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APPLICATION OF THE KALMAN-BUCY FILTER IN THE
STOCHASTIC DIFFERENTIAL EQUATIONS FOR

THE MODELING OF RL CIRCUIT

R. REZAEYAN1∗, R. FARNOUSH1 AND E. BALOUI JAMKHANEH2

Abstract. In this paper, we present an application of the stochastic calculus
to the problem of modeling electrical networks. The filtering problem have an
important role in the theory of stochastic differential equations(SDEs). In this
article, we present an application of the continuous Kalman-Bucy filter for a RL
circuit. The deterministic model of the circuit is replaced by a stochastic model by
adding a noise term in the source. The analytic solution of the resulting stochastic
integral equations are found using the Ito formula.

1. Introduction and preliminaries

Modeling of physical systems by ordinary differential equations(ODEs), ignores
stochastic effects. By adding random elements into the differential equations obtains
what is called a Stochastic differential equations(SDEs), and the term stochastic
called noise[5]. Then, a SDE is a differential equation in which one or more of the
terms is a stochastic process, and resulting in a solution which is itself a stochastic
process.
SDEs play a relevant role in many application areas including environmental model-
ing, engineering, biological modeling and mostly. One of more important application
SDE, is in the modeling electrical networks. Application SDEs in the modeling of
electrical circuits has been studied by many researchers. W. kampowsky and et
al(1992), described classification and numerical simulation of electrical circuits with
white noise[3]. In [7], C. Penski(1999), was presented a new numerical method for
SDEs with white noise and its application in circuit simulation. T. Rawat(2008),
showed an application of the Ito stochastic calculus to the problem of modeling a
series RC Circuit with white noise and colored noise, including numerical solution[8].
However, E. kolarova presented an application of stochastic integral equations to RL
circuit in (2008)[4]. R. Narayanan and et al(2009), worked on the automated formal
verification of analog/RF circuits.
The filtering problem, an important part have in the theory SDEs. Intuitively, the
problem is to filter the noise a way from the observations in an optimal way. In
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1960, Kalman and in 1961, Kalman and Bucy proved what is now Know as the
Kalman-Bucy filter. Basically the filter gives a procedure for estimating the state
of a system which satisfies a noisy linear differential equation, based on a series of
noisy observations.
E. Kolarova(2007), presented an application of the Kalman-Bucy filter to RL cir-
cuit. In this paper, we will presented an application of the Kalman-Bucy filter to
the problem of modeling RL electrical circuit.
For attention, in the next section, we describe SDE and Ito stochastic calculus. In
this part 3, we will presented the Kalman-Bucy filters and in the section 4, with
using of Kalman-Bucy filter, we will solving the stochastic RL model.

2. Stochastic differential equation

An SDE, is an ordinary differential equation(ODE) with stochastic process that
can model unpredictable real-life behavior of any continuous systems[o]. Given
the probability space ω, a stochastic process with state space E is a collection
Xt : t ∈ T of random variablesXt that take values in E for the parameter set T .
If T is a countable then the stochastic process is discrete else continuous. Due to
statistical properties, a stochastic process can be used to define the randomness in
an uncorrelated white gaussian noise which can be thought of as the derivative of
brownian motion( or the wiener process)[6].
A general scalar SDE has the form

dX(t) = f(t,X(t))dt + g(t,X(t))dW (t), (2.1)

where f(t,X(t)) : [0, T ] × R → R and g(t,X(t)) : [0, T ] × R → R are drift and
diffusion coefficient and W (t) is the so called wiener process, a stochastic process
representing the noise[4].
We can represent the SDE in the integral form

X(t) = x0 +

∫ T

0

f(s, X(s))ds +

∫ T

0

g(s, X(s))dW (s), (2.2)

where the integral with respect to ds is the lebesgue integral and the integrals with
respect to dW (s) are stochastic integrals, called the Ito integrals[k]. Although the
Ito integral has some very convenient properties, the usual chain rule of classical
calculus doesn’t hold. Instead, the appropriate stochastic chain rule, known as Ito
formula, contains an additional term. This additional term, which roughly speaking
is due to the fact that the square of the stochastic differential (dW (t))2 is a equal
to dt, in the mean square sense, i.e. E[(dW (t))2] = dt. So the second order term in
dW (t) should really appear as a first order term in dt.
Suppose X(t) be a solution of the SDEs (1), for some suitable functions f, g. Let
g(t, x) : (0,∞)×R → R be a twice continuously differentiable function. The function

Y (t) = g(t,X(t)),
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is a stochastic process, for which

dY (t) =
∂g

∂t
(t,X(t))dt +

∂g

∂x
(t,X(t))dX(t) +

1

2

∂2g

∂x2
(t,X(t))(dX(t))2, (2.3)

where (dX(t))2 = dX(t).dX(t) is computed according to the rules

dt.dt = dt.dW (t) = dW (t).dt = 0, dW (t).dW (t) = dt

3. the kalman-bucy filter

Suppose the X(t) at time t of a system is given by a SDE

dX(t)

dt
= b(t,X(t)) + σ(t,X(t))W (t), t ≥ 0, (3.1)

where b and σ satisfy conditions

|b(t, x)|+|σ(t, x)| ≤ C(1+|x|); |b(t, x)−b(t, y)|+|σ(t, x)−σ(t, y)| ≤ D|x−y|; x, y ∈ R, t ∈ [0, T ]

for some constant C, D and W (t) is white noise. As discussed earlier the Ito
interpretation of this equation is

