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Abstract

The aim of this paper is to study the existing results of nonlinear sequential fractional integro-differential equations with
nonseparated boundary conditions. In this work, we consider a nonlinear problem and general boundary conditions.
This extension introduces mathematical difficulties which we will overcome by using fixed-point techniques. For this,
we rewrite the nonlinear boundary problem as a fixed point one involving two operators. Then, we show that these
operators satisfy the conditions of the Krasnoselskii theorem. An example is given to illustrate our result.
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1 Introduction

Fractional differential equations have been proved to be important tools in the modeling of many phenomena in
various fields of applied sciences and engineering. Such as control theory, signal processing, rheology, fractals, chaotic
dynamics, optics, medicine, economics, astrophysics, chemical engineering and so on, (see [1, 2, 4, 9, 12, 14, 15, 18, 22]
and the references therein).

Recently, many problems can be modeled by fractional integro–differential equations, for an extensive literature in
the study of fractional differential equations, we refer the reader to [11, 23, 25]. In the mathematical context, several
interesting results about the fractional integro– differential equations supplemented by many boundary conditions
classical, periodic, antiperiodic, nonlocal, ..., see [3, 5, 6, 7, 17, 19]. For example, Baleanu et al. [7] have considered
the following fractional integro-differential equation:

cDαu(t) + f(t, u(t), φu(t), ψu(t)) = 0, t ∈]0, 1[,

where n − 1 < α ≤ n, n ≥ 3. It should be noted that φ and ψ are linear operators. The authors established the
existence and uniqueness of positive solutions for the above equation with the integral boundary conditions. The
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essential tools in the proof are the Banach contraction principle and the Krasnoselskii fixed point theorem under the
sufficient conditions. An another existence result was obtained in [3], the authors have considered fractional differential
transform method to solve linear and nonlinear fractional integro-differential equations of Volterra type. The existence
and controllability of this fractional integro-differential system is done for α ∈ (0, 1) with infinite delay [17]. The proofs
are based on the theoretical concepts related to the fractional calculus and the measure of noncompactness.

In this paper, we discuss the existence of solutions for the following nonlinear sequential fractional integro–differential
equation:

cDα(cDβ)u(t) = f(t, u(t), Tu(t), Gu(t)), t ∈]0, 1[, (1.1)

where 1 < α ≤ 2, 1 < β ≤ 2 and cD(·) is Caputo’s fractional derivative. This fractional integro-differential equations
can model many physical and biological phenomena and, in general, they are not linear. In fact, linear problems
are only approximations of reality which is rather complex involves nonlinears phenomena [19]. The main purpose of
this paper is to extend the results of the above-mentioned works [3, 7, 17]. The difficulties arising from this model
compared to previous ones is the fact that we consider the sequential fractional derivative. Moreover, the operators
T and G are nonlinear and general boundary conditions, which are the nonseparated boundary ones. This extend
introduce many mathematical difficulties. To overcome this task, we use the techniques of nonlinear analysis, precisely
the fixed point theory.

The rest of this paper is organized as follow. In section 2, we introduce the functional setting of the problem and
fixing the different notations. The position of the problem and data assumptions are presented in section 3. In section
4, we prove the existence results of the the problem (3.1)-(3.2), we first transform our problem in the fixed point
one involving two nonlinear operators A and B, next we apply the Krasnosel’skii’s fixed-point theorem to show the
existence of the solution. In section 5, we give an example to illustrate our main result.

2 Preliminaries

In this section, we recall some basic definitions and properties of the fractional calculus theory and auxiliary lemmas
which will be used throughout this paper. For more details, see [10, 16, 18, 20]. Moreover, we state the Krasnoselskii
fixed point theorem which is an important tool in our work, see [21, 24]. Let X = C([0, 1]; R) be the space of all
continuous real-valued functions on [0, 1] endowed with the norm

∥u∥ = sup
0≤t≤1

|u(t)|.

We recall the definition of the Caputo fractional order derivative.

