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Abstract

In this article, the existence of a solution for non-linear functional integral equations with two variables is considered
in Banach space C([0, b]× [0, c]) by applying Petryshyn’s fixed point theorem. Our focus extends to diverse instances
of functional integral equations encountered within mathematical analysis. Our study’s effectiveness is demonstrated
through an example. Furthermore, to confirm the reliability of our proposed approach, we introduce an iterative
algorithm via Sinc interpolation, which effectively achieves a precise, approximate solution.
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1 Introduction

Functional integral equations (FIEs) stand as a pivotal bridge between algebraic systems and continuous functions
in the domain of mathematical analysis and its various practical applications. FIEs with two variables, in particular,
hold a distinct significance due to their capacity to model complex real-world phenomena that extend across multiple
dimensions. These equations offer a flexible framework for addressing problems involving interactions and dependencies
between variables, often encountered in physics, engineering, economics, and other disciplines.

This paper delves into the functional integral equations with two variables, unravelling some mathematical foun-
dations, properties, and a solution technique. As these equations find their roots in both functional analysis and
integral equations, their study amalgamates essential concepts from both fields, making them a captivating subject
of research. Moreover, the applicability of these equations spans a wide spectrum—from describing the behaviour
of physical systems regulated by partial differential equations to formulating optimization problems with intricate
constraints.

FIEs constitute a captivating field within applied non-linear analysis. This domain garners not only the attention
of specialists within its realm but also those whose interests span diverse mathematical avenues, intersecting with
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physics, the theory of gases, radiative transfer theory, engineering, and mathematical biology [6, 7, 8, 18, 19, 22, 16].
In recent times, the concept of Monotone Nonlinear Contraction (MNC) has been adopted by several scholars to prove
the existence of solutions for FIEs [1, 4, 5, 11, 14, 15, 17, 20, 29].

This study delves into the area of 2-dimensional functional integral equations (2DFIEs), discussing significant
results related to their existence. These equations are crafted using densifying operators within Banach spaces. In the
following sections, we present an existence result for a specific class of 2DFIEs.

z(φ, τ) = F

(
φ, τ, z(µ(φ, τ)), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)
, (1.1)

where (φ, τ) ∈ [0, b] × [0, c]. The primary aim of this study is to establish the solvability of Eq. (1.1) and derive its
analytic solution using the semi-analytic technique. To accomplish this objective, we employ the PFPT method, which
is regarded as a broadening of Darbo’s fixed theorem [4]. Various researchers have employed Darbo’s condition to
address the solvability of FIEs (as seen in [9, 13, 12, 21, 27]). We utilize Petryshyn’s fixed point theorem to establish
the solvability of Eq. (1.1). We now elucidate the key motivations behind investigating Eq. (1.1) and the resultant
findings.

The foremost rationale lies in the simplification of conditions found in numerous papers. Furthermore, this paper
serves to unify analogous endeavours within this domain. Lastly, the significance of the bounded condition comes to
the fore, highlighting that the sub-linear condition, frequently discussed in the literature, plays a less substantial role.

The paper is structured into five sections, preceded by some preliminaries. In the second section, we delve into
preliminary concepts and present the MNC concept. Moving to the third section, we demonstrate the solvability via
densifying operators using the PFPT method. Section 4 provides illustrative examples showcasing the effectiveness
of our approach concerning FIEs. Lastly, the concluding section introduces an iterative technique utilizing the sinc
interpolation method, culminating in a closed-form solution of considerable efficiency.

2 Preliminaries

Suppose that E is a real Banach space and Bσ(z) is an open ball with the centre z and with the radius σ.

Definition 2.1. [5] Suppose that G ⊆ E, the MNC (Kuratowski) of G defined as

α(G) = inf

{
δ > 0 | G =

n⋃
k=1

Gk with diam(Gk) ≤ δ, k = 1, 2, . . . , n

}
.