(system) dX(t) = b(t,X(t))dt + σ(t,X(t))dU(t), (3.2)

where U(t) is Brownian motion. We also assume that the distribution of X(0) is
known and independent of U(t).
In the continuous version of the filtering problem we assume that the observations
Ht are performed continuously and are of the form

Ht = c(t,X(t)) + γ(t,X(t)).W̃ (t), (3.3)

where c, γ are functions satisfying

|c(t, x)|+ |γ(t, x)| ≤ C(1 + |x|); x ∈ R, t ∈ [0, T ]

and W̃ (t) denotes white noise, independent of U(t) and X0.
To obtain a tractable mathematical interpretation of (6) we introduce

Zt =

∫ t

0

Hsds

and thereby we obtain the stochastic integral representation

(observations) dZt = c(t,X(t))dt + γ(t,X(t))dV (t), Z0 = 0 (3.4)

where V (t) is Brownian motion, independent of U(t) and X0. Note that if Hs is
known for 0 ≤ s ≤ t, then Zs is also known for 0 ≤ s ≤ t and conversely. So no
information is lost or gained by considering Zt as our ”observations” instead of Ht.
But this allows us to obtain a well-defined mathematical model of the situation.
Given the observations Zs satisfying (7) for 0 ≤ s ≤ t, what is the best estimate

ˆX(t) of the state X(t) of the system (5) based on these observations? Then, it is
necessary to find a precise mathematical formulation of this problem.
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Theorem 3.1. The solution ˆX(t) of the 1-dimensional linear filtering problem

(linear system) dX(t) = F (t)X(t)dt + C(t)X(t)dU(t); F (t), C(t) ∈ R (3.5)

(linear observations) dZt = G(t)X(t)dt + D(t)dV (t); G(t), D(t) ∈ R (3.6)

(with conditions as stated earlier) satisfies the SDE

d ˆX(t) = (F (t)− G2(t)S(t)

D2(t)
) ˆX(t)dt +

G(t)S(t)

D2(t)
dZ(t); ˆX(0) = E[X(0)] (3.7)

where
S(t) = E[(X(t)− ˆX(t))2] satisfies the (deterministic) Ricati equation

dS

dt
= 2F (t)S(t)− G2(t)S2(t)

D2(t)
+ C2(t), S(0) = E[(X(0)− E[X(0)])2].

For precise formulation and for the proof of this theorem see[6], page 81-97.

4. the deterministic model

Any electrical circuit consists of resistor(R), capacitor(C) and inductor(L). These
circuit elements can be combined to form an electrical circuits in four distinct ways:
the RC, RL, LC and RLC circuits. Then, a inductor-resistor circuit(RL), is an elec-
tric circuit composedof resistor and inductor driven by a voltage or current source.
The ODE describing the behavior of the RL circuit is given by Kirchhoff’s current
law :

L
dI

dt
+ RI(t) = V (t), I(0) = I0 (4.1)

where the resistance R and the inductance L are constants and V (t) denotes the
potential source at time t.
If V (t) is a piecewise continuous function, the solution of the first order linear dif-
ferential equation (11)is:

I(t) = I(0) exp(
−Rt

L
) +

1

L

∫ t

0

exp(−R(t− s)

L
)V (s)ds

Now let us allow some randomness in the potential source. Then voltage may not
be deterministic but of the form:

V ∗(t) = V (t) + ”noise” = V (t) + αξ(t) (4.2)

where ξ(t) is a white noise process of mean zero and variance one, and α is nonneg-
ative constant, known as the intensity of noise.
To be able to substitute this into the equation of the circuit we have to describe math-
ematically the ”noise”. It is reasonable to look at it as a stochastic process ξ(t)dt
by a term dW (t). There W (t) is the Wiener process. Formally the ”white noise” is
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the time derivative of the Wiener process W (t). We get a SDE

dI(t) = (
1

L
V (t)− R

L
I(t))dt +

α

L
dW (t), (4.3)

to solve analytical this equation we compute, using the Ito formula (6), the derivative
of the function

g(t, I(t)) = e
Rt
L I(t),

dg(t, I(t)) = e
Rt
L

V (t)

L
dt + e

Rt
L

α

L
dW (t).