Definition 2.1. The Caputo fractional order derivative of order α > 0 with the lower limit zero of a continuous
function u is defined by

cDαu(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds,

where 0 ≤ n−1 < α < n, n ∈ N, t > 0 and Γ(·) is Euler’s Gamma function, which is defined by Γ(x) =

∫ ∞

0

tx−1e−tdt.

Next, we introduce The fractional integral.

Definition 2.2. The fractional integral of order α > 0 with the lower limit zero of a continuous function u can be
defined as

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds.

Now, we present the following property of the fractional integral.

Lemma 2.3. Let α, β ≥ 0. Then, the following relation holds:

Iαtβ =
Γ(β + 1)

Γ(α+ β + 1)
tα+β .
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The following lemma plays an important role in obtaining our main results.

Lemma 2.4. [18] Let n ∈ N and n− 1 < α < n. If u is a continuous function, then we have

Iα(cDαu(t)) = u(t) + a0 + a1t+ · · ·+ an−1t
n−1,

where ai ∈ R, i = 0, 1, · · · , n− 1.

As a consequence of Lemma 2.4, we have the following result which is useful in our existence result.

Lemma 2.5. Let h ∈ C[0, 1], then the boundary value problem

cDα(cDβ)u(t) = h(t), t ∈]0, 1[,

u(0) = λ1u(1), u′(0) = λ2u
′(1),

cDβu(0) = λc3D
βu(1),

cDβ+1u(0) = λc4D
β+1u(1),

(2.1)

has the unique solution given by

u(t) =
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1h(s)ds+
Λ1(t)

Γ(α)

∫ t

0

(t− s)α−1h(s))ds+
Λ2(t)

Γ(α− 1)

∫ 1

0

(1− s)α−2h(s)ds

+
λ1

(1− λ1)Γ(α+ β)

∫ 1

0

(1− s)α+β−1h(s)ds+
λ3(t)

Γ(α+ β − 1)

∫ 1

0

(t− s)α+β−2h(s)ds,

where

Λ1(t) =
λ3

1− λ3

( tβ

Γ(β + 1)
+

λ1
(1− λ1)Γ(β + 1)

+
λ1λ2

(1− λ1)(1− λ2)Γ(β)
+

tλ2
(1− λ2)Γ(β)

)
,

Λ2(t) =
λ4

1− λ4

( tβλ3
(1− λ3)Γ(β + 1)

+
tβ+1

Γ(β + 2)
+

λ1λ2
(1− λ1)(1− λ2)Γ(β + 1)

+
λ1

(1− λ1)Γ(β + 2)
+

λ2t

(1− λ2)Γ(β + 1)

+
λ1λ2λ3

(1− λ1)(1− λ2)(1− λ3)Γ(β)
+

λ1λ3
(1− λ1)(1− λ3)Γ(β + 1)

+
λ2λ3t

(1− λ2)(1− λ3)Γ(β)

)
,

Λ3(t) =
λ2

1− λ2

(
t+

λ1
1− λ1

)
.

Proof . According to Lemma 2.4, we have

cDαu(t) = Iαh(t) + c0 + c1t, and cDβ+1u(t) = Iα−1h(t) + c1.

Then
u(t) = Iα+βh(t) + Iβc0 + Iβc1t+ c2 + c3t, (2.2)

where c0, c1, c2, c3 ∈ R. Using the conditions cDβ+1u(0) = λc4D
β+1u(1), cDβu(0) = λc3D

βu(1), u′(0) = λ2u
′(1) and

u(0) = λ1u(1), we get

c0 =
λ3

(1− λ3)Γ(α)

∫ t

0

(1− s)α−1h(s)ds+
λ3λ4

(1− λ3)(1− λ4)Γ(α− 1)

∫ t

0

(1− s)α−2h(s)ds,

c1 =
λ4

(1− λ4)Γ(α− 1)

∫ t

0

(1− s)α−2h(s)ds,
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c2 =
λ1

(1− λ1)Γ(α+ β)

