
Mechanics of Advanced Composite Structures Vol (Year), Serial Number, First page – Last page 

 

 

Semnan University 

Mechanics of Advanced Composite Structures 

Journal homepage: https://macs.semnan.ac.ir/  

ISSN: 2423-7043  

 

* Corresponding author. 
   E-mail address: aghorban@kashanu.ac.ir 

 

Research Article 

Vibration Analysis of Sandwich Beams with 

Magnetorheological Elastomer Core and FGM Graphene 

Nanoplatelet-Reinforced Polymer Faces on Viscoelastic 

Foundation 

Mohammad Javad Arabloo Faraji a , Ali Ghorbanpour Arani b* , Ehsan Mamnoun b  

Zahra Khoddami Maraghi b  

a Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran 

b Faculty of Engineering, Mahallat Institute of Higher Education, Mahallat, Iran 

 

ARTICLE INFO 
 A B S T R A C T  

Ar ticl e  his tory :  

Received:  2023-10-19  

Revised:  2024-03-22 

Accepted:  2024-05-12 

 This study investigates the free vibrations of a sandwich beam with a magneto-rheological 

elastomer (MRE) core reinforced with carbon nanotubes (CNTs) and polymer facings 

reinforced with graphene nanoplatelets (GNPs) resting on a viscoelastic foundation. To 

enhance the accuracy of the results, the modeling of the core and facings of the beam is 

based on the Timoshenko beam model, and the viscoelastic foundation is based on the 

visco-Pasternack model. The governing equations and boundary conditions are derived 

using Hamilton's principle and solved using Navier's method. After validation, the effects 

of beam parameters, including the applied magnetic field intensity, core and facing 

thicknesses, volume fraction of CNTs added to the core, volume fraction and distribution 

pattern of GNPs added to the facings, and foundation parameters, on the natural 

frequencies of the beam in different vibration modes are investigated. The results show 

that if the goal is to maximize the natural frequencies of the beam, adding GNPs to the 

polymer facings of the beam is significantly more effective than adding CNTs to the MRE 

core or increasing the applied magnetic field intensity to the core. The results of this 

research can be used in the design of sensors and actuators in many industries. 
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1. Introduction 

The expected properties of a sandwich 
structure after construction. The first factor 
encompasses each material's intrinsic 
characteristics and properties, including thermal, 
mechanical, and electrical properties, which are 
inherently fixed and specific for different 
materials. However, the second factor consists of 
the properties and characteristics that arise from 
the interaction between the materials when 
placed together. In other words, when two 
materials are placed side by side, they impact 
each other's performance, and understanding 
this is crucial for designing such structures. 
Ultimately, a proper understanding of the 
mechanics of sandwich structures is necessary to 

select suitable materials for the core and 
surfaces. Expected properties of a sandwich 
structure include high flexibility, strength-to-
weight ratio, impact resistance, and thermal 
tolerance. Considering these properties, the 
sandwich structure enables the optimization of structures 
relative to the expected performance. Sandwich structures 
are beneficial for manufacturing components with 
weight constraints and critical weight considerations, 
such as parts of spacecraft, aircraft, and marine 
structures.  Given the intriguing properties of 
fluids and MREs and their potential for vibration 
control in various structures, a group of 
researchers analyzed the mechanical behavior of 
sandwich structures with cores made of 
magneto-rheological materials. These articles 
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can generally be classified into three categories: 
analytical articles, experimental articles, and 
analytical-experimental articles. The effect of a 
magnetic field on the vibrational behavior of an 
MRE sandwich micro-electromechanical system 
(MEMS) operating with electrostatic excitation 
and conductive layers was investigated by 
Akhavan et al. [1] using the method of multiple 
scales (MMS). To examine the vibrational 
behavior of the moving electrode, the Euler-
Bernoulli beam theory, and Hamilton's principle 
were utilized to derive the equations. The results 
of this study indicate that by incorporating an 
MRE core in the moving electrode and applying 
various magnetic fields to it, the natural 
frequency of its vibration can be controlled. 
Specifically, the system's natural frequency 
increases with an increase in the applied 
magnetic field. The influence of various factors 
such as the electric potential difference between 
the two electrodes, changes in the core and layer 
thickness, and changes in the system's vibration 
modes on the natural frequencies were 
examined. A new hysteresis model based on the 
curve fitting method to represent the highly 
nonlinear and hysteretic relationships between 
shear force and displacement response of an MRE 
base isolator was proposed by Yu et al. [2]. 
Compared to classical hysteresis models such as 
the Bouc-Wen or LuGre friction models, the 
proposed model combines a hyperbolic sine 
function and a Gaussian function to model the 
hysteresis loops of the device's response, 
resulting in a significant reduction in the number 
of model parameters. Experimental results of the 
device under both harmonic and random 
excitations were used to validate the 
performance of the proposed hybrid model and 
parameter identification algorithm with 

satisfactory results. Numerical results show that 
the CNT-reinforced composite cylindrical multi-
MRE sandwich shell has a significant effect on 
natural frequencies compared to the single MRE 
cylindrical sandwich shell. Using computational 
fluid dynamics (CFD) software and presenting a 
two-dimensional model, Gedik et al [3] simulated 
the mechanical behavior of a magneto-
rheological fluid confined between two parallel 
fixed plates and subjected to an external 
magnetic field. In this study, relying on the 
assumption of steady flow and the 
incompressibility of the magneto-rheological 
fluid, they investigated the effect of applying a 
uniform magnetic field on the pressure 
distribution and velocity changes of the fluid. 
Haghparast et al [4] investigated the influence of 
fluid-structure interaction (FSI) on the vibration 
of a moving sandwich plate with a balsa wood 
core and nanocomposite face sheets. This study 
presents a theoretical analysis of the vibrations of 