Definition 2.2. [4] The MNC (Hausdroff) defined as

µ1(G) = inf {δ > 0 | there exists a finite δ net for G ⊂ E} , (2.1)

where the expression a finite δ net for G ⊂ E’ means as a set {z1, z2, ..., zn} ⊂ E, where Bδ(E, z1), Bδ(E, z2),
. . . , Bδ(E, zn) over G. This MNC is similar in the form

µ1(G) ≤ α(G) ≤ 2µ1(G),

for any G ⊂ E.

Theorem 2.3. [26] If G, Ĝ ⊂ E and θ ∈ R, then

(i) µ1(G) = 0 if and only if G is relatively compact;

(ii) µ1(G) ≤ µ1(Ĝ), for G ⊆ Ĝ ;

(iii) µ1(G) = µ1(ConvG) = µ1(G);

(iv) µ1(G ∪ Ĝ) = max{µ1(G), µ1(Ĝ)};

(v) µ1(θG) = |θ|µ1(G);

(vi) µ1(G+ Ĝ) ≤ µ1(G) + µ1(Ĝ).
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Here, C([0, b]× [0, c]) is the family of all continuous and real valued functions defined on the [0, b]× [0, c] with

∥z∥ = max{|z(φ, τ)| : φ ∈ [0, b], τ ∈ [0, c]}.

Fix a set G ∈ C([0, b]× [0, c]), for a given δ > 0, the modulus of continuity for z is

ω(z, δ) = sup{|z(φ, τ)− z(φ̂, τ̂)| : φ, φ̂ ∈ [0, b], τ, τ̂ ∈ [0, c], |φ− φ̂|, |τ − τ̂ | ≤ δ}.

Further,
ω(G, δ) = sup{ω(z, δ) : z ∈ G}, ω0(G) = lim

δ→0
ω(G, δ).

In [4], ω0(G) is a regular MNC in C([0, b]× [0, c]).

Theorem 2.4. [24] Let H : E → E be a function that is continuous in E. H is called k̃−set contraction if for every
bounded G ⊂ E, H(G) is bounded and α(HG) ≤ k̃α(G), k̃ ∈ (0, 1). If

α(HG) < α(G), for all α(G) > 0,

then H is called densifying or condensing map.

Theorem 2.5. (Petryshyn’s [26]) Let H : Bσ → E be a condensing mapping, such that accomplish the boundary
condition

If H(z) = k̃z, for some z ∈ ∂Bσ, then k̃ ≤ 1,

then F(H), the set of fixed points of H in Bσ, is nonempty.

3 Major Results

Here, we investigate the Eq. (1.1) under these assumptions;

(T1) F ∈ C(I1 × R2,R), q ∈ C(I1,R), h ∈ C(I2 × R,R), where,

I0 = Ib × Ic, I1 = {(φ, τ, z) : 0 ≤ φ ≤ b, 0 ≤ τ ≤ c, z ∈ R},

I2 = {(φ, τ, ψ, ν) ∈ I20 : 0 ≤ ψ ≤ φ ≤ b, 0 ≤ ν ≤ τ ≤ c};

µ, ϕ, β : I0 → I0.

(T2) there exist non-negative constants a1, a2, a3 and a4, a1 + a2a4 < 1 such that

|F (φ, τ, z1, z2, z3)− F (φ, τ, ẑ1, ẑ2, ẑ3| ≤ a1|z1 − ẑ1|+ a2|z2 − ẑ2|+ a3|z3 − ẑ3|;

|q(φ, τ, z)− q(φ, τ ẑ| ≤ a4|z − ẑ|;

(T3) there exists a σ > 0 such that F holds the inequality

sup{|F (φ, τ, z1, z2, z3)| : (φ, τ) ∈ I0, z1, z2 ∈ [−σ, σ], z3 ∈ [−bcN1, bcN1]} ≤ σ,

where,
N = sup{|h(φ, τ, ψ, ν, z)| : ∀(φ, τ, ψ, ν) ∈ I2 and z ∈ [−σ, σ]}.