∫ 1

0

(1− s)α+β−1h(s)ds+
λ1λ2

(1− λ1)(1− λ2)Γ(α+ β − 1)
×
∫ 1

0

(1− s)α+β−2h(s)ds

+
( λ1λ3
(1− λ1)(1− λ3)Γ(β + 1)

+
λ1λ2λ3

(1− λ1)(1− λ2)(1− λ3)Γ(β)

)
× 1

Γ(α)

∫ 1

0

(1− s)α−1h(s)ds+
( λ1λ3λ4
(1− λ1)(1− λ3)(1− λ4)Γ(β + 1)

+
λ1λ4

(1− λ1)(1− λ4)Γ(β + 2)
+

λ1λ2λ4
(1− λ1)(1− λ2)(1− λ4)Γ(β + 1)

+
λ1λ2λ3λ4

(1− λ1)(1− λ2)(1− λ3)(1− λ4)Γ(β)

) 1

Γ(α− 1)

∫ 1

0

(1− s)α−2h(s)ds,

and

c3 =
λ2

(1− λ2)Γ(α+ β − 1)

∫ t

0

(1− s)α+β−2h(s)ds+
λ2λ3λ4

(1− λ2)(1− λ3)(1− λ4)Γ(α− 1)Γ(β)

∫ t

0

(1− s)α−2h(s)ds

+
λ2λ3

(1− λ2)(1− λ3)Γ(α)Γ(β)

∫ t

0

(1− s)α−1h(s)ds.

Substituting the values of c0, c1, c2 and c3 in (2.2), we get the desired results. By direct computing, we can prove
that u(t) is the solution of the problem (2.1). □ □

We close this section by recalling the Krasnosel’skii fixed point theorem (see [21], [24]).

Theorem 2.6. Let M be a nonempty closed, bounded and convex subset of a Banach space X. Assume that
A : M → X and B : M → X are such that:

1. A is continuous and AM is a relatively compact subset of X.
2. B is a strict contraction.
3. AM+BM ⊂ M.

Then there exists x ∈ M such that Ax+Bx = x.

3 Position of the problem

In this section, we describe the boundary value problem. Precisely, we are concerned with the existence of solution
to the nonlinear sequential fractional integro-differential equation

cDα(cDβ)u(t) = f(t, u(t), Tu(t), Gu(t)), t ∈]0, 1[, (3.1)

where 1 < α ≤ 2, 1 < β ≤ 2, cD(·) is Caputo’s fractional derivative, f : [0, 1]×R3 −→ R is a given continuous function,
and the operators T , G are nonlinear given by:

Tu(t) =

∫ t

0

λ(t, s)g(s, u(s))ds, and Gu(t) =

∫ t

0

δ(t, s)g(s, u(s))ds,

where g : [0, 1] × R −→ R is a given continuous function, and λ, δ are the functions defined from : [0, 1] × [0, 1] −→
[0,+∞) verifying

sup
0≤t≤1

∫ 1

0

λ(t, s)ds <∞ and sup
0≤t≤1

∫ 1

0

δ(t, s)ds <∞,

In our framework, equation (3.1) is completed with nonseparated boundary conditions, i.e.,
u(0) = λ1u(1), u′(0) = λ2u

′(1),

cDβu(0) = λc3D
βu(1),

cDβ+1u(0) = λc4D
β+1u(1),

(3.2)
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where λ1, λ2, λ3, λ4 ∈ R \ {0, 1}. In order to establish the existence results of the problem (3.1)-(3.2), we need to
introduce the following assumptions, denoted (H):

(H1)- There exists a continuous functions θ and Λ such that ,

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ θ(t)
(
|x1 − x2|+ |y1 − y2|+ |z1 − z2|

)
,

and
|g(t, x1)− f(t, x2)| ≤ Λ(t)|x1 − x2|,

for all t ∈ [0, 1] and xi, yi, zi ∈ R, i = 1, 2.