a vertically moving sandwich plate floating on a 
fluid. The plate consists of a balsa wood core and 
two nanocomposite face sheets, which vibrate as 
an integrated sandwich. The FSI effect on the 
stability of the moving plate is considered for 
both ideal and viscous fluid conditions. The 
results indicate that the dimensionless 
frequencies of the moving sandwich plate 
decrease rapidly with increasing water levels and 
become almost independent of the fluid level 
when it exceeds 50% of the plate length. 
Ghorbanpour Arani et al.[5] investigated the 
frequency response of a smart sandwich plate 
composed of magnetic face sheets and a 
nanofiber-reinforced core. The analysis 
employed the third-order shear deformation 
theory (Reddy's theory) and revealed insightful 
details regarding the influence of various 
parameters, including in-plane forces, elastic 
foundation modulus, core-to-face sheet thickness 
ratio, and velocity feedback gain controller on the 
dimensionless frequency of the sandwich plate. 
In another study, Zarastvand et al. [6] conducted 
a comprehensive review to gather, categorize, 
and organize all previous research on the sound 
insulation characteristics of plate structures from 
1967 to the present. This review encompassed 
over 200 articles focused on the acoustic 
performance of these structures. All existing 
papers were classified and categorized based on 
relevant themes. In addition to providing 
appropriate descriptions of the topic's 
significance, fundamental equations, and general 
principles were developed in this area. 
Subsequently, the study delved into various 
theories to present reliable results based on the 
thickness of the structures. In another study, 
Ghafouri et al. [7] proposed an analytical 
approach to precisely investigate the impact of 
employing 3D re-entrant auxetic cellular 
structures (RACS) on the sound transmission loss 
(STL) of a sandwich panel. The dynamic 
equations governing fluid-structure interaction 
were derived using a 3D stress distribution, and 
the resulting equations were subsequently 
solved analytically using the state-space method. 
The reliability and accuracy of the obtained 
results were validated against previous studies. 
Their findings indicated that the designed 
sandwich model significantly enhances the 
system's sound characteristics, as demonstrated 
by STL comparisons between the current 
approach and single-layer plates as well as 
sandwich panels with different core geometries. 
In another study, Zarastvand et al. [8] conducted 
a comprehensive review of the existing literature 
on sound transmission through multilayered 
plate structures. They compiled a comprehensive 
resource, reviewing and describing 
approximately 410 references from 1949 to 
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2020. In addition to providing a thorough 
explanation of the significance of acoustic 
analysis for these structures, the study also 
presents appropriate formulations. Furthermore, 
a review of related topics is conducted. 
Subsequently, the papers are categorized based 
on their acoustic excitation fields, including plane 
wave, diffuse, random, and point source. Sun et 
al.[9] propose a novel non-contact metamaterial 
beam solution for suppressing extremely low-
frequency vibration and noise in precision 
instruments and equipment. The resonators of 
the metamaterial beams integrate a negative 
stiffness mechanism and an electromagnetic 
damping tuning system. Findings demonstrate 
that the negative stiffness can be effectively 
controlled by the nonlinear magnetic force 
between the magnets. Utilizing this mechanism, 
the bandgap frequency is successfully reduced to 
a minimum of 50 Hz. Furthermore, a method is 
proposed to combine electromagnetic damping 
and a negative impedance circuit to form a tuning 
system that can further lower the initial bandgap 
frequency to 4 Hz. Khorshidi et al.[10] 
investigated energy harvesting using vibrating 
honeycomb sandwich panels with auxetic core 
and carbon nanotube-reinforced face sheets. In 
this study, an energy harvester constructed from 
a honeycomb sandwich panel is examined. The modeled 
sandwich panel comprises an auxetic core and two carbon 
nanotube-reinforced face sheets. The findings 
demonstrate that this harvester offers greater flexibility in 
its stiffness, leading to enhanced energy harvesting 
performance. Ying et al.[11] successfully dampened 
vibrations by placing a magneto-rheological viscoelastic 
core inside a microbeam. They conducted various 
experiments on magneto-rheological viscoelastic 
materials, estimating their mechanical properties based on 
the intensity of the applied magnetic field. Utilizing the 
Galerkin method to solve the governing equations of 
microbeam vibrations, they extracted its dynamic 
response. In another study, vibrations of sandwich beams 
filled with magneto-rheological fluid under an external 
magnetic field were controlled by Joshi.[12] The 
researcher compared the natural frequencies and 
damping coefficients (free vibration analysis) as 
well as the dynamic response (forced vibration 
analysis) of a sandwich beam with a magneto-
rheological core to the corresponding values for 
an aluminum beam with similar dimensions. It 
was demonstrated that in all vibrational modes, 
the natural frequencies of the sandwich beam 
with the magneto-rheological core were higher 
than those of the aluminum beam.  Aguib Et 
al.[13] investigated the dynamic behavior of 
sandwich panels with aluminum skins and a 
magneto-rheological core. They conducted 
various experiments to measure the rheological 
properties of the magneto-rheological material in 
the absence and presence of a magnetic field and 

examined the effects of the presence of 
ferromagnetic microparticles as well as the 
intensity of the applied magnetic field on the 
dynamic characteristics of the panels. Nayak et 
al.[14] investigated the dynamic stability of 
rotating sandwich beams with a magneto-
rheological core using the finite element method. 
They assumed that the beam was subjected to a 
harmonic axial load and studied the effects of the 
applied magnetic field intensity on the beam's 
angular velocity and the radial axis to which the 
beam is connected on the spread of stable and 
unstable regions Malekzadeh Fard et al.[15] 
investigated the free vibration analysis and 
dynamic response to the low-velocity impact of 
sandwich panels with a magneto-rheological 
core. They examined the effects of the applied 
magnetic field intensity on the natural 
frequencies and corresponding damping ratios in 
various vibration modes, as well as the 
deformation of the panel during impact and the 
force generated at the contact location.  
Ramamoorthy et al.[16] investigated the 
vibrations of sandwich panels with multi-layer 
composite skins and a rubber core, which was 
partially replaced with magneto-rheological fluid 
in some sections. They studied the effect of the 
applied magnetic field intensity on the natural 
frequencies of the panel in different vibration 
modes and the corresponding damping ratios for 
various boundary conditions. Furthermore, they 
extracted the dynamic response of such panels 
under external harmonic excitation. Eshaghi 
examined the influence of using a magneto-
rheological core on the stability of the vibrations 
of panels subjected to external fluid flow (flutter 
analysis) [17, 18].  By employing a magneto-
rheological fluid in the core of rectangular panels, 
he delayed the onset of the destructive flutter 
phenomenon in them. Alongside analytical 
results, he validated his modeling by conducting 
various experiments and observed that 
increasing the intensity of the applied magnetic 
field to the magneto-rheological core could delay 
the occurrence of the flutter phenomenon in the 
panel.  In another study, he once again 
investigated the effect of using a magneto-
rheological fluid in the core of rectangular panels 
on the occurrence of the flutter phenomenon. 
However, in this research, only a portion of the 
core was filled with magneto-rheological fluid, as 
opposed to the entire core [19].  To delay the 
flutter phenomenon as much as possible 
(increasing the critical speed), he succeeded in 
determining the best position for the cube 
containing the magneto-rheological fluid inside 
the panel. He suggested that, to extend the critical 
speed as much as possible, the longest edge of the 
cube containing the magneto-rheological fluid 
should be aligned parallel to the fluid flow 
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direction.  Subramani et al.[20] investigated the 
free and forced vibrations of spherical sandwich 
shells with a magneto-rheological core and 
polymer coatings reinforced with CNTs. They 
demonstrated that to alter the natural frequency 
values of the shell, it is better to modify the mass 
fraction of the CNTs and to change the damping 
ratio of the shell, it is preferable to adjust the 
intensity of the magnetic field applied to the 
magneto-rheological core. In two similar studies, 
Houshangi et al.[21] focused on analyzing the 
free vibrations and predicting the occurrence of 
the flutter phenomenon in incomplete conical 
shells with a magneto-rheological core. They 
observed that by increasing the intensity of the 
magnetic field applied to the magneto-
rheological core, the natural frequencies and 
damping coefficients of the shell could be 
increased up to a certain level. However, with a 
further increase in the magnetic field intensity, 
due to core saturation, there would be little 
change in the natural frequencies and damping 
coefficients. Ghorbanpour Arani et al.[22] focused 
on analyzing flutter in sandwich panels with a 
magneto-rheological core and nano-composite 
coatings reinforced with GNPs. They observed 
that with an increase in the intensity of the 
magnetic field applied to the magneto-
rheological core, there was a marginal increase in 
the critical velocity, and upon reaching core 
saturation, further improvement in the stability 
of the panel vibrations could not be observed.  In 
a similar study, they investigated the stability of 
vibrations in moving sandwich panels with a 
magneto-rheological core and nano-composite 
coatings reinforced with GNPs [23].   One of the 
major weaknesses in magneto-rheological fluids 
and elastomers is their low stiffness (small shear 
modulus), leading to very large shear 
deformations in structures. To address this 
weakness, recently, an Indian researcher named 
R. Selvaraj, along with his colleagues attempted 
to add CNTs to MRE [24]. R. Selvaraj and M. 
Ramamoorthy conducted free vibration analysis 
of sandwich beams with magneto-rheological 
cores reinforced with CNTs  using the finite 
element method and various experimental tests. 
They observed that adding CNTs  to the magneto-
rheological core could increase the beam's 
natural frequencies.  In another study, Selvaraj et 
al.[25] investigated the free vibrations of 
sandwich beams with a homogeneous core 
replaced in some sections with MREs reinforced 
with CNTs. They utilized a genetic algorithm to 
determine the optimal position for the MRE cube 
to maximize the beam's natural frequencies and 
the corresponding damping coefficients as much 
as possible.  The dynamic behavior of cylindrical 
sandwich shells with a core of magneto-
rheological material reinforced with CNTs  and 