From this we get the solution

I(t) = e
Rt
L I(0) +

1

L

∫ t

0

e
R(s−t)

L V (s)ds +
α

L

∫ t

0

e
R(s−t)

L dW (s). (4.4)

the solution I(t) is a random process and for it’s expectation we have for every t > 0,

m(t) = E[I(t)] = e
−Rt

L E[I0] +
1

L

∫ t

0

V (s)e
R(s−t)

L ds. (4.5)

The second moment D(t) = E[I(t)2] can be computed as a solution of the ordinary
differential equation

dD(t)

dt
= (−2R

L
)D(t) + 2m(t)

V (t)

L
+

α2

L2
, (4.6)

The solution I(t) is a Gaussian process, that I(t) is distributed N(m(t), σ2(t)), where
σ2(t) = E[I(t)2]−m2(t). Based on the properties of the normal distribution, we can
compute in any t, that

P (|I(t)−m(t)| < 1.96σ(t)) = 2φ(1.96)− 1 = 0.95, (4.7)

where

φ(x) =
1

2π

∫ x

−∞
e−

1
2
s2

ds

let us provide some measurement of the current continuously up to time s ≤ t, t > 0.
As described above, we can get from this measurement the observation equation

dZ(t) = Q(t)dt + dU(t), (4.8)

Now, we face to the filtering problem: To find the best estimate of the current Q̂(t),
under observations (9), while the equation (1) holds. According to the Kalman-Bucy
filter, we have

dÎ(t) = (
−R

L
− S(t))Î(t)dt + S(t)dZ(t), Î(0) = E(I0) = 0 (4.9)

where S(t) = E[(I(t)− Î(t))2] satisfies the deterministic Riccati equation

S ′(t) =
−2R

L
S(t)− S2(t) +

σ2

L2
, S(0) = E((I0)

2) = A2 (4.10)
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(see theorem 1). To solve the Riccati equation, we substitute in (10),

S(t) = M(t)− R

L
, S ′(t) = M ′(t), S2(t) = M2(t)− 2R

L
M(t) +

R2

L2
,

we get a separable ordinary differential equation for the function M(t),

M ′(t) =
R2 + σ2

L2
−M2(t) ⇒ dM(t)

dt
= ν2 −M2(t) ⇒ dt

dM(t)
=

1

ν2 −M2(t)
,

where ν =
√

R2+σ2

L
.

That then of solve this equation, we get the implicit solution

−1

2
ln|M(t)− ν

M(t) + ν
| = t + k ⇒M(t) = ν

e−2(t+k) + 1

e−2(t+k) − 1
then:

S(t) = M(t)− R

L
= ν

1 + e−2(t+k)

e−2(t+k)−1
− R

L
,

However, k = 1
2
Ln|S(0)+R

L
+ν

S(0)+R
L
−ν
| and for large t we have M(t) ≈ ν and S(t) = ν − R

L
.

We substitute this to the equation (17) and get the following SDE for the filter

dÎ(t) = (
−R

L
− ν +

R

L
)Î(t)dt + (ν − R

L
)dZ(t), Î(0) = E(I0) = 0

so

dÎ(t) = −νÎ(t)dt + (ν − R

L
)dZ(t). (4.11)

This equation can be solved using the Ito formula for the function h(t, x) = eνtx.
We have

d(eνtÎ(t)) = νeνtÎ(t)dt + eνtdÎ(t) = eνt(ν − R

L
)dZ(t)

⇒ eνtÎ(t) =

∫ t

0

(ν − R

L
)eνsdZ(s)

Thus

Î(t) = ν(1− R

L
)

∫ t

0

eν(s−t)dZ(s)

is the solution of the filtering problem for the RL circuit with stochastic source.



APPLICATION OF THE KALMAN-BUCY FILTER... 41

References

[1] L. Arnold, Stochastic Differential Equations, Theory and Applications, Johan Wiley Sons,
(1974).

[2] D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Johan wiley, Sons, (1997).
[3] W. Kampowsky, P. Rentrop, W. Schmidt, Classification and numerical simulation of electric

circuits, Surveys Math. Indust, 2(1992)23-65.
[4] E. Kolarova, An application of Stochastic Integral Equations to electrical networks, Acta Elec-

trotechnica et informatica. Vol. 8. No. 3. (2008), pp. 14-17.
[5] P.E. Kloeden, E. Platen. Numerical solution of Stochastic Differential Equations, Springer,

Berlin, (1995).
[6] B. Oksendal, Stochastic Diferential Equations, an introduction with applications, Springer-

Verlage, (2000).
[7] C. Penski, A new numerical method for SDEs and its application in circuit simulation, Com.

and Appl. Math, 115(2000), 461-470.
[8] T. K. Rawat, H. Parthasarathy, Modeling of an RC circuit using a SDEs, Int. J. SC. Tech,

vol. 13, No. 2. April-june(2008).

1 Department of Mathematics, Faculty of Basic Sciences, Islamic Azad Univer-
sity, Sciences and Research Branch, Tehran, Iran.

E-mail address: r−rezaeyan@iaunour.ac.ir

2 Department of Mathematics, Islamic Azad University Ghaemshahr Branch,
Ghaemshahr, Iran.

E-mail address: e−baloui2008@yahoo.com


	1. SEC Introduction and preliminaries
	2. SEC Stochastic differential equation
	3. SEC the kalman-bucy filter
	4. SEC the deterministic model
	SEC References