(H2)-
[

Λ1

Γ(α) +
Λ2

Γ(α−1) +
|λ1||1−λ1|

|1−λ1|Γ(α+β) +
Λ3

Γ(α+β−1)

]
(1 + λ0Λ

∗ + δ0Λ
∗)θ∗ ≤ 1

2 ,

(H3)- C∗ = θ∗(1+Λ∗λ0+Λ∗δ0)
Γ(α+β) < 1, where

θ∗ = ∥θ∥, Λ∗ = ∥Λ∥, λ0 = sup
0≤t≤1

∫ 1

0

λ(t, s)ds and δ0 = sup
0≤t≤1

∫ 1

0

δ(t, s)ds.

4 Main results

In this section, we discuss existence results of the nonlinear sequential fractional integro-differential equations with
nonseparated boundary conditions (3.1)-(3.2) in Banach spaces. We first transform the problem into a fixed point one
involving two operators, say, Au+Bu = u. The proof is based on The Krasnosel’skii’s fixed point theorem. For r > 0,
we denote by Br the set

Br =
{
u ∈ X : ∥u∥ ≤ r

}
.

The following lemma deals with the equivalence of a nonlinear fractional integro-differential equation (3.1)-(3.2).

Lemma 4.1. The problem (3.1)-(3.2) may be written in the form

Au(t) +Bu(t) = u(t), (4.1)

where where A, B : X −→ X are given by

Au(t) =
Λ1(t)

Γ(α)

∫ 1

0

(t− s)α−1f(s, u(s), Tu(s), Gu(s))ds+
Λ2(t)

Γ(α− 1)

∫ 1

0

(1− s)α−2f(s, u(s), Tu(s), Gu(s))ds

+
λ1

(1− λ1)Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Tu(s), Gu(s))ds

+
Λ3(t)

Γ(α+ β − 1)

∫ 1

0

(t− s)α+β−2f(s, u(s), Tu(s), Gu(s))ds,

and Bu(t) = 1
Γ(α+β)

∫ t

0
(t− s)α+β−1f(s, u(s), Tu(s), Gu(s))ds.

We denote by Λ1, Λ2, Λ3 and f∗ the following quantities:

Λ1 :=
|λ3|

|1− λ3|

( 1

Γ(β + 1)
+

|λ1|
|1− λ1|Γ(β + 1)

+
|λ1λ2|

|(1− λ1)(1− λ2)|Γ(β)
+

|λ2|
|1− λ2|Γ(β)

)
,

Λ2 :=
|λ4|

|1− λ4|

( |λ3|
|1− λ3|Γ(β + 1)

+
1

Γ(β + 2)
+

|λ1λ2|
|(1− λ1)(1− λ2)|Γ(β + 1)

+
|λ1|

|1− λ1|Γ(β + 2)

+
|λ1λ2λ3|

|(1− λ1)(1− λ2)(1− λ3)|Γ(β)
+

|λ1λ3|
|(1− λ1)(1− λ3)|Γ(β + 1)

+
|λ2λ3|

|(1− λ2)(1− λ3)|Γ(β)
+

|λ2|
|1− λ2|Γ(β + 1)

)
,

Λ3 :=
|λ2|

|1− λ2|

(
1 +

|λ1|
|1− λ1|

)
,
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and f∗ = sup0≤t≤1 |f(t, 0, 0, 0)|.
In order to show the existence of the problem (3.1)-(3.2), we use the Krasnosel’skii’s fixed point theorem. For this

reason, we need to show the following Lemmas. In the first one, we show that the operator A+B leaves Br invariant.

Lemma 4.2. Assume that the hypotheses (H1)-(H2) are satisfied. Then, for all r > 0 satisfying

r ≥ 2
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1||1− λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(θ∗λ0g

∗ + θ∗δ0g
∗ + f∗), (4.2)

the operator A+B leaves Br invariant.