multilayer composite coatings was investigated 
by Arumugam et al [26]. They observed that 
considering a specific thickness for the shell, 
increasing the thickness of the magneto-
rheological core led to a reduction in the natural 
frequencies. However, a review of the research in 
this area indicates that the analysis of sandwich 
beams with a core of magneto-rheological 
material reinforced with CNTs  and nano-
composite coatings enhanced with GNPs  has not 
yet been studied. 

 This study introduces a novel sandwich 
structure with an MRE core reinforced by carbon 
nanotubes (CNTs) and graphene nanoplatelet 
(GNP) face sheets, enhancing shear modulus and 
vibration control. It uniquely employs the 
Timoshenko beam model for improved accuracy 
in representing shear and angular deformations. 
Additionally, five GNP distribution patterns are 
examined to assess the effects on flexural 
stiffness and damping. The study further analyzes 
the combined impact of magnetic field intensity, 
viscoelastic foundation damping, and GNP face 
sheet thickness on natural frequencies and 
damping ratios, offering detailed insights for industrial 
applications. This combination of materials 
increases the shear modulus and enhances the 
structure's vibration control capability, making it 
suitable for high-pressure or high-vibration 
environments. 

2. Geometry of the Problem and 
Mechanical Properties 

As depicted in Fig.1, this study investigates 
the free vibrations of a three-layer sandwich 
beam supported on simple supports and resting 
on a viscoelastic foundation. The beam has a 
length of 𝐿 and thickness ℎ, consisting of a 
magnetorheological core reinforced with CNTs  
with a thickness of ℎ𝑐 , and two polymer layers 
reinforced with GNPs with thicknesses ℎ𝑏 and ℎ𝑡 . 
In deriving the governing equations for the 
vibrations of this structure, the following 
simplifying assumptions are considered: 

i. The amplitude of the beam's vibrations is much 
smaller compared to its dimensions, allowing 
us to analyze the vibrations in the linear range. 

ii. There is no slippage or separation between the 
layers of the beam. 

iii. The behavior of the foundation is linear. 
iv. The axial stiffness of the magnetorheological 

core is significantly smaller compared to the 
axial stiffness of the layers; thus, the 
magnetorheological core only has shear 
stiffness. 

v. In modeling the mechanical behavior of the 
magnetorheological core in free vibration 
analysis, a mixed shear modulus approach is 
used. 
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Figure 1. Geometry of the problem under investigation 

 

2.1. Mechanical Properties of the Core 

Magneto-rheological MR materials are a class 
of smart materials whose mechanical properties 
can be altered by applying an external magnetic 
field. These materials exist in various states, 
including fluid, gel, foam, elastomer, and 
plastomer, with the most common being 
magneto-rheological fluids (MRFs) and MREs. 
MR fluids alter viscosity and yield stress under a 
magnetic field. This change in stiffness is 
primarily due to the interaction between the 
magnetic particles embedded in the elastomer 
matrix and the applied magnetic field. In shear 
flow conditions, they shift from liquid to semi-
solid. While the application of a magnetic field 
does affect the overall stiffness of the MRE, it's 
important to note that the most significant 
change occurs in the shear modulus, which 
represents the material's resistance to 
deformation under shear stress. Shear stiffness 
measures how they resist deformation. Primarily 
influencing shear properties. It is important to note 
that upon removal of the applied magnetic field, 
the changes in the mechanical properties of MR 
materials are rapidly reversed, and the material 

returns to its original state. According to the 
fourth assumption presented in Section 2.1, the 
only stress component (σ) in the magneto-
rheological core is the shear stress, which is 
expressed in terms of the corresponding shear 
strain component (γ) as follows [28]: 

,c c c

xz xz xzG =  (1) 

In Eq. 1, 𝐺𝑥𝑧
𝑐   presents the mixed shear 

modulus, which is expressed as follows [29]: 

( )0 01c

xzG G j= +  (2) 

In Eq. 2, 𝐺0and 𝜂0 represent the storage shear 
modulus and the loss factor, respectively. It's 
worth mentioning that the subscript "c" refers to 
the core.  For an MRE reinforced with multi-
walled carbon nanotubes (MWCNTs), the values 
of storage shear modulus and loss factor for 
various fractions of MWCNTs and applied 
magnetic field intensity (B) are presented in 
Table 1. This table demonstrates that the storage 
shear modulus increases with an increasing 
fraction of MWCNTs and applied magnetic field 
intensity. Table 1. also shows that the loss factor 
increases with increasing magnetic field 
intensity, except for one exception, and generally 
increases with increasing fraction of MWCNTs. 
Therefore, it can be observed that adding CNTs  to 
the MRE not only increases the structural 
stiffness but also improves its ability to dampen 
vibrations. In MATLAB software, using the curve 
fitting tool, the following equations can be 
proposed to estimate the data provided in Table 
1: 
 

 

 

Table 1. Storage Shear Modulus and Loss Factor for an MWCNT Reinforced MRE [27] 

B (Gauss) WCNT=0 WCNT=0.005 (0.5 %) WCNT=0.01 (1 %) 

G0 (MPa) η0 G0 (MPa) η0 G0 (MPa) η0  

0 0.636 0.0912 0.811 0.0926 0.868 0.0991 

125 0.721 0.1038 0.891 0.1021 0.962 0.1120 

250 0.793 0.1069 0.974 0.1100 1.041 0.1190 

500 0.957 0.1099 1.086 0.1199 1.160 0.1261 
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It's important to note that similar equations 
are proposed in reference [27], which 
unfortunately do not match well with the data 
provided by them in Table 1. Several factors 
could contribute to variations in experimental 
and numerical results between different studies 
such as differences in material properties that 
even slight variations in the composition and the 
sandwich structures can lead to significant 
differences in mechanical behavior. Also testing 
conditions and procedures, modeling 
assumptions and simplifications, or Differences 
in the chosen model (e.g., Timoshenko vs. Euler-
Bernoulli beam theory) can lead to variations in 
predicted behavior in some cases. 