Theorem 3.1. Under the (T1)− (T3) with a1 + a2a4 < 1, Eq. (1.1) has at least one solution in E = C(I0).



4 Deep, Rabbani, Kumar, Aghazadeh

Proof . Introduce

(Hz)(φ, τ) = F

(
φ, τ, z(µ(φ, τ), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)
.

We prove that H is continuous on Bσ. Taking δ > 0 and z, x ∈ Bσ with ∥z − y∥ < δ,

|(Hz)(φ, τ)− (Hy)(φ, τ)|

=

∣∣∣∣∣F
(
φ, τ, z(µ(φ, τ)), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ, τ, y(µ(φ, τ)), q(φ, τ, y(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, y(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
≤

∣∣∣∣∣F
(
φ, τ, z(µ(φ, τ)), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ, τ, y(µ(φ, τ)), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
+

∣∣∣∣∣F
(
φ, τ, y(µ(φ, τ)), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ, τ, y(µ(φ, τ)), q(φ, τ, y(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
+

∣∣∣∣∣F
(
φ, τ, y(µ(φ, τ)), q(φ, τ, y(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ, τ, y(µ(φ, τ)), q(φ, τ, y(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, y(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
≤ a1|z(µ(φ, τ)− y(µ(φ, τ)|+ a2|q(φ, τ, z(ϕ(φ, τ))− q(φ, τ, y(ϕ(φ, τ))|

+a3|
∫ φ

0

∫ τ

0

|h(φ, τ, ψ, ν, z(β(ψ, ν)))− h(φ, τ, ψ, ν, y(β(ψ, ν)))|dνdψ

≤ a1|z(µ(φ, τ)− y(µ(φ, τ)|+ a2a4|z(ϕ(φ, τ))− y(ϕ(φ, τ))|+ a3bcω(h, σ)

≤ (a1 + a2a4)||z − y||+ a2bcω(h, σ),

where
ω(h, σ) = sup{|h(φ, τ, ψ, ν, z)− h(φ, τ, ψ, ν, y)| : (φ, τ, ψ, ν) ∈ I2, z, y ∈ [−σ, σ], ∥z − y∥ ≤ δ}.

The function h(φ, τ, ψ, ν, z) is a uniform continuous function on I2 × [−σ, σ]. So ω(h, σ) → 0 as δ → 0. Therefore,
H is continuous on Bσ.

In addition, we show that H satisfied the s densifying map. Choose δ > 0 and any z ∈ G, such that G is bounded
subset of E. For (φ1, τ1), (φ2, τ2) ∈ I0 with φ1 ≤ φ2, τ1 ≤ τ2 and φ1 − φ2, τ1 − τ2 ≤ δ,

|(Hz)(φ2, τ2)− (Hz)(φ1, τ1)|

=

∣∣∣∣∣F
(
φ2, τ2, z(µ(φ2, τ2)), q(φ2, τ2, z(ϕ(φ2, τ2))),

∫ φ2

0

∫ τ2

0

h(φ2, τ2, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ1, τ1, z(µ(φ1, τ1)), q(φ1, τ1, z(ϕ(φ1, τ1))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dψdν

) ∣∣∣∣∣
≤

∣∣∣∣∣F
(
φ2, τ2, z(µ(φ2, τ2)), q(φ2, τ2, z(ϕ(φ2, τ2))),

∫ φ2

0

∫ τ2

0

h(φ2, τ2, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ2, τ2, z(µ(φ2, τ2)), q(φ2, τ2, z(ϕ(φ2, τ2))),

∫ φ1

0

∫ τ1

0

h(φ2, τ2, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
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+

∣∣∣∣∣F
(
φ2, τ2, z(µ(φ2, τ2)), q(φ2, τ2, z(ϕ(φ2, τ2))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ2, τ2, z(µ(φ2, τ2)), q(φ1, τ1, z(ϕ(φ1, τ1))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
+