Proof . For any u ∈ Br and t ∈ (0, 1), we have

|Au(t)| ≤ Λ1

Γ(α)

∫ 1

0

(t− s)α−1|f(s, u(s), Tu(s), Gu(s))|ds+ Λ2

Γ(α− 1)

∫ 1

0

(1− s)α−2|f(s, u(s), Tu(s), Gu(s))|ds

+
|λ1|

|1− λ1|Γ(α+ β)

∫ 1

0

(1− s)α+β−1|f(s, u(s), Tu(s), Gu(s))|ds

+
Λ3

Γ(α+ β − 1)

∫ 1

0

(t− s)α+β−2|f(s, u(s), Tu(s), Gu(s))|ds.

Using the hypothesis (H1), we get

|Au(t)| ≤Λ1θ
∗

Γ(α)

∫ 1

0

(t− s)α−1(|u(s)|+ |Tu(s)|+ |Gu(s)|)ds+ Λ1

Γ(α)

∫ 1

0

(t− s)α−1|f(s, 0, 0, 0)|ds

+
Λ2θ

∗

Γ(α− 1)

∫ 1

0

(1− s)α−2(|u(s)|+ |Tu(s)|+ |Gu(s)|)ds+ Λ2

Γ(α− 1)

∫ 1

0

(t− s)α−2|f(s, 0, 0, 0)|ds

+
|λ1|θ∗

|1− λ1|Γ(α+ β)

∫ 1

0

(1− s)α+β−1(|u(s)|+ |Tu(s)|+ |Gu(s)|)ds

+
|λ1|

|1− λ1|Γ(α+ β)

∫ 1

0

(1− s)α+β−1|f(s, 0, 0, 0)|ds+ Λ3θ
∗

Γ(α+ β − 1)

∫ 1

0

(t− s)α+β−2(|u(s)|

+ |Tu(s)|+ |Gu(s)|)ds+ Λ3

Γ(α+ β − 1)

∫ 1

0

(1− s)α+β−2|f(s, 0, 0, 0)|ds.

We set g∗ = sup
0≤t≤1

|g(t, 0)|, thus

|Au(t)| ≤Λ1θ
∗∥u∥

Γ(α)
+

Λ1θ
∗

Γ(α)

∫ 1

0

(t− s)α−1

∫ s

0

λ(s, w
[
|g(w, u(w))− g(w, 0)|+ |g(w, 0)|

]
dwds

+
Λ1θ

∗

Γ(α)

∫ 1

0

(t− s)α−1

∫ s

0

δ(s, w
[
|g(w, u(w))− g(w, 0)|+ |g(w, 0)|

]
dwds+

Λ1f
∗

Γ(α)
+

Λ2θ
∗∥vu∥

Γ(α− 1)
+

Λ2f
∗

Γ(α− 1)

+
Λ2θ

∗

Γ(α− 1)

∫ 1

0

(t− s)α−2

∫ s

0

(λ(s, w) + δ(s, w))|g(w, u(w))− g(w, 0)|dwds

+
Λ2θ

∗

Γ(α− 1)

∫ 1

0

(t− s)α−2

∫ s

0

(λ(s, w) + δ(s, w))|g(w, 0)|dwds+ |λ1|θ∗∥u∥
|1− λ1|Γ(α+ β)

+
|λ1|f∗

|1− λ1|Γ(α+ β)

+
|λ1|θ∗

|1− λ1|Γ(α+ β)

∫ 1

0

(t− s)α+β−1

∫ s

0

(λ(s, w) + δ(s, w))|g(w, u(w))− g(w, 0)|dwds

+
|λ1|θ∗

|1− λ1|Γ(α+ β)

∫ 1

0

(t− s)α+β−1

∫ s

0

(λ(s, w) + δ(s, w))|g(w, 0)|dwds+ Λ3θ
∗∥u∥

Γ(α+ β − 1)

+
Λ3f

∗

Γ(α+ β − 1)
+

Λ3θ
∗

Γ(α+ β − 1)

∫ 1

0

(t− s)α+β−2

∫ s

0

(λ(s, w) + δ(s, w))|g(w, u(w))− g(w, 0)|dwds

+
Λ3θ

∗

Γ(α+ β − 1)