Figures 2(a) and 2(b) illustrate the changes in 
the shear storage modulus and damping ratio for 
the MRE reinforced with MWCNTs as a function 
of applied magnetic field intensity for different 

CNT mass fractions, respectively. Fig. 2(a) 
indicates that increasing applied magnetic field 
intensity increases the shear storage modulus for 

all CNT mass fractions. Additionally, Fig. 2(b) 
demonstrates that with increasing magnetic field 
intensity, the damping ratio increases when 
MWCNTs are added, but in the absence of 
MWCNTs in the MRE, an increasing behavior of 
the damping ratio along with oscillation is 
observed. 

 

(a) Shear Storage Modulus 

 
(b) Damping Ratio 

Figures. 2. The Effect of Magnetic Field Intensity on the 
Shear Storage Modulus and Damping Ratio of MWCNT-

Reinforced MRE 

 

2.2.  Mechanical Properties of Surface Layers 

The present study employs graphene 
nanoplatelet GNP-reinforced polymer faces. To 
calculate the density (ρ) and Poisson's ratio (ν) of 
GNP-reinforced polymer faces, the mixing rule 
can be utilized as follows [30]: 

, , , .i i i i i i

GNP GNP m m GNP GNP m mV V V V i b t     = + = + =  (4) 

In Eq. 4, the subscripts 𝐺𝑁𝑃 and 𝑚 refer to 
GNPs and the polymer matrix, respectively, and 
𝑉 presents the volume fraction of the 
components. It's worth noting that the subscripts. 
𝑏 and 𝑡Note the bottom and top layers of the 
beam, respectively. The volume fraction of 
(GNPs)  can be calculated as follows based on 
their mass fraction (𝑔𝐺𝑁𝑃) [31]: 

( )
, , .

1

i

i GNP

GNP
i iGNP
GNP GNP

m

g
V i b t

g g




= =

+ −
 (5) 

The volume fraction of the polymer matrix can 
be calculated from the following equation[31,32]: 

1 , , .i i

m GNPV V i b t= − =  (6) 

In this study, five different patterns for the 
distribution of GNPs in each of the matrices are 
considered. 

 
Figure 3. Distribution Patterns of GNPs in the Matrices 
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These distribution patterns are illustrated in 
Fig. 3, where the higher the density of an area, the 
higher the number of GNPs added to that region. 
As observed, five patterns are considered as 
follows: 

A. Uniform Distribution (UD) Pattern: In this 
pattern, the mass fraction of GNPs  is uniform 
across all regions. 

B. Graded Distribution FG-A Pattern: In this 
pattern, the mass fraction of GNPs  at the top 
layer is zero and linearly increases to its 
maximum value at the bottom layer. 

C. Graded Distribution FG-V Pattern: In this 
pattern, the mass fraction of GNPs  at the 
bottom layer is zero and linearly increases to its 
maximum value at the top layer. 

D. Graded Distribution FG-O Pattern: In this 
pattern, the mass fraction of GNPs  at both the 
top and bottom layers is zero and linearly 
increases to its maximum value at the middle 
layer. 

E. Graded Distribution FG-X Pattern: In this 
pattern, the mass fraction of GNPs  at the middle 
layer is zero and linearly increases to its 
maximum value at both the top and bottom 
layers. 

Given the linear variation of the mass fraction 
of GNPs  in these patterns, the following 
equations can be used to express the mass 
fraction of GNPs  in these five distribution 
patterns [33]: 

( )

( )

( )

( )

( )

*

*

*

*

*

: ,

2
: 1 ,

2
: 1 ,

, .

2
: 2 1 ,

: 4 ,

i

GNP i GNP

i i

GNP i GNP

i

i i

GNP i GNP

i

ii

GNP i GNP

i

ii

GNP i GNP

i

UD g z g

z
FG A g z g

h

z
FG V g z g

h i b t

z
FG O g z g

h

z
FG X g z g

h

=

 
− = − 

 

 
− = + 

= 

 
− = − 

 

− =

 (7) 

In Eq. 7, 𝑔𝐺𝑁𝑃  represents the total mass 
fraction of GNPs. Using the following equation, it 
can be shown that Eq. 7 is adjusted in a way that 
the total mass fraction of GNPs  is the same in all 
distribution patterns to ensure a fair comparison 
among them[33]: 

( )
2

*

2

1
, , .

i

i

h

i

GNP GNP i i

hi

g g z dz i b t
h

−

= =  (8) 

It is worth noting that Eq. 7 indicates that the 
total mass fraction of GNPs  in the lower and 
upper layers of the beam is considered equal to 
each other. 

The modulus of elasticity (E) of the beam's 
surfaces can be calculated using the Halpin-Tsai 
model as follows[33]: 

1 13 5
, , .

8 81 1

i i

i L L GNP w w GNP

mi i

L GNP w GNP

V V
E E i b t

V V

   

 

 + +
= + = 

− − 

 (9) 

In Eq. 9 : 

2 21 1
, , , , ,GNP GNP GNP

L w L w

L w GNP GNP m

l w E

h h E

 
    

   

− −
= = = = =

+ +

 
(10) 

In Eq. 10, 𝑙𝐺𝑁𝑃 , 𝑤𝐺𝑁𝑃 , and ℎ𝐺𝑁𝑃represent the 
length, width, and thickness of the GNPs, 
respectively. 

3. Displacement Field 

According to the first-order shear 
deformation theory (Timoshenko beam theory), 
the displacement field in the three layers of the 
beam can be considered as follows [34]: 

( ) ( ) ( )

( ) ( )

0 0

0

, , , , ,
, , .

, , , ,

i i i

i

i

u x z t u x t z x t
i c b t

w x z t w x t

= +
=

=
 (11) 

In Eq. 11, 𝑢 and 𝑤 represent the deformations 
in the 𝑥 and 𝑧  Directions, respectively. 𝑢0 and 
𝑤0 denote the corresponding displacements on 
the midplane of each layer (𝑧𝑖=0), and  
𝜙0  represents the rotation. 

With the condition of no sliding between the 
layers, the following equations can be expressed 
as continuity equations: 

, , , , , , , , , ,
2 2 2 2

c b c tc b c th h h h
u x t u x t u x t u x t
       

− = = −       
       

 (12) 

By substituting Eq. 11 into Eq. 12, the 
following equations can be obtained: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0

, , , , ,
2 2

, , , , ,
2 2

c c b bc b

c c t tc t

h h
u x t x t u x t x t

h h
u x t x t u x t x t

 

 

− = +

+ = −

 (13) 

which, upon solving, leads to the following 
equations for longitudinal displacement and 
rotation in the core of the beam: 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

0 0 0 0

0

0 0 0 0

0

1
, , , ,

2 4

, ,
4

1
, , , ,

2

, ,
2

c b t bb

tt

c t b bb

c c

tt

c

h
u x t u x t u x t x t

h
x t

h
x t u x t u x t x t

h h

h
x t

h





 



 = + + − 

 = − − − 

 
(14) 

Substituting Eq. 14 into Eq. 11, the 
displacement field in the core can be written as: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 0 1 0

2 0 2 0

0

, , , ,
2

, , ,
2

, , , ,

c b bb

c c

t tt

c c

c

h
u x z t f z u x t f z x t

h
f z u x t f z x t

w x z t w x t





= + +

−

=

 (15) 

In Eq. 15, dimensionless functions f1 and f2 are defined 
as follows: 

( ) ( )1 2

1 1
, ,

2 2

c c

c c

c c

z z
f z f z

h h
= − = +  (16) 

The values of these two functions at three specific 
levels within the core of the beam are provided in Table 
2. 

