروردین 1404، صفحه 21-30 اصل مقاله (1.03 M) | ||
نوع مقاله: مقاله برق | ||
شناسه دیجیتال (DOI): 10.22075/jme.2024.31016.2550 | ||
نویسندگان | ||
فهیمه باغبانی* 1؛ احمدرضا باقری2؛ نوید یکتای2 | ||
1دانشکده مهندسی برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران | ||
2شرکت دانشبنیان تحقیقات صنعتی آفتابگردان تابان شرق، مشهد، ایران | ||
تاریخ دریافت: 30 مهر 1402، تاریخ بازنگری: 21 خرداد 1403، تاریخ پذیرش: 30 خرداد 1403 | ||
چکیده | ||
یخچالهای خانگی سهم قابل توجهی در مصرف انرژی را دارند و لذا طراحی کنترلکننده مناسب جهت کاهش مصرف انرژی و افزایش کارایی آنها ضروری به نظر میرسد. روش کنترل مرسوم هیسترزیس در حضور عدمقطعیتهایی همچون زمان روز و یا تعداد باز و بسته شدن درب نمیتواند کارایی متفاوتی از خود نشان دهد. همچنین بسیاری از کنترلکنندههای فازی که بر اساس خطای دما طراحی شدهاند، رفتار کاربر در باز و بسته کردن درب یخچال را در نظر نگرفتهاند. لذا در این مقاله، سیستمهای فازی جهت بهبود عملکرد یخچال خانگی بکار گرفته شدهاند. بر اساس دادههای جمعآوری شده از تعداد باز و بسته شدن درب، زمانهای روز به چند بازه تقسیم شدهاند و یک سیستم فازی برای تعیین دمای مرجع یخچال در طول روز طراحی شده است. همچنین یک کنترلکننده فازی با دریافت زمان روز و خطای دما از مقدار دمای مرجع، سرعت کمپرسور را کنترل میکند. روش پیشنهادی بر روی یک مدل سیمولینک از سیستم سردسازی در نرمافزار متلب پیادهسازی شده است. نتایج شبیهسازی نشاندهنده مصرف انرژی کمتر و خطای دمای کمتر روش پیشنهادی در مقایسه با یک کنترل فازی طراحیشده بدون در نظر گرفتن رفتار کاربر در طراحی قواعد فازی میباشد. | ||
کلیدواژهها | ||
کنترل هوشمند؛ سیستمهای فازی؛ یخچال خانگی؛ کنترل دما | ||
عنوان مقاله [English] | ||
Compressor and Set-Point Temperature Control of a Domestic Refrigerator Using Fuzzy Systems | ||
نویسندگان [English] | ||
Fahimeh Baghbani1؛ Ahmadreza Bagheri2؛ Navid Yektay2 | ||
1Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran | ||
2Sunflower Industrial Research Co. (SIRCO, Mashhad, Iran | ||
چکیده [English] | ||
Domestic refrigerators have a noticeable contribution to energy consumption worldwide. Thus, it is beneficial to integrate control strategies for reducing their energy usage and improving their performance. The traditional hysteresis controller cannot perform effectively in the presence of uncertainties such as daytime or refrigerator door status. Additionally, most of the designed fuzzy controllers based on temperature error, do not address the door-opening behavior of the user. Hence, this paper employs fuzzy logic systems to improve the performance of domestic refrigerators. Based on the data collected from domestic users' door-opening events, the daytime is split into four time intervals and a fuzzy system is then designed to adjust the desired temperature of the refrigerator. Also, a fuzzy controller is designed to control the compressor speed according to the temperature error and the time of the day. A MATLAB refrigeration model is used to evaluate the proposed controller’s performance. The results demonstrate lower energy consumption and better temperature set-point tracking for the proposed controller than a fuzzy controller without addressing user behavior in the fuzzy rules design. | ||
کلیدواژهها [English] | ||
Intelligent control, Fuzzy systems, Domestic refrigerator, Temperature control | ||
مراجع | ||
[1] J.L. Dupont, P. Domanski, P. Lebrun, and F. Ziegler. "The role of refrigeration in the global economy-38. Informatory Note on Refrigeration Technologies." (2019). [2] A.S. Silveira, G.A. Souza, R.J. Liston, E. Machado, and C.J. Hermes. "Sensorless temperature control of household refrigerators based on the electric current of the compressor." International Journal of Refrigeration 152 (2023): 171-175. [3] W.P. van der Vossen-Wijmenga, H.M. den Besten, and M.H. Zwietering. "Temperature status of domestic refrigerators and its effect on the risk of listeriosis from ready-to-eat (RTE) cooked meat products." International Journal of Food Microbiology 413 (2024): 110516. [4] R. Zhao, Z. Wang, D. Huang, W. Shen, H. Hu, and X. Tang. "Electric-heater defrosting performance of frost-free refrigerator-freezer and its improvement by step-reduction power." Applied Thermal Engineering 226 (2023): 120147. [5] Q.I. Ronghui, L.I. Tao, and L.Z. Zhang. "A new approach for air dehumidification at refrigerator temperatures: Electrolytic vapor dehumidifier with Proton Exchange Membrane (PEM)." International Journal of Refrigeration 118 (2020): 453-461. [6] I. Javeri-Shahreza, L. Abdolmaleki, S.M. Sadrameli, and M. Fakhroleslam. "Dynamic modeling and experimental validation of household refrigerators/freezers equipped with phase change materials towards improved energy efficiency." Thermal Science and Engineering Progress 46 (2023): 102227. [7] D.Y. Liu, W.R. Chang, and J.Y. Lin. "Performance