∣∣∣∣∣F
(
φ2, τ2, z(µ(φ2, τ2)), q(φ1, τ1, z(ϕ(φ1, τ1))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ2, τ2, z(µ(φ1, τ1)), q(φ1, τ1, z(ϕ(φ1, τ1))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
+

∣∣∣∣∣F
(
φ2, τ2, z(µ(φ1, τ1)), q(φ1, τ1, z(ϕ(φ1, τ1))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

)

−F
(
φ1, τ1, z(µ(φ1, τ1)), q(φ1, τ1, z(ϕ(φ1, τ1))),

∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣∣∣
≤ a3

∣∣∣∣∣
∫ φ2

0

∫ τ2

0

h(φ2, τ2, ψ, ν, z(β(ψ, ν)))dνdψ −
∫ φ1

0

∫ τ1

0

h(φ1, τ1, ψ, ν, z(β(ψ, ν)))dνdψ

∣∣∣∣∣
+a2|q(φ2, τ2, z(ϕ(φ2, τ2)))− q(φ2, τ2, z(ϕ(φ1, τ1)))|+ a2|q(φ2, τ2, z(ϕ(φ1, τ1)))

−q(φ2, τ2, z(ϕ(φ2, τ2))|+ a1|z(µ(φ2, τ2))− z(µ(φ2, τ2)))|+ ω1(F, δ)

≤ a3

∫ φ1

0

∫ τ1

0

|h(φ2, τ2, ψ, ν, z(β(ψ, ν)))− h(φ1, τ1, ψ, ν, z(β(ψ, ν)))|dνdψ

+a3

∫ φ2

φ1

∫ τ1

0

|h(φ2, τ2, ψ, ν, z(β(ψ, ν)))|dνdψ + ω1(F, δ)

+a3

∫ φ1

0

∫ τ2

τ1

|h(φ2, τ2, ψ, ν, z(β(ψ, ν)))|dνdψ + a2a4|z(ϕ(φ2, τ2))− z(ϕ(φ1, τ1))|

+a1|z(µ(φ2, τ2))− z(µ(φ2, τ2)))|+ a3

∫ φ2

φ1

∫ ν2

ν1

|h(φ2, τ2, ψ, ν, z(β(ψ, ν)))|dνdψ + a2ω1(q, δ).

To clarify, we have

ω1(q, δ) = sup{|q(φ, τ, z)− q(φ̂, τ̂ , z)| : |φ− φ̂| ≤ δ, |τ − τ̂ | ≤ δ, z ∈ [−σ, σ]},

ω1(h, δ) = sup{|h(φ, τ, ψ, ν, z)− h(φ̂, τ̂ , ψ, ν, z)| : |φ− φ̂| ≤ δ, |τ − τ̂ | ≤ δ, (φ, τ, ψ, ν) ∈ I2, z ∈ [−σ, σ]},

ω1(F, δ) = sup{|F (φ, τ, z1, z2, z3)− q(φ̂, τ̂ , z1, z2, z3)| : |φ− φ̂| ≤ δ, |τ − τ̂ | ≤ δ, z1, z2 ∈ [−σ, σ], z3 ∈ [−bcN1, bcN1]}.

From above quantities, we have

|(Hz)(φ2, τ2)− (Hz)(φ1, τ1)| ≤ (a1 + a2a4)∥z(φ2, τ2)− z(φ1, τ1)∥+ a2ω1(q, δ) + ω1(F, δ)

+a3bcω1(F, δ) + δa3cN + δa3bN + δ2a3N.

Taking δ → 0, we have
ω(Hz, δ) ≤ (a1 + a2a4)ω(z, δ).