Table 2. Values of dimensionless functions f1 and f2 at the 
lower, upper, and middle levels of the core 

 zc/hc f1 f2 
Bottom -0.5 1 0 
Middle 0 0 0.5 

Top 0.5 0.5 1 

  

4. Strain Components in the Core and 
Faces 

As mentioned, in the core of the beam, the 
only existing component of strain is the shear 
strain component. This component of strain can 
be calculated as follows: 

.
c c

c

xz

c

u w

z x


 
= +
 

 (17) 

By substituting Eq. 15 into Eq. 17, we can 
obtain the following equation: 

0

1 0 1 0 2 0 2 0 ,
2 2

c b b t tb t

xz

h h w
f u f f u f

x
  


   = + + − +


 (18) 

which, considering Eq. 17, is expressed as 
follows: 

0 0 0

0 0 ,
2 2

b t

c b tb t

xz

c c c c

w u h u h

x h h h h
  


= − − + −


 (19) 

The strain components in the layers of the 
beam can also be expressed as follows: 

,

, .

,

i
i

xx

i i
i

xz

i

u

x
i b t

u w

z x






=


=
 

= +
 

 (20) 

Substituting Eq. 11 into it, we can obtain the 
following equation: 

0 0

0

0

,

, .

,

i i

i

xx i

i i

xz

u
z

x x i b t
w

x




 

 
= +
  =


= +



 (21) 

5. Stress Components in Core and 
Facing 

The only stress component in the core of the 
beam is the shear stress component, which is 
given by Eq. 1. Substituting Eq. 19 into Eq. 1, this 
stress component in the beam core can be written 
as: 

0 0 0

0 0 ,
2 2

b t

c c b tb t

xz xz

c c c c

w u h u h
G

x h h h h
  

 
= − − + − 

 

 (22) 

Stress Components on the Surfaces of the 
Beam can also be expressed as follows [34]: 

11

55

0
, , .

0

i i i

xx xx

i i i

xz s xz

Q
i b t

k Q

 

 

        
= =    

        

 (23) 

In this relation, 

( )
11 55, , , .

2 1

i
i i i i

i

E
Q E Q G i b t


= = = =

+

 
(24) 

It should be noted that 𝐺 represents the shear 
modulus of the surfaces. 

6. Hamilton's Principle 

According to Hamilton's principle, if t1 and t2 
are any two arbitrary times, and δ is considered 
as the variational operator, the governing 
equations and boundary conditions can be 
obtained from the following relation [35]: 

( )
2

1

. . 0,

t

b n c

t

T U W dt  − + =  (25) 

In this equation, 𝑊𝑛. 𝑐, 𝑇, and 𝑈𝑏 Nt the work 
of external non-conservative forces, kinetic 
energy, and strain energy, respectively.  

The kinetic energy of the beam is calculated as 
follows: 

2 2

2 2

2 2

1

2

1

2

1
,

2

c

b

t

c c
c

c

V

b b
b

b

V

t t
t

t

V

u w
T dV

t t

u w
dV

t t

u w
dV

t t







     
 = +   

      

     
 + +   

      

     
 + +   

      







 
(26) 

In Eq. 26, 𝑉 represent the volume of each layer 
of the beam. Based on the following equation: 
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( ) ( )

( )

2 2

0

22

2

0

2

, ,

, , , ,

i

ii

i

i

h b

L

i i i i

h bV

h

L

i i

h

F x z dV F x z dxdydz

b F x z dz dx i c b t

−−

−

=

= =

   

 

 
(27) 

where )b( represents the width of the beam, 
Therefore, the kinetic energy relationship can be 

written as follows : 

2 2 2 2

2 20 0 0 0

11 11 22 22

0

0 0 0 0 0 0 0 0

11 12 12 12

0 0

12 2

0.25 0.25
2

2

0.5

L b b t t

c c c c

b t

b b b t b t b t

c c c c

b t b

b t

c

b t t

u ub
T I h I I h I

t t t t

u u u u u
h I I h I h I

t t t t t t t t

h h I h I
t t

 

  

 

           
= + + +       

           

       
+ + − +

       

 
− −

 



2

0 0 0

2 00

2 2 2

0 0 0 0 0

0 1 2 0

2 2 2

0 0 0 0 0

0 1 2 0

2

2 ,

t t

c c

b b b b

b b b b

t t t t

t t t t

u w
I

t t t

u u w
I I I I

t t t t t

u u w
I I I I dx

t t t t t



 

 

   
+  

   

        
+ + + +     

        

        
+ + + +     

          

 

(28) 

In equ. 28 

( )

( )

2 2

2 2

2

2

,

, , 0,1,2

c b

c b

t

t

h h

c c b b i

ij i j c i b b b

h h

h

t t i

i t t t

h

I f f dz I z z dz

I z z dz i j

 



− −

−

= =

= =

 



 
(29) 

The strain energy of the beam can be 
expressed as follows: 

( )

( )

1 1

2 2

1
,

2

c b

t

c c b b b b

b xz xz c xx xx xz xz b

V V

t t t t

xx xx xz xz t

V

U dV dV

dV

     

   

= + +

+ +

 



 
(30) 

In Eq. 30, the stress resultants are defined as 
follows: 

2

2

,

c

c

h

c c

xz xz c

h

Q dz

−

=   (31) 

2 2

2 2

1
, , , .

i i

i i

h h

i

xx i i i

xx i xz xz ii
ih hxx

N
dz Q dz i b t

zM
 

− −

    
= = =   

    
 

 
(32) 

By substituting Eq. 22 into Eq. 32, the stress 
resultant in the core of the beam can be expressed 
as follows: 

0 0 0

0 0 ,
2 2

b t

c c b tb t

xz

c c c c

w u h u h
Q A

x h h h h
 

 
= − − + − 

 

 (33) 

In Eq. 33 

,c c

xz cA G h=  (34) 

Similarly, stress resultants in beam sections 
are calculated as follows: 

0 0 0 0

11 11 11 11

0

55 0

, ,

, , .

i i i i

i i i i i i

xx xx

i i i

xz s

u u
N A B M B D

x x x x

w
Q k A i b t

x

 



   
= + = +

   

 
= + = 

 

 (35) 

In Eq. 35: 

2

2

2

1
, .

,
1,5.

i

i

i h

jj

i i

jj jj i i

hi

jj i

A
i b t

B Q z dz
j

D z−

   
=   

=   
=   

  

  (36) 

Due to the presence of friction at the support, 
the force generated by it is a non-conservative 
force. The work done by this non-conservative 
force can be expressed as follows: 

. . 0

0

,

L

n c fW b q w dx=   (37) 

In Eq. 37, 𝑞𝑓 represents the reactive force of 

the support, which is expressed according to the 

viscoelastic model and Eq. 38 as follows [36]: 

2

0 0

0 2
,f w p

w w
q k w k c

tx

 
= − + −


 (38) 

In Eq. 38, kw, kp, and c are recognized as the 
coefficients of the Winkler bed, the Pasternak 
bed, and the damping coefficients of the bed, 
respectively. 

