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 This paper investigates the large deflection of a sector nanoplate on the Winkler elastic 

foundation in the thermal environment based on the nonlocal strain gradient principle. By 

taking into account von Karman’s nonlinear strains and applying the higher-order shear 

deformation theory (HSDT), the governing equations of the graphene plate are derived. By 

presenting acceptable accuracy without the need for a shear correction coefficient, HSDT 

eliminates the defects of the first shear deformation theory (FSDT) and provides an 

appropriate distribution for shear stress along the thickness. The equations have been solved 

using the differential quadrature method (DQM) and the extended Kantorovich method 

(EKM). The results of the present study are compared with the available references, which 

demonstrate good agreement among them. For example, the results of the present study for 

the radius ratios of 0.25, 0.5, and 0.75 have 0.35%, 2.83%, and 7% differences with Ref. [1]. 

In conclusion, this study examines the impact of various small-scale parameters, load, 

boundary conditions, geometric dimensions, and elastic foundation on the maximum 

nondimensional deflection in the thermal environment.  
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1. Introduction 

In recent decades, nanotechnology has 
revolutionized science and consumer products. It 
has the potential to create a wide domain of novel 
products, including materials used in the 
generation of energy, biomaterials, and 
electronics. Usually, it involves developing 
materials or electronics that can be integrated 
into structures that are at least one dimension 
smaller than 100 nm [2]. Nanostructures include 

graphene sheets, nano rings, carbon nanotubes, 
nanowires, and nanorods, which are created by 
forming graphene sheets [3]. For this reason, the 
analysis of graphene sheets is the main topic 
when examining carbon nanomaterials. The 
graphene sheet is as thick as a carbon atom and is 
placed in a hexagonal crystal lattice that has 
unique mechanical characteristics, including high 
flexibility, high tensile strength, high thermal and 
electrical conductivity, etc. 
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Experimental observations have 
demonstrated that the mechanical properties of 
structures at the nanoscale can be different from 
those at the macroscale. For this reason, classical 
continuum mechanics models cannot predict the 
characteristics of nanostructures because of their 
inability to examine small-scale effects. To 
overcome these obstacles, non-classical 
continuum mechanics models have been 
developed, including the nonlocal elasticity 
principle,  couple stress principle, strain gradient 
principle, etc. These models provide a more 
thorough understanding of the mechanical 
properties of nanoscale structures and were 
created to address the shortcomings of classical 
approaches. To be more specific, Eringen [4] 
introduced a nonlocal elasticity model that adds 
nonlocal effects to classical elasticity theory. 
According to this principle, the stress at a point is 
affected by the entire material domain. 

There are different investigations in the case 
of analyzing structures based on different 
theories such as FSDT [4-6], HSDT [7], etc. 
Trabelsi et al. [5] examined the thermal post-
buckling of FGM shells based on the nonlinear 
modified FSDT. In another paper, Trabelsi et al. 
[6] investigated the thermal buckling of FGM 
plates and shells using modified FSDT. Also, Zghal 
et al. [7] analyzed the nonlinear large deflection 
of FG carbon nanotube-reinforced panels and 
plates based on FSDT via a finite element 
technique. For example, Joueid et al. [8] studied 
the thermoelastic buckling of FG porous plates 
and shells with an efficient finite element model 
using modified FSDT. In another study, Zghal et 
al. [9] examined the time-deflection responses of 
FG porous spherical shells and plates exposed to 
various external pulse excitations. By extending 
the Kirchhoff-Love model, Trabelsi et al. [10] 
studied thermal buckling and post-buckling 
analysis of FG plates and shells. Zghal et al. [11] 
perused vibration investigation of FG composite 
shells made of carbon nanotubes. Zghal et al. [12] 
investigated the vibration of FGM beams based 
on a mixed formulation. Zghal and her colleagues 
[13] investigated the post-buckling of plates and 
panels made of FGM and carbon nanotube-
reinforced composites exposed to various 
mechanical loads. 