∫ 1

0

(t− s)α+β−2

∫ s

0

(λ(s, w) + δ(s, w))|g(w, 0)|dwds,
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which implies that

|Au(t)| ≤
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
θ∗∥u∥+ λ0 + δ0

Γ(α)
Λ1θ

∗Λ∗∥u∥

+
Λ1(λ0 + δ0)θ

∗g∗ + Λ1f
∗

Γ(α)
+

λ0 + δ0
Γ(α− 1)

Λ2θ
∗Λ∗∥u∥+ Λ2(λ0 + δ0)θ

∗g∗ + Λ2f
∗

Γ(α− 1)

+
λ0 + δ0
Γ(α+ β)

|λ1|θ∗Λ∗∥u∥+ |λ1|(λ0 + δ0)θ
∗g∗ + |λ1|f∗

Γ(α+ β)

+
λ0 + δ0

Γ(α+ β − 1)
Λ3θ

∗Λ∗∥u∥+ Λ3(λ0 + δ0)θ
∗g∗ + Λ3f

∗

Γ(α+ β − 1)
.

Therefore,

∥Au∥ ≤
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(1 + λ0Λ

∗ + δ0Λ
∗)θ∗∥u∥

+
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(θ∗λ0g

∗ + θ∗δ0g
∗ + f∗).

Similarly, for any v ∈ Br and all t ∈ [0, 1], using the hypothesis (H1), we get

∥Bv∥ ≤ 1 + Λ∗λ0 + Λ∗δ0
Γ(α+ β)

θ∗∥v∥+ θ∗Λ∗g∗(λ0 + δ0) + f∗

Γ(α+ β)
.

From the above inequalities, for any u, v ∈ Br and t ∈ [0, 1], we get

∥Au+Bv∥ ≤
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1||1− λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(1 + λ0Λ

∗ + δ0Λ
∗)θ∗r

+
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1||1− λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(θ∗λ0g

∗ + θ∗δ0g
∗ + f∗)

Using the inequality (4.3) and hypothesis (H2), we obtain

∥Au+Bv∥ ≤ r.

Therefore, ABr +BBr ⊆ Br. This achieves the proof. □ □

In the second lemma, we show that The operator A is compact.

Lemma 4.3. The operator A is compact and continuous on X.

Proof . Continuity of f and g implies that the operator A is continuous. Also, A is uniformly bounded on Br as

∥Au∥ ≤
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(1 + λ0Λ

∗ + δ0Λ
∗)θ∗r

+
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(θ∗λ0g

∗ + θ∗δ0g
∗ + f∗).

Let u ∈ Br, t1, t2 ∈ [0, 1], such that t2 < t1, we have

|Au(t1)−Au(t2)| ≤ |Λ1(t1)− Λ1(t2)|
Γ(α)

∫ 1

0

(1− s)α−1|f(s, u(s), Tu(s), Gu(s))|ds

+
|Λ2(t1)− Λ2(t2)|

Γ(α− 1)

∫ 1

0

(1− s)α−1|f(s, u(s), Tu(s), Gu(s))|ds

+
|Λ3(t1)− Λ3(t2)|
Γ(α+ β − 1)

∫ 1

0

(1− s)α+β−1|f(s, u(s), Tu(s), Gu(s))|ds
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Hence, if t1 −→ t2, then |Au(t1) − Au(t2)| −→ 0 regardless of u ∈ Br. Then A is equicontinuous and so, by
Arzela-Ascoli theorem [8], we deduce that A is compact on Br. So the operator A is completely continuous. This
ends the proof. □ □ In the next lemma, we show that B is a contraction,

Lemma 4.4. Assume that the hypotheses (H1) and (H3) are satisfied. Then, the operator B is a contraction.