Boundary conditions at both ends of the beam 
can generally be expressed as follows: 

( ) 0

0 0 0 0

0,

0, 0, 0, 0.

c b t

xz xz xz

b b b b t t t t

xx xx xx xx

Q Q Q w

N u M N u M



   

+ + =

= = = =

 (39) 

In this study, simple boundary conditions are 
investigated. In this case, the boundary condition 
equations are expressed as follows: 

0 0, 0, 0, 0, 0,b b t t

xx xx xx xxw N M N M= = = = =  (40) 

Based on the preceding discussion, the 
equations of motion can be derived as follows: 

( )

( )

0

2

0 0 0

55 55 02

0 0 0

55 55

2

0

00 0 0 2

:

2 2

0,

c

bc
c b t

s s p w

c

b t tc
c b c tb t

s s

c c c

c b t

w

w w uA
A k A k A k k w c

t h xx

h u hA
A k A A k A

h x h x h x

w
I I I

t



 

  
+ + + − − −

 

     
− − + − −   

     


− + + =



 
(41) 
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( ) ( )

0

2 2

0 0 0

11 0 11 02 2 2 2

2 2

0 0

0 0 11 0 11 12 2 2 2

2 2

0 0

12 122 2

:

2

0.5
2

0.5 0,

b

b bc c
b b b c bb

c c c

b bc
t c t c b c bt

b

c c

t t

c c

t

u

w u hA A
A u B A

h x x h x h

h uA
u A I I h I I

h h t t

u
I h I

t t











  
+ − + −

  

 
+ − − + − +

 

 
− + =

 

 

( )

( )

0

2 2

0 0 0

55 11 0 112 2 2

2 2

0

55 0 0 0 11 12 2 2 2

2 2 2

2 0 0

11 2 12 122 2

:

2 2

0.5
4 2 4

0.25 0.5 0.25

b

b b

c b b c b bb b

s

c c

b

c b b c t c t c bb b b t

s b

c c c

b t

c b c c

b b b t

h w u h
A k A B A u D

h x x h x

h h h h u
A k A A u A h I I

h h h t

u
h I I h I h h I

t t





 

 

    
− + − + 

   

  
− + + − − + 

 

  
− + − +

 

0

2
0,

t

t
=



 

( ) ( )

0

2

0 0

0 0 11 02 2 2 2

2 2 2

0 0 0

11 0 12 122 2 2 2

2 2

0 0

22 0 22 12 2

:

2

0.5
2

0.5 0,

t

tc c c
b c b t tb

c c c c

t b b

t c t c ct

b

c

t t

c t c t

t

u

w h uA A A
u A A u

h x h h x h

h u
B A I h I

x h t t

u
I I h I I

t t





 




 
− + + + −

 

  
+ + − −

  

 
− + + − =

 

 

( ) ( )

0

2

0 0

55 0 0 112 2 2

2 2 2

0 0

0 11 55 0 122 2 2 2

2 2 2

20 0

12 22 1 22 22 2

:

2 2 4

0.5
2 4

0.25 0.5 0.25

t

t

c t c b c b tt t b t

s

c c c

t b

c t t c t t ct t

s t

c c

b t

c c t c t

b t t t

h w h h h u
A k A A u A B

h x h h x

h h u
A u D A k A h I

h x h t

u
h h I h I I h I I

t t








 

   
− − − + 

  

  
+ + − + + 

  

  
+ + − − +

 

0

2
0,

t

t
=



 

Using a similar approach, by substituting Eqs. 
33 and 35 into the boundary conditions 40, these 
equations can be written as follows: 

0 0,w =  

0 0 0 0

11 11 11 11

0 0 0 0

11 11 11 11

0, 0,

0, 0.

b b b b

b b b b

t t t t

t t t t

u u
A B B D

x x x x

u u
A B B D

x x x x

 

 

   
+ = + =

   

   
+ = + =

   

 
(42) 

The boundary conditions (Eq. 42) can also be 
expressed in simplified form as follows: 

0 0 0 0

0 0, 0, 0, 0, 0,
b b t tu u

w
x x x x

    
= = = = =

   
 (43) 

7. Solving the Governing Equations 

According to the Navier method, boundary 
conditions (Eq. 43) can be established at both 
ends of the beam using the following form of 
solutions: 

( )

( )

( )

( )

( ) ( ) ( )

0

0

0

0

0

,

,
cos , , sin ,

,

,

n n

b b

t t

j t j t

b b

t t

u x t U

u x t U
e x w x t We x

x t

x t

  




   
   
   

= =   
   

     

 
(44) 

In Eq. 44, 𝜔𝑛 represents an eigenvalue, 𝑗2=-1, 
and... 

, 1, 2,3,
n

n
L


 = =  (45) 

It should be noted that in Eq. 45, the variable. 
n = 1,2,3, … … is known as the mode number, and 
the subscript  n  in ωn indicates the eigenvalue of 
the beam in the nTh vibration mode. By 
substituting Eq. 44 into the governing Eq. 41, we 
can obtain the following system of algebraic 
equations for the eigenvalues: 

     ( )   2 0 , 1,2,3,n nK j C M s n + + = =  (46) 

In Eq. 46, the mass ([M]), damping ([C]), and 
stiffness ([K]) matrices and the displacement 
vector are defined as follows: 
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In Eq. 47 
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(48) 

By solving the eigenvalue problem (Eq. 46) for 
each value of n, The eigenvalues of the beam can 
be obtained for different vibration modes. These 
eigenvalues are generally complex numerical 
values, and using them, the natural frequencies of 
the beam vibrations Ωn in different modes and the 
corresponding damping coefficients ηn can be 
calculated as follows: 
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( )
( )

2

2

2

Im
Re , .

Re

n

n n n
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 = =  (49) 
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where 𝑅𝑒 and  𝐼𝑚 refer to the real and imaginary 
parts of a complex number, respectively. 

8. Numerical Results 

In the following section, numerical results are 
presented. Initially, the accuracy of the analysis 
presented in this study is evaluated by comparing 
it with the results reported by other researchers 
in specific cases. Then, the effect of beam and bed 
characteristics on the natural frequencies of 
beam vibrations and the corresponding damping 
coefficients is investigated. Except in cases 
explicitly mentioned, the following dimensionless 
definitions are used for the natural frequencies of 
beam vibrations and bed coefficients: 

* * *, , , ,
pm w

n n w p

m m m m m

kk L c
L k k c

E E E L E





= = = =

 
(50) 

Additionally, unless explicitly stated 
otherwise, the beam and bed characteristics are 
considered as follows [33]: 

1 , 0.02, 0.05.b t ch h h
L m

L L L
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3
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3
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3

*
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kg
E TPa
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 
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=

 GNP (XX)   

* * *0.1, 0.01, 0.1.w pk k c= = =  
Foundati

on  

8.1. Verification 

Consider a sandwich beam with an MR core 
and homogeneous concentric circular surfaces. 