Recently, many investigations related to 
nanostructure analyses have been published. 
Zghal et al. [14] examined static investigation of 
FG carbon nanotube-reinforced structures. In 
another paper, they [15] carried out research 
about the buckling of functionally graded carbon 
nanotube-reinforced composite structures. The 
authors of Ref. [16] analyzed the dynamic 
investigation of FG carbon nanotube-reinforced 
structures. The nonlinear bending of FG carbon 
nanotube-reinforced structures was studied by 

Zghal and her colleagues [17]. Mehar et al. [18] 
investigated the vibration of a nanoplate using a 
novel higher-order model via the finite-element 
method and nonlocal elasticity theory. 

For considering strain gradient effects, 
Mindlin [19] and Aifantis [20] introduced the 
strain gradient component to the classical 
elasticity principle. Lam and his coauthors 
[21] introduced the modified strain gradient 
principle that considers the influence of strain 
gradients, including dilatation gradient, 
symmetry rotation gradient, 
and deviatoric stretch gradient. In these theories, 
the strain gradient influence or the nonlocal role 
is taken into account. To assume these effects for 
computations of nanostructures, the nonlocal 
strain gradient principle was applied by Lim et al. 
[22]. Based on the nonlocal strain gradient 
principle, numerous studies have been carried 
out on the size-dependent mechanical behavior 
of nanostructures. For instance, using the 
nonlocal strain gradient model, Gui and Wu [23] 
conducted research about the buckling of the 
thermo-magneto-electro-elastic nanocylindrical 
shell exposed to axial load. They observed that 
the effect of the nonlocal coefficient on the 
buckling load of nano cylindrical shells is more 
significant than that of the strain gradient 
parameter. Lu and his colleagues [24] proposed a 
size-dependent classical model to investigate the 
buckling analysis of rectangular nanoplates. 
Using the nonlocal strain gradient principle and 
FSDT, the bending of the sandwich nanoplates 
with porosity was presented by Arefi et al. [25]. 
In addition, Farajpour  and his colleagues [26] 
perused the buckling of orthotropic nanoplates 
exposed to thermal conditions based on the 
higher-order nonlocal strain gradient principle. 
They observed that the higher-order nonlocal 
parameter almost has a decreasing influence on 
the buckling load. Moreover, the authors of Ref. 
[27] applied the same theory to study the 
nonlinear vibration of sandwich nanoplates. They 
concluded that by enhancing the amplitude of 
vibrations, the influence of small-scale 
parameters on the nonlinear frequency becomes 
more significant. Thai et al. [28] studied free 
vibrations of functionally graded 
circular/annular nanoplates made of magneto-
electro-elastic materials via the nonlocal strain 
gradient principle. They showed that the non-
dimensional natural frequencies obtained from 
circular nanoplates are higher than those 
predicted for annular types. 

The large deflection analysis of the plate is one 
of the important topics in the engineering field, 
which attracts many researchers [29-31]. For 
instance, Liu et al. [32] studied the large 
deflection of a thin rectangular plate exposed to 
uniform loads. Wang and Xiao [33] investigated 
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the bending examination of the rectangular 
nanolaminates using the Kirchhoff theory and the 
Gurtin-Murdoch surface elasticity model. They 
concluded that surface effects decrease the 
deflections. Mehar et al. [34] conducted research 
on the bending analysis of nanotube-reinforced 
sandwich structures exposed to Mehar and 
Panda [18] perused the bending of multi-walled 
carbon nanotube-reinforced sandwich panels 
theoretically and experimentally. In another 
paper, Mehar and his colleagues [35] studied the 
static and vibrational examination of the FG 
carbon nanotube-reinforced sandwich plate in 
the thermal environment via the finite element 
method. Also, Mehar et al. [36] examined the 
nonlinear bending of FG carbon nanotube-
reinforced panels in the thermal environment 
based on higher-order theory. Moreover, the 
authors of Ref. [37] analyzed the bending of 
carbon nanotube-reinforced plate 
Experimentally, theoretically, and numerically. 
Mehar et al. [38] studied the nonlinear bending of 
nanotube-reinforced panels numerically and 
experimentally. 