Proof . For u, v ∈ Br, and any t ∈ [0, 1], using (H1), we have

|Bu(t)−Bv(t)| ≤ 1

Γ(α+ β)

∫ t

0

(t− s)α+β−1|f(s, u(s), Tu(s), G(us))− f(s, v(s), T v(s), G(vs))|ds

≤ θ∗

Γ(α+ β)

∫ t

0

(t− s)α+β−1
(
|u(s)− v(s)|+ |Tu(s)− Tv(s)|+ |Gu(s)−Gv(s)|

)
ds

≤ θ∗

Γ(α+ β)

∫ t

0

(t− s)α+β−1|u(s)− v(s)|ds

+
θ∗Λ∗

Γ(α+ β)

∫ t

0

(t− s)α+β−1

∫ s

0

(λ(s, w) + δ(s, w))|u(w)− v(w)|dwds

≤ θ∗(1 + Λ∗λ0 + Λ∗δ0)

Γ(α+ β)
∥u− v∥.

Therefore,
∥Bu−Bv∥ ≤ C∗∥u− v∥,

where

C∗ =
θ∗(1 + Λ∗λ0 + Λ∗δ0)

Γ(α+ β)
.

By the hypothesis (H3), we conclude that B is a contraction. □

Now, we are in a position to prove the existence result of the problem (3.1)-(3.2).

Theorem 4.5. Assume that the hypotheses (H) are satisfied. Then, for all r > 0 satisfying

r ≥ 2
[ Λ1

Γ(α)
+

Λ2

Γ(α− 1)
+

|λ1||1− λ1|
|1− λ1|Γ(α+ β)

+
Λ3

Γ(α+ β − 1)

]
(θ∗λ0g

∗ + θ∗δ0g
∗ + f∗), (4.3)

the problem (3.1)-(3.2) has at least one solution on Br.

Proof . Accordingly to lemma 4.2, we have ABr +BBr ⊆ Br, next the operator A is compact by lemma 4.3. Finally,
from lemma 4.4, the operator B is a contraction. Hence, for each r satisfying the condition (4.3), the operators A and
B satisfies the conditions of the Krasnosel’skii fixed point theorem (Theorem 2.6) in the convex set Br. Therefore,
problem (3.1)-(3.2) has at least one solution. This completes the proof. □

5 Example

We consider the following fractional problem:

cD
11
7 (cD

9
7 )u(t) =

t

3000

(
1

1 + |u(t)|
+

2

3000

∫ t

0

t5s5|u(t)|ds
)
, t ∈]0, 1[,

u(0) =
1

200
u(1), u′(0) =

1

200
u′(1),

cD
9
7u(0) =

1

200
cD

9
7u(1),

cD
16
7 u(0) =

1

200
cD

16
7 u(1).

(5.1)

In this example, we have

f(t, x, y, z) =
t

3000

( 1

1 + |x|
+ y + z

)
, g(t, x) = t|x| and λ(t, s) = δ(t, s) =

t5s4

3000
.
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We have

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤
t

3000

(
|x1 − x2|+ |y1 − y2|+ |z1 − z2|

)
, t ∈]0, 1[, xi, yi, zi ∈ R,

and
|g(t, x)− g(t, y)| ≤ t|x− y|, t ∈]0, 1[, x, y ∈ R.

We obtain

f∗ = θ∗ =
1

3000
, g∗ = 0, Λ∗ = 1, and λ0 = δ0 =

1

15000
.

Hance, C∗ ≃ 2.4 ∗ 10−8 < 1. Ten, the problem (5.1) has at least one solution.

Conclusion

In this paper, we have successfully established the existence result of a nonlinear sequential fractional integr–
differential equations with nonseparated boundary conditions. Our result is obtained by Krasnosel’skii fixed point
theorem. Since theoretical results can help to get an in-depth understanding for the fractional order model, motivated
by the mentioned equation models. It should be noted that we used Caputo fractional derivative because of its
applicability to real world physical problems.
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[1] S. Abbas, M. Benchohra, and G.M. N’Guérékata, Topics in Fractional Differential Equations, vol. 27. Springer,
New York, 2012.

[2] G. Anastassiou, Advances on Fractional Inequalities, Springer, New York, 2011.

[3] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential trans-
form method, Chaos Solitons Fractals 40 (2009), 521–529.
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