This yields to
µ1(HG) ≤ (a1 + a2a4)µ1(G),

Consequently H is a condensing map. At this time, let z ∈ ∂Bσ and if Hz = k̃z, then, ||Hz|| = k̃||z|| = k̃σ and
from(T3), we get

|Hz(φ, τ)| =
∣∣∣F (

φ, τ, z(µ(z(φ, τ)), q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣ ≤ σ

for all (φ, τ) ∈ I0, hence ||Hz|| ≤ σ, this means that k̃ ≤ 1. □
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Corollary 3.2. Let

(c1) F1 ∈ C(I1 × R,R), q ∈ C(I1,R), h ∈ C(I2 × R,R),

(c2) there exist non-negative constants a1, a2, a3, a1a3 < 1 such that

|F1(φ, τ, z1, z2)− F1(φ, τ, ẑ1, ẑ2| ≤ a1|z1 − ẑ1|+ a2|z2 − ẑ2|;

|q(φ, τ, z)− q(φ, τ, ẑ| ≤ a3|z − ẑ|;

(c3) there exists a σ > 0 such that F1 does the following inequality

sup{|F1(φ, τ, z1, z2)| : (φ, τ) ∈ I0, z1 ∈ [−σ, σ], z2 ∈ [−bcN1, bcN1]} ≤ σ,

where,
N = sup{|h(φ, τ, ψ, ν, z)| : ∀(φ, τ, ψ, ν) ∈ I2 and z ∈ [−σ, σ]}.

Then,

z(φ, τ) = F1

(
φ, τ, q(φ, τ, z(ϕ(φ, τ))),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)
, (3.1)

has at least one solution in C(I0).

The proof of this corollary is linked to the Theorem 3.1.

Corollary 3.3. Let

(S1) F2 ∈ C(I1 × R,R), q ∈ C(I1,R), h ∈ C(I2 × R,R),

(S2) there exist non-negative constants f1, f2 such that

|q(φ, τ, 0)| ≤ f1, |F2(φ, τ, 0, 0)| ≤ f2;

(S3) there exist non-negative constants 0 < a1, a2 < 1 such that

|F2(φ, τ, z1, z2)− F2(φ, τ, ẑ1, ẑ2| ≤ a1|z1 − ẑ1|+ a2|z2 − ẑ2|;

|q(φ, τ, z)− q(φ, τ, ẑ| ≤ a3|z − ẑ|;

(S4) there exist non-negative constants d1, d2 such that

|h(φ, τ, ψ, ν, z)| ≤ d1 + d2|z|;

(S5) a1 + a3 + a2bcd2 < 1.

Then,

z(φ, τ) = q(φ, τ, z(ϕ(φ, τ))) + F2

(
φ, τ, z(µ(φ, τ)),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

)
, (3.2)

at least has one solution in C(I0).

Proof . Let σ = N2

1−N1
, where N1 = a1 + a3 + a2bcd2, N2 = µ+ a2bcd1 + ν, and

F (φ, τ, z1, z2, z3) = z1 + F2(φ, τ, z2, z3),

where,

z1 = q(φ, τ, z(ϕ(φ, τ))), z3 =

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ.

It is note that (T2) is handled by (S2). Now, we show that (S3) is fulfill, we have

|z(φ, τ)| =
∣∣∣q(φ, τ, z(ϕ(φ, τ))) + F2

(
φ, τ, z(µ(φ, τ)),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ

) ∣∣∣,
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≤ |q(φ, τ, z(ϕ(φ, τ)))− q(φ, τ, 0)|+ |q(φ, τ, 0)|

+a1|z(µ(φ, τ))|+ a2

∣∣∣ ∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(β(ψ, ν)))dνdψ
∣∣∣+ |F2(φ, τ, 0, 0)|,

≤ a3∥z∥+ a1∥z∥+ f1 + a2bc(d1 + d2∥z∥) + f2,

≤ (a1 + a3 + a2bcd2)∥z∥+ f1 + a2bcd1 + f2,

for all (φ, τ) ∈ I0, hence

sup |F (φ, τ, z1, z2, z3)| ≤ N1σ +N2 = N1
N2

1−N1
+N2 = σ.