In this article, the nonlocal strain gradient 
theory and HSDT for examining the large 
deflection of the sector nanoplate in the thermal 
environment are presented. Also, the roles of 
geometry, the elastic foundation, loads, sector 
angle, radius, small-scale parameters, and 
different boundary conditions are studied. 

2. The Governing Equations 

Figure 1. illustrates the graphene sector plate 
on the Winkler elastic foundation with ri and ro as 
the internal and outer radii, respectively. 
Moreover, the sector angle and the thickness of 
the plate are defined by and h . 

 
Fig 1. The schematic of the graphene sector plate on the 

Winkler elastic foundation 

Using the HSDT, the displacement field can be 
obtained in the r, θ, and z directions (signified by 
U, V, and W, respectively) as: 
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where u0, v0, and w0 can be assumed as the 
displacement components of the midplane along 
the r, θ, and z axes. Besides, ψ and ϕ are the 
rotation components in the r and θ directions. 
Moreover, the function g(z) can be clarified as: 

*( ) ( )g z f z zy= +  (2) 

f (z) and y* can be assumed as several 
functions that have been utilized in different 
references summarized in Table 1. 

Table 1. Some g(z) functions are used in various 
papers. 
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Using the presumptions of von Karman, the 

nonlinear strain components considering 

thermal effects are as follows: 
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The stress and moment resultants with the 
nonlocal form (NL) are as follows: 
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The potential energy of the system includes 
the sum of the strain energy (related to the 
internal forces work) and the potential energy 
(related to external forces): 

U = +  (12) 

 can be assumed as the potential energy of 
the whole system, U defines the strain energy of 

the system and  is the potential energy of 
external forces. Using the minimum potential 
energy principle when the system is in 
equilibrium condition, the variation of the 
potential energy is equal to zero: 

0U   = +  =  (13) 

The integral over the volume of the strain 
energy density should be considered in order to 
write the variations of the system's strain energy. 
The following is the strain energy density: 

v ij iju  =  (14) 

Moreover, for strain energy variations, the 
following equation is considered: 
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Also: 
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where kw defines the Winkler elastic foundation 
constant. Therefore: 
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Considering  equal to zero, the 

coefficients of 
0 0,u w   and   should be zero, 

and the Euler-Lagrange equations are computed 
in the non-local form (with superscript NL) as 
follows: 
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Also, Eq. 21 can be written as: 
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The nonlocal strain gradient principle was 
developed by Lim et al.[22] and is explained as 
follows (which can be considered as the 
combination of the strain gradient model and 
nonlocal stresses field): 
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In the above equation, the coefficients 
denoting nonlocal, elastic, and strain gradients 

(or internal material length scales) are , ijklC

and l , respectively. Moreover, the constitutive 
equation for stress-strain at the nanoscale is 
shown as [46]: 
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In the above equation, 1E  and 2E   are the 

Young’s modulus along 1 and 2 directions. Also, 

12v  and 21v  are Poisson's ratios. Moreover, 
12G , 

13G and 
23G  are the shear moduli. 

The nonlocal form can be written  as follows: 
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In the local form, the force and moment 
resultants are as follows: 
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Also, the following forms of resultants are 
gained in terms of displacements:  
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The following equations represent the local 
expression of the equilibrium equations for 
sector nanoplate on the elastic foundation: 
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+ + − − + 
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*: 2

2 0

L L
L Lr
r

L L
L L r
r z

M M
y r M rQ

r

R R
R rR r

r

 
 

 
 






  
+ + − + 

  

 
− + + =

 

 (49) 

Also, the boundary conditions can be 
considered as the following relations: 

Simply supported (S): 

0        ,  

0      0 ,  

r r i ou v w M R r r r

u v w M R 



  

= = = = = = =

= = = = = = =
 (50) 

Clamped (C): 

0        ,  

0      0 ,  

r r i ou v w M R r r r

u v w M R 



  

= = = = = = =

= = = = = = =
 (51) 

Free (F): 

0        ,  

0      0 ,  

r r i ou v w M R r r r

u v w M R 



  

= = = = = = =

= = = = = = =
 (52) 