The geometric specifications of the beam are 
given as L=0.3 m and hb =hc =ht =5 mm, where hb, 
hc, and ht represent the thickness of the bottom, 
core, and top layers, respectively. The surfaces of 
the beam are made of aluminum with the 
following mechanical properties: 𝐸 = 68 𝐺𝑃𝑎, 
𝜈 = 0.3077, and ρ=2700 kg/m³. The density of 
the MR core is ρc=3500 kg/m³, and its shear 
modulus varies as a function of the applied 
magnetic field as follows [37]: 
 

2

2

3.3691 4997.5 893000 ,

0.9 812.4 185500 .

c

xzG G jG

G B B Pa

G B B Pa

 = +

 = − + +

 = − + +

 
(51) 

 
For various values of applied magnetic field 

intensity, the values of beam vibration 
frequencies in Hertz are presented in Table 3. 
alongside the values reported by Rajamohan et al. 
[37]. As observed, there is a very high level of 
agreement between the results, indicating the 
accuracy of the analysis presented in this study. 
Some discrepancies can be found between the 
outcomes which could be Variations in the 
computational or analytical methods used to 
calculate the vibration frequencies or differences 
in the assumed material properties, such as 
density, elasticity, damping, boundary 
conditions, and constraints, which can lead to 
differences in results. Also, approximation 
methods, round-off errors, or simplifications 
used in the numerical analysis can contribute to 
small percentage differences. The percentage 
differences between the studies are relatively 
small, indicating that while there are 
discrepancies, the overall trends and behaviors 
are consistent between the analyses.

 

Table. 3 Vibration Frequencies of MR Sandwich Beam with Aluminum Surfaces in Hertz 

B (Guass)  n=1 n=2 n=3 n=4 n=5 

0 
The presented analysis 103.92 398.92 888.52 1570.11 2440.01 
Rajamohan et al. [37] 104.28 396.96 882.36 1557.60 2419.30 

Percentage Difference (%) -0.35 0.49 0.70 0.80 0.86 

100 
The presented analysis 106.62 401.8 891.43 1573.03 2442.92 
Rajamohan et al. [37] 106.72 399.54 884.98 1560.20 2421.90 

Percentage Difference (%) -0.09 0.57 0.73 0.82 0.87 

200 
The presented analysis 108.86 404.24 893.91 1575.52 2445.41 
Rajamohan et al. [37] 108.76 401.73 887.21 1562.50 2424.10 

Percentage Difference (%) 0.09 0.62 0.76 0.83 0.88 

300 
The presented analysis 110.66 406.25 895.96 1577.58 2447.47 
Rajamohan et al. [37] 110.43 403.54 889.05 1564.30 2426.00 

Percentage Difference (%) 0.21 0.67 0.78 0.85 0.89 

8.2. Impact of Magnetic Field Intensity 
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Figure 2 illustrates that the applied magnetic 
field intensity increases the shear storage 
modulus and the core loss factor. The effect of the 
magnetic field intensity on the natural vibration 
frequencies of the beam and the beam damping 
coefficients for different masses of CNTs added to 
the magnetorheological core is investigated in 
Fig  .4 As expected, with increasing applied 
magnetic field intensity to the core and 
increasing shear storage modulus, the stiffness of 
the beam increases, which leads to an increase in 
the natural magnetic-rheological vibration 
frequencies in the first vibration mode. On the 
other hand, the increase in the core loss factor 
leads to an increase in the beam damping 
coefficient, while on the other hand, the increase 
in the shear storage modulus (increase in 
stiffness) of the core leads to a decrease in the 
beam damping coefficient. Therefore, as shown in 
Fig. 4, the beam damping coefficients in the first 
mode decrease due to the interaction of these two 
effects. Figure  4 shows that an increase in the 
volume mass of CNTs  added to the 
magnetorheological core is observed to increase 
the natural vibration frequencies of the beam. 
However, for the effect of the volume mass CNTs  
added to the magnetorheological core on the 
corresponding damping coefficients, the 
damping coefficient decreases with increasing 
volume mass CNTs added to the 
magnetorheological core, depending on the 
applied magnetic field intensity.  

 

(a) Resonant Frequencies 

 

(b) Damping Coefficients 
Figure 4. The Effect of Magnetic Field Intensity on the 
Natural Frequencies and Damping Coefficients of the 

Beam for Various Mass Fractions of CNTs Added to the MR 
Core 

Figure 4(a) shows that for WCNT =1%, with an 
increase in magnetic field intensity from zero to 
500 Gauss, the frequency of MR beam vibrations 
in the first mode (n=1) increases by less than 
0.03%, and the corresponding damping 
coefficient (Fig.4(a)) decreases by about 0.006%. 
On the other hand, Fig.4(a) indicates that for 
B=500 Gauss, with an increase in the mass 
fraction of CNTs  from zero to 1%, the frequency 
of magneto-rheological beam vibrations in the 
first mode (n=1) increases by less than 0.02%, 
and the corresponding damping coefficient 
decreases (Fig.4(b)) by less than 0.005%. In other 
words, the effect of magnetic field intensity 
applied to the magneto-rheological core on the 
natural frequencies of vibrations and damping 
coefficients of the beam is very small, attributed 
to the weak magneto-rheological effect of the 
MREs, as mentioned earlier. Additionally, it can 
be observed that the increase in and addition of 
CNTs  to the magneto-rheological core does not 
result in significant growth in the natural 
frequencies of beam vibrations and damping 
coefficients. Considering the high cost of (CNTs), 
reinforcing the beam by adding CNTs  to the 
magneto-rheological core may not be very cost-
effective. 

8.3. Effect of Thickness of GNPs  Reinforced 
Face Sheets 

Figure 5 (a) investigates the effect of GNP-
reinforced facing thickness on the vibration frequencies 
and Fig.5 (b) damping coefficients of the beam for 
different thicknesses of the MR core.  
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(a) Resonant Frequencies 

 

(b) Damping Coefficients 

Figure 5. The Influence of GNPs -Reinforced 
Faces Thickness on the Natural Frequencies 

and Damping Coefficients of the Beam for 
Various Thicknesses of the MR Core. 

Increasing the thickness of GNP-reinforced coatings 
leads to a significant increase in the beam stiffness as well 
as its mass. Therefore, the interplay between these two 
factors determines whether the flexural vibration 
frequencies of the beam increase or decrease with 
increasing thickness of GNP-reinforced coatings. Fig.5 
(a) illustrates this interplay and states that with 
increasing thickness of GNP-reinforced coatings, the 
flexural vibration frequencies of the beam initially 

decrease, indicating the effect of increased mass over 

stiffness enhancement. However, as the thickness of 
GNP-reinforced coatings further increases and both 
the stiffness and mass of the beam grow 
simultaneously, the flexural vibration 
frequencies of the beam increase. In other words, 
for the first vibration mode and depending on the 
MR core thickness, there exists a specific 
thickness of the coatings that results in the lowest 
flexural vibration frequencies in that vibration 
mode. Additionally, Fig. 5 (b) shows that with 
increasing thickness of GNP-reinforced coatings 
and simultaneous growth of stiffness and mass of 
the beam, the damping coefficients of the beam in 
the first vibration mode decrease. 
 

 

 

 

 

 

 

Table 4. investigates the effect of graphene 
nanoplatelet distribution patterns in the 
nanocomposite coatings on the frequencies of 
flexural vibrations and corresponding damping 
coefficients of the beam.  As indicated in Table 4, 
the highest values of resonant frequencies and 
the lowest values of damping coefficients belong 
to the XX distribution pattern, while the lowest 
resonant frequencies and the highest damping 
coefficients belong to the OO distribution pattern.