□

Corollary 3.4. [10] Let

(E1) A ∈ C(I0,R), F3 ∈ C(I1 × R,R), h ∈ C(I2 × R,R),

(E2) there exist non-negative constants l1, l2 such that

|A(φ, τ)| ≤ l1, |F3(φ, τ, 0, 0)| ≤ l2;

(E3) there exist non-negative constants 0 < a1, a2 < 1 such that

|F3(φ, τ, z1, z2)− F3(φ, τ, ẑ1, ẑ2| ≤ a1|z1 − ẑ1|+ a2|z2 − ẑ2|;

(E4) such that non-negative constants d1, d2 such that

|h(φ, τ, z1, z2, z3)| ≤ b1 + b2|z|;

(E5) a1 + a2bcb2 < 1.

Then,

z(φ, τ) = A(φ, τ) + F3

(
φ, τ, z(φ, τ),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(ψ, ν))dνdψ

)
, (3.3)

at least has one solution in C(I) = C([0, 1]× [0, 1]).

Proof . Let r̂ = P2

1−P1
, where P1 = a1 + a2bcb2, P2 = a2bcb1 + l2 + l1, and

F (φ, τ, z1, z2, z3) = A(φ, τ) + F3(φ, τ, z1, z3),

where,

z3 =

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(ψ, ν))dνdψ.

It is note that (T2) is handled by (E2). Condition (E3) is fulfill, we get

|z(φ, τ)| =
∣∣∣A(φ, τ) + F3

(
φ, τ, z(φ, τ),

∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(ψ, ν))dνdψ

) ∣∣∣
≤

∣∣∣q3 (φ, τ, z(φ, τ),∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(ψ, ν))dνdψ

)
− q3(φ, τ, 0, 0)

∣∣∣+ |F3(φ, τ, 0, 0)|+ |A(φ, τ)|,

≤ a1|z(φ, τ)|+ a2

∣∣∣ ∫ φ

0

∫ τ

0

h(φ, τ, ψ, ν, z(ψ, ν))dνdψ
∣∣∣+ |F3(φ, τ, 0, 0)|+ |A(φ, τ)|,

≤ a1||z||+ a2bc(b1 + b2|z|) + l2 + l1,

≤ (a1 + a2bcb2)||z||+ a2bcb1 + l2 + l1,

for all (φ, τ) ∈ I0, hence

sup |F (φ, τ, z1, z2, z3)| ≤ P1σ + P2 = P1
P2

1− P1
+ P2 = σ.

□
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4 Applications

In this part two examples for two-dimensional functional integral equations are considered.

Example 4.1. In this example we consider the following functional integral equation

z(φ, τ) = q(φ, τ) +

∫ φ

0

∫ τ

0

P (φ, τ, ψ, ν)Q(ψ, ν, z(ψ, ν))dνdψ,

where h(φ, τ, ψ, ν, z(ψ, ν)) = P (φ, τ, ψ, ν)Q(ψ, ν, z(ψ, ν)), which is a generalization for the two-dimensional Hammer-
stein integral equation [25]

z(φ, τ) = q(φ, τ) +

∫ 1

0

∫ 1

0

h(φ, τ, ν, ψ, z(ν, ψ))dνdψ.

It is the well-known 2D Fredholm integral equation which treated by different authors; for instance see [3].

Example 4.2. In this example, we take into account to the following 2DFIE

z(φ, τ) =
e−φτ

2(1 + φ2τ2)
cos

(φτ
3

)
+

1 + φ2τ2

4(2 + 3φ4τ2)
sin z(φ, τ) +

1

2

∫ φ

0

∫ τ

0

ψν sin z(ψ, ν)dνdψ (4.1)

for (φ, τ) ∈ [0, 1]× [0, 1] = I. Here, we get

ϕ(φ, τ) = β(φ, τ) = (φ, τ),

F (φ, τ, z1, z2, z3) =
e−φτ

2(1 + φ2τ2)
cos(

φτ

3
) +

1

4
z2 +

1

2
z3,

q(φ, τ, z) =
1 + φ2τ2

2 + 3φ4τ2
sin z(φ, τ),

h(φ, τ, ψ, ν, z) = ψν sin z(ψ, ν).