3. The Solution Method 

The extended Kantorovich method (EKM) 
[47] is used to convert the two-dimensional 
equations into one-dimensional forms, and then 
they are solved by the one-dimensional 
differential quadratic method. Using the EKM, the 
bivariate function becomes the product of two 
univariate functions, as follows: 

1 1( , ) ( ) ( )f r f r g =   (53) 

Also, displacement and rotation functions can 
be written as: 

1 1( , ) ( ) ( )u r f r g =   (54) 

2 2( , ) ( ) ( )v r f r g =   (55) 
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3 3( , ) ( ) ( )w r f r g =   (56) 

4 4( , ) ( ) ( )r f r g  =   (57) 

5 5( , ) ( ) ( )r f r g  =   (58) 

Using the above relationships in the 
equilibrium relations, differential equations with 
partial derivatives become ordinary differential 
relations. With the arbitrary initial choice of the 

functions , 1..5ig i = , the equilibrium relations 

will be obtained based on the weighted Galerkin 
residual method. In this method, the governing 
equations should be multiplied by a suitable 
function in terms of θ, and after integration in 
terms of θ, ordinary differential equations will be 
obtained, which will be only a function of 

, 1...5if i = . Consequently, by solving the 

ordinary differential relations and considering 

the boundary conditions, the if  functions will be 

obtained: 

( )1 1
0

0g e d


  =  (59) 

( )2 2
0

0g e d


  =  (60) 

( )3 3
0

0g e d


  =  (61) 

( )4 4
0

0g e d


  =  (62) 

( )5 5
0

0g e d


  =  (63) 

where, 
1 2 5, ,...,e e e  are equilibrium equations. 

Each of the equilibrium relations should be 

multiplied by the suitable function ig  and 

integrated with the range from 0 to τ with respect 
to θ. Therefore, the equilibrium equations (in the 
partial differential form) are converted into a 
system of ordinary differential equations in 
terms of r, which can be solved by taking into 
account the boundary conditions. By obtaining 

the if  functions and placing them in the 

equilibrium relations, the ordinary differential 

relations are obtained in terms of θ, which ig  can 

be calculated by solving the differential 
equations. 

Using the introduced functions, partial 
differential equations will be single-variable and 
become ordinary differential equations. Due to 
the non-linearity of the governing equations of 
the plate, numerical methods are used to solve 
the equations. One of the most efficient and 

accurate numerical solutions of differential 
equations is the differential quadrature method. 

In two-dimensional analysis, there will be a 
set of nodes as shown in Figure 2. Using the 
Kantorovich method, calculations are reduced 
from two directions to one direction, which will 
cause a significant reduction in the number of 
calculations. For example, in the two-dimensional 
analysis, by selecting 9 nodes in each direction, 
the number of nodes is 81; if using the 
Kantorovich method, this number is reduced to 
only 9 points. Reducing the equations from 81 to 
9 nonlinear equations will result in a huge 
reduction in calculations, which is one of the 
obvious advantages of using the Kantorovich 
method. 

 

Fig 2. Distribution of nodes in the geometry of the sector 

plate. 

One of the most efficient and accurate 
numerical solutions to one-dimensional 
differential equations is the differential quadratic 
method.  This method is one of the numerical 
methods with high precession obtained from the 
quadratic integration technique, where the 
integral at one node in the direction of the 
domain depends on all the nodes along that 
direction. It should be noted that weight 
coefficients determine the dependency's value: 

1 1( , ) ( ) ( )f r f r g =   (64) 

where weight coefficients and function values at 

discrete points can be clarified by 1 2, ,..., nw w w  

and 1 2, ,..., nf f f , respectively. 

Belman et al. [48] proposed that in quadratic 
integration, the derivative at a given point in the 
function domain is dependent upon the function 
values at every point in the domain through 
weight coefficients: 

( )
1

 ,  1,2,...,

i

N

ij j

jr

df
A f r i N

dr =

= =  (64) 
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ijA  can be defined as the weight parameter. 