To explain this difference, it can be noted that the 
distribution pattern of GNPs  does not affect the 

mass of the coatings, but as GNPs are distributed 
further away from the mid-surface of the 

Table 4. The Effect of (GNPs) Distribution Patterns in Coatings on Resonant Frequencies and Corresponding 
Damping Coefficients 

 

  UU AA XX OO AV VA 

λn n=1 0.9640 0.9637 0.9646 0.9634 0.9638 0.9636 

n=2 1.6035 1.6004 1.6093 1.5978 1.6005 1.6005 

n=3 2.3281 2.3172 2.3478 2.3080 2.3168 2.3184 

n=4 3.1046 3.0791 3.1504 3.0576 3.0775 3.0824 

ηn n=1 0.5798 0.5800 0.5794 0.5802 0.5799 0.5801 

n=2 0.3403 0.3409 0.3391 0.3416 0.3408 0.3411 

n=3 0.2325 0.2334 0.2305 0.2345 0.2333 0.2336 

n=4 0.1735 0.1748 0.1710 0.1762 0.1747 0.1750 
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coatings, the flexural stiffness of the coatings 
increases. Therefore, the highest values of 
resonant frequencies and the lowest values of 
damping coefficients belong to the XX 
distribution pattern, while the OO distribution 
pattern exhibits the opposite behavior. According 
to the data in Table 4., it can be concluded that by 
changing the distribution pattern of GNPs  in the 
nanocomposite coatings from the OO to the XX 
state, the frequency of the beam's flexural 
vibrations in the first mode (n=1) increases by 
approximately 0.12%, while the corresponding 
damping coefficient decreases only by about 
0.02%. In other words, the distribution pattern of 
GNPs  in the nanocomposite coatings has little 
effect on the resonant frequencies of the beam's 
flexural vibrations and the corresponding 
damping coefficients. It seems that the reason for 
this is the small thickness of the face sheets 
compared to the core thickness of the beam. 
Although the change is small, the relationship 
between GNP distribution and vibration 
frequency is consistent with findings from 
previous studies and supports the effectiveness 
of this approach for specific applications. 

8.4. The Effect of Damping Ratio 

Figure 6 (a) investigates the effect of GNP 
volume fraction on the resonant frequencies and  
Fig. 6 (b) corresponding damping coefficients of 
the beam for different substrate damping ratios. 
Due to the significantly high elasticity modulus of 
GNPs compared to the polymer matrix of the 
coatings, increasing the GNP volume fraction 
leads to a considerable increase in the beam 
stiffness. Consequently, this results in an increase 
in the resonant frequencies of the beam's 
vibrations in the first vibration mode and a 
decrease in the corresponding damping 
coefficients.  Additionally, Fig.6 illustrates that 
with increasing substrate damping ratio, the 
resonant frequencies of the beam's vibrations in 
the first vibration mode decrease, while the 
corresponding damping coefficients increase. 
Figure 6 (a) illustrates that for 𝑔𝐺𝑁𝑃

∗ =1.5%, 
increasing the dimensionless damping coefficient 
of the substrate from zero to 0.25 decreases the 
first-mode (n=1) damped natural frequency of 
the beam vibrations by about 60%, while the 
corresponding damping ratio (Fig.6 (b)) 
experiences a significant increase (about 26.6 
million percent). 

 

(a) Resonant Frequencies 

 

(b) Damping Coefficients 
Figure 6. The effect of viscoelastic foundation on the 
Natural Frequencies and Damping Coefficients of the 
Beam for various values of the mass fraction of GNPs. 

In other words, the effect of the substrate 
damping coefficient on the damped natural 
frequencies of the beam vibrations is significant, 
and the corresponding damping ratios are very 
significant. Figure 6 (a) also shows that for 
c*=0.25, increasing the mass fraction of GNPs  
from zero to 1.5% increases the first-mode (n=1) 
damped natural frequency of the vibrations by 
about 1.5%, while the corresponding damping 
ratio (Fig. 6 (b)) decreases by about 2.5%. A 
comparison of the increase in the damped natural 
frequencies of the beam vibrations in Figs. 6 and 
4 reveals that if the goal is to increase the natural 
frequencies of the beam as much as possible, 
adding GNPs  to the polymer surfaces of the beam 
is much more effective than adding CNTs  to its 
magnetorheological core. 

8.5. The Effect of the Winkler and Pasternak 
Coefficients of the Foundation 



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page 

15 

Figure 7 (a) investigates the influence of 
Winkler and Pasternak foundation parameters 
on the damped natural frequencies and 
corresponding damping ratios of the beam 

vibrations (Fig.7 (b)). Increasing the Winkler and 
Pasternak foundation parameters signifies an 
enhancement in foundation stiffness.  As a result 
of the interaction between the beam and the 
foundation, this leads to an elevation in the 
damped natural frequencies of the beam's 

vibrations in the first vibration Fig.7 (a) shows 
that for 𝑘𝑝

∗ = 0.02, Increasing the dimensionless 

Winkler foundation parameter from 0.1 to 0.2 
increases the first-mode (n=1) damped natural 
frequency of the beam vibrations by about 17%, 
while the corresponding damping ratio decreases 
by about 15% (Fig.7 (b)).  The figure also shows 
that for kw=0.2, increasing the dimensionless 
Pasternak foundation parameter from 0.005 to 
0.02 increases the first-mode (n=1) damped 
natural frequency of the beam vibrations by 
about 29%, while the corresponding damping 
ratio decreases by about 23%. Mode and a 
reduction in the corresponding damping ratios, 
which are observed in Fig. 7. 

 

(a) Resonant Frequencies 

 

(b) Damping Coefficients 

Figure 7. The Effect of the Winkler Coefficient on the 
Natural Frequencies and Damping Coefficients of the 
Beam for Various Values of the Pasternak Foundation 

9. Conclusion 

This study investigated the free vibration of a 
sandwich beam with an MRE core reinforced with 
CNTs  and GNP-reinforced polymer faces resting 
on a viscoelastic foundation. The modeling of the 
core and faces of the beam was based on the 
Timoshenko beam theory, and the continuity 
conditions between the core and face layers were 
considered. The modeling of the viscoelastic 
foundation was based on the visco-Pasternak 
model. The boundary conditions and governing 
equations were derived using Hamilton's 
principle, and an exact analytical solution was 
presented using Navier's method for a sandwich 
beam under simple (roller) boundary conditions.  

• With an increase in the intensity of the 
magnetic field applied to the core, the 
damping coefficients of the beam increase in 
some modes and decrease in others, but 
overall, the effect of the applied magnetic field 
intensity on the damping coefficients of the 
beam is very negligible. 

• increasing the mass fraction of CNTs added to 
the MR core, the resonant frequencies of the 
beam's vibrations increase. 

• With an increase in the thickness of the MR 
core, the resonant frequencies of the beam's 
vibrations and the corresponding damping 
coefficients decrease in all modes of vibration. 

• Adding GNPs to the polymer face sheets of the 
beam is significantly more effective than 
adding CNTs to its MR core to increase the 
natural frequencies of the beam. 

• Distributing GNPs at a greater distance from 
the mid-surface of the beam leads to a more 
significant increase in the natural frequencies 
of the beam and a greater reduction in the 
corresponding damping coefficients. 

• Increasing the damping coefficient of the 
foundation results in a decrease in the natural 
frequencies of the beam in all modes of 
vibration, while the corresponding damping 
coefficients increase significantly. 
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