It can simply mark that F, q are continuous functions, and

|F (φ, τ, z1, z2, z3)− F (φ, τ, ẑ1, ẑ2, ẑ3)| ≤
1

4
|z2 − ẑ2|+

1

2
|z3 − ẑ3|,

|q(φ, τ, z)− q(φ, τ, ẑ| ≤ 1

2
|z − ẑ|.

Here a2 = 1
4 , a3 = 1

2 and a4 = 1
2 . It is clear that the functions hold the (T1) and (T2). Now one may control that

the (T3) also holds. Take σ = 4
3 , then we get N ≤ 1 and for φ, τ ∈ [0, 1], z2 ∈ [− 4

3 ,
4
3 ], z3 ∈ [−1, 1]}

sup{|F (φ, τ, z1, z2, z3)| ≤ sup

{
| e−φτ

2(1 + φ2τ2)
cos(

φτ

3
) +

1

4
z2 +

1

2
z3|

}
≤ 4

3
.

Hence, (T1)− (T3) are fulfill. Thus, by Theorem 3.1, the Eq. (1.1) has a solution in C(I).

5 An iterative technique

Deriving the analytic solution for Eq. (4.1) proves to be a complex undertaking. Consequently, resorting to
numerical techniques offers a viable approach to approximate its solution. Several numerical methods, rooted in
collocation, expansion, and projection techniques, have been documented in literature [23, 28, 31, 32]. These methods
typically transform the non-linear complexities into an algebraic system with indeterminate coefficients. However, our
approach diverges by employing 2D sinc interpolation to devise an iterative method for approximating the solution.

The distinctive facet of our technique lies in its divergence from the conventional practice of expressing the nonlinear
problems as algebraic systems through the expansion of z(s, t) using Sinc functions featuring unknown coefficients.
In contrast, our technique streamlines computations by obviating the need for such conversions. Additionally, our
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method boasts exponential precision, akin to the exponential accuracy observed in [30]. This translates to significantly
enhanced computational efficiency, a characteristic that sets our approach apart. Let us to consider sinc function [30]:

sinc(τ) =

{
sin(πτ)

πτ
, τ ̸= 0

1, τ = 0.
(5.1)

For step size ĥ > 0, the k’th sinc function is introduced by

S(k, ĥ)(τ) = sinc(
τ − kĥ

ĥ
), k = 0,±1,±2, . . . (5.2)

and therefore, easily we conclude that

S(k, ĥ)(jĥ) = δkj =

{
1, k = j
0, k ̸= j.

(5.3)

Assume v is a function defined over R, then for ĥ > 0 the series,

C(v, ĥ)(τ) =

∞∑
k=−∞

v(kĥ)S(k, ĥ)(τ), (5.4)

is called the Whittaker cardinal expansion of function v, which is convergent (see[30]). Obviously by (5.3-5.4) cardinal

function interpolates function v at the points {kĥ}∞k=−∞. Because the subintervals for integrating in (4.1) are [0, φ]
and [0, τ ] with φ, τ ∈ [0, 1], then for applying Whittaker cardinal expansion we present the followıng conformal map:

ϕ : [0, 1] −→ (−∞,∞) (5.5)

t −→ ln( τ
1−τ )

easily, we have lim
τ→0

ϕ(τ) = −∞ and lim
τ→1

ϕ(τ) = ∞. By (5.2) and (5.5) a two dimensional combination of the functions

S(k, ĥ) and ϕ is given by S(k, ĥ)oϕ(φ)S(k
′
, ĥ)oϕ(τ) with domain [0, 1]× [0, 1]. Thus the integrand function z(ψ, ν) in

(4.1) may be approximated by interpolation S(k, ĥ)oϕ(ψ)S(k
′
, ĥ)oϕ(ν) as follows,

zn(ψ, ν) =

N∑
k=−N

N∑
k′=−N

z(kĥ, k
′
ĥ)S(k, ĥ)oϕ(ψ)S(k

′
, ĥ)oϕ(ν). (5.6)

Considering (5.6) and (5.3) if ϕ(ψ) = kĥ and ϕ(ν) = k
′
ĥ, for k, k

′
= −N, . . . , N , then zn(kĥ, k

′
ĥ) = z(kĥ, k

′
ĥ).