comparison with effect of door opening on variable and fixed frequency refrigerators/freezers." Applied Thermal Engineering 24, no. 14-15 (2004): 2281-2292. [8] S. Gupta, S. Giri, T. Srivastava, P. Agarwal, R. Sharma, and A. Agrawal. "Smart refrigerator based on ‘internet of things’." In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 436-439. IEEE, 2021. [9] S. Mundody, and R.M.R. Guddeti. "A framework for low cost, ubiquitous and interactive smart refrigerator." Multimedia Tools and Applications 83, no. 5 (2024): 13337-13368. [10] F. Baghbani. "Observer-based adaptive emotional controller for a class of uncertain nonlinear systems." Journal of Modeling in Engineering 21, no. 74 (2023): 37-49. (in Persian) [11] M.F. Savadkouhia, and M. Deypir. "Provide a method for recognizing trust in social networks according to individual and personal characteristics using a compatible neural-fuzzy inference system method." Journal of Modeling in Engineering 21 (2023): 115-127. (in Persian). [12] M. Radmehr, and H. Zarabadipour. "Fuzzy sliding mode control for tracking the optimal profile of train speed in the presence of uncertainty." Journal of Modeling in Engineering 20, no. 68 (2022): 139-152. (in Persian) [13] M. Mraz. "The design of intelligent control of a kitchen refrigerator." Mathematics and Computers in Simulation 56, no. 3 (2001): 259-267. [14] N.A. Baleghy. "Design and implementation fuzzy controller in the frost-free refrigerator by using multivariate regression." In 20th Iranian Conference on Electrical Engineering (ICEE2012), pp. 840-844. IEEE, 2012. [15] N.A. Baleghy. "Design and implementation fuzzy controller in the frost-free refrigerator by using multivariate regression." In 20th Iranian Conference on Electrical Engineering (ICEE2012), pp. 840-844. IEEE, 2012. [16] S.Q. Ain, M. Saifizi, S.M. Othman, A.A. Aziz, W.A. Mustafa, and W. Khairunizam. "Temperature Control Using Fuzzy Controller for Variable Speed Vapor Compression Refrigerator System." In Proceedings of International Conference on Artificial Life and Robotics. 2022. doi: 10.5954/icarob.2022.os32-6. [17] Y.W. You, Z.G. Zhang, C.M. Guo, and L.L. Zhang. "Optimizing approach to varying load of the refrigeration system based on fuzzy logic control." Advanced Materials Research 433 (2012): 6896-6901. [18] S.K. Jeong, C.H. Han, L. Hua, and W.K. Wibowo. "Systematic design of membership functions for fuzzy logic control of variable speed refrigeration system." Applied Thermal Engineering 142 (2018): 303-310. [19] C. Aprea, R.I.T.A. Mastrullo, and C. Renno. "Fuzzy control of the compressor speed in a refrigeration plant." International Journal of Refrigeration 27, no. 6 (2004): 639-648. [20] L. Hua, and S.K. Jeong. "Design and analysis of fuzzy control in a variable speed refrigeration system." International Journal of Air-Conditioning and Refrigeration 15, no. 2 (2007): 61-69. [21] J. Singh, N. Singh, and J.K. Sharma. "Design of fuzzy system for vapour compression refrigeration system." Journal of Scientific and Industrial Research (JSIR) 65 (2006): 135-141. [22] J.P. Cao, S.K. Jeong, and Y.M. Jung. "Fuzzy logic controller design with unevenly-distributed membership function for high performance chamber cooling system." Journal of Central South University 21 (2014): 2684-2692. [23] D.A. Rodríguez-Valderrama, J.M. Belman-Flores, D. Hernández-Fusilier, D.M. Pardo-Cely, M.A. Gómez-Martínez, and S. Méndez-Díaz. "Implementation of fuzzy control in a domestic refrigerator considering the influence of the thermal load." International Journal of Refrigeration 149 (2023): 23-34. [24] J.M. Belman-Flores, D.A. Rodríguez-Valderrama, S. Ledesma, J.J. García-Pabón, D. Hernández, and D.M. Pardo-Cely. "A review on applications of fuzzy logic control for refrigeration systems." Applied Sciences 12, no. 3 (2022): 1302. [25] B.J. Choi, S.W. Han, and S.K. Hong. "Refrigerator temperature control using fuzzy logic and neural network." In IEEE International Symposium on Industrial Electronics. Proceedings. ISIE'98 (Cat. No. 98TH8357), vol. 1, pp. 186-191. IEEE, 1998. [26] J.M. Belman-Flores, S. Ledesma, D.A. Rodríguez-Valderrama, and D. Hernández-Fusilier. "Energy optimization of a domestic refrigerator controlled by a fuzzy logic system using the status of the door." International Journal of Refrigeration 104 (2019): 1-8. [27] E. Kapici, E. Kutluay, and R. Izadi-Zamanabadi. "A novel intelligent control method for domestic refrigerators based on user behavior." International Journal of Refrigeration 136 (2022): 209-218. [28] J.M. Mendel. Uncertain rule-based fuzzy systems: Introduction and new directions, 2nd Edition. Springer, 2017.
| ||
آمار تعداد مشاهده مقاله: 127 تعداد دریافت فایل اصل مقاله: 148 |