That is (5.6) is interpolation of the function z which the interpolating points are,

uk = ϕ−1(kĥ) =
ekĥ

1 + ekĥ
, k = −N + 1, . . . , N, φ−N = 0 (5.7)

sk′ = ϕ−1(k
′
ĥ) =

ek
′
ĥ

1 + ek
′ ĥ
, k

′
= −N + 1, . . . , N, t−N = 0.

Similar to [30], by using (5.4-5.7), we compute the integral on [0, φ]× [0, τ ], for φ, τ ∈ [0, 1] as

∫ φ

0

∫ τ

0
z(ψ, ν)dνdψ ≈ ĥ2

N∑
k=−N

N∑
k′=−N

z(ψk, νk′ )

ϕ′(ψk)ϕ
′(νk′ )

, (5.8)

where, ϕ
′
(ςk) =

1

ςk(1− ςk)
, ς = ψ, ν. Thus, (5.8) is an extended results of [2] in two dimensional.

Now, with the help of (5.6-5.8) an iterative algorithm to solve E.q (4.1) is given.
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Algorithm

z0(φ, τ) = 0,

zn+1(φ, τ) =
e−φτ

2(1 + φ2τ2)
cos (

φτ

3
) +

1 + φ2τ2

4(2 + 3φ4τ2)
sin(zn(φ, τ)) (5.9)

+
ĥ2

2

N∑
k=−N

N∑
k′=−N

(ψkνk′ )2(1− ψk)(1− νk′ )zn(ψk, νk′ ), n = 0, 1, 2, . . .

where the points ψk and νk′ for k, k
′
= −N, . . . , N are given by (5.7). For some values N = 5, 10 and ĥ = π

200 , we
achieve a sequence of approximate solutions zi(φ, τ) for i = 0, 1, . . . by (5.9). Because the solution is in Banach space
C(I) = C([0, 1] × [0, 1]), it’s enough that we show the above sequence is a Cauchy sequence. To this end consider to
the terms of the sequence as follows,

z0(φ, τ) = 0 (5.10)

z1(φ, τ) =
e−φτ cos φτ

3

2 + 2φ2τ2

z2(φ, τ) = 0.0000706468 + z1(φ, τ) +
1 + φ2τ2

8 + 12φ4τ2
sin(z1(φ, τ))

z3(φ, τ) = 0.0000796307 + z1(φ, τ) +
1 + φ2τ2

8 + 12φ4τ2
sin(z2(φ, τ))

z4(φ, τ) = 0.0000807123 + z1(φ, τ) +
1 + φ2τ2

8 + 12φ4τ2
sin(z3(φ, τ))

z5(φ, τ) = 0.0000808411 + z1(φ, τ) +
1 + φ2τ2

8 + 12φ4τ2
sin(z4(φ, τ))

etc.

Since max( 1+φ2τ2

8+12φ4τ2 ) ≈ 0.14 and max(sin(z1(φ, τ))) ≈ 0.47, for all (φ, τ) ∈ I, (5.10) is a Cauchy sequence.

Therefore ∥z5(φ, τ)− z4(φ, τ)∥ ≤ 8.7× 10−5, and hence we can get z5(φ, τ) as an approximate solution of (4.1).

6 Conclusion

We established the existence result for non-linear functional integral equations with two variables in C(I0). More-
over, an example is exhibited to prove the proficiency of our results, and we have created an iterative algorithm by
Sinc interpolation to find an approximate solution for the preceding problem with acceptable accuracy.
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