Also, N refers to the total number of nodes in the 
direction of r. Moreover, the weighting 
coefficients for the first-order derivative are 
achieved as: 

( ) ( )

( ) ( )
1 i

ij

i j j

P r
A

r r P r
=

−
 (65) 

( ) ( )
1

 ,  
N

i i j

j

P r r r i j
=

= −   (66) 

( ) ( )1 1

1

         ,  
N

ii ik

k

A A i k
=

= −   (67) 

Furthermore, regarding the higher-order 
derivatives: 

( )

( )
( )

1

( )  ,  1,...,

i

n N
n

ij jn
j

r

d f
A f r i N

dr =

= =  (68) 

The following equations introduce the weighting 

coefficients for derivatives of the second and 

higher orders: 

( ) ( ) ( )
( )

( )

1

1 1
  ,  

n

n n ij

ij ij ii

i j

A
A n A A i j

r r

−

−
 
 = − 

−  

 (69) 

( )

( )
( )

1

( )  ,  1,...,

i

n N
n

ij jn
j

r

d f
A f r i N

dr =

= =  (70) 

The grid point distribution used in this paper 
is on the basis of Chebyshev-Gauss-Lubato points, 
which speeds up the solution's convergence and 
takes the following form: 

1
cos , 1...

2 1 2

i o o i
i

r r i r r
r i N

N


 + − −   
= − =    

−    
 (71) 

In Eq. (70), the starting and ending points of 

the function are denoted by 
ir  and or , 

respectively. 

4. Results and Discussions 

This part investigates various factors based 
on HSDT and takes the nonlocal strain gradient 
model into consideration to determine how they 
affect the deflations of the sector nanoplate via 
EKM and DQM. To validate the current analysis 
and solution method, the results have been 
compared according to Table 2 for the CCCC 
boundary condition, taking into account the 
following presumptions: 

( ) ( )

( )
( ) ( ) ( )

1 2 12

2 *

21

1060 ,  1060 , 0. , 

0.19  ,   1 nm , 0.005331 , 0 , 

0.34 , 1 ,  5 ,  .

    19 

    

    

w p

i o

E GPa E GPa

k k

h nm r nm r nm



 

 

= = =

= = = =

= = = =

 (72) 

which can be seen that the results of this paper 
are in good agreement with the reference. For 
example, the results of the present study for the 
radius ratios of 0.25, 0.5 and 0.75 have 0.5%, 
1.1%, and 3.3% differences with references. 

Table 2. The comparison of the dimensionless 

deflection gained by this paper with References for 

the sector sheet 

Non-dimensional deflection 

4

4

0

( ) 10
D

w w
qr

=   

/i or r
 

 Present 
study 

Ref. 
[49] 

Ref. [1]  

 2.85 2.760 
2.840 0.25 

 1.45 1.420 
1.410 0.5 

 0.093 0.090 
0.10 0.75 

The nondimensional deflection of the 
graphene sheet is compared with other 
references and gathered in Table 3. for SSSS 

boundary conditions and considering ( )24 nm =  

which shows good harmony of the present 
results. 

Table 3. The comparison of the dimensionless 

deflection gained by this paper with References for 

the graphene sheet 

The percentage of non-dimensional 

deflection 
 

 Present study 
Ref. [1]  

q 

 0.58 
0.56 

0.1 

 2.69 
2.8 

0.5 

 5.88 
5.6 

1 

By considering the following assumptions: 

( ) ( )

( )

( ) ( )

( )

1 2

12 21

*

*

6 1

11 22 1

*

1

1765 , 1588 ,

0.3 , 0.27,  1 , 

0.005 , 0.34 , 10

1.1*10 , / 3.

  

  

  ,

1, 0.025, 150 ,

  

w o

E a

l T K

GPa E GP

q GPa

k h nm r nm

K

 

  



− −

= =

= = =

= = =

= =

= =  =

 (73) 

The results of the present study are 

considered. It is noticed that various functions in 

Table 1. give similar results (so any of them can 

be chosen). 
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 Figure 3 reveals the change of 
nondimensional maximum deflection versus 
nonlocal parameters for the sector nanoplate for 
diverse boundary conditions. It can be observed 
that by increasing the nonlocal parameter, the 
non-dimensional deflection decreases. This 
reduction is seen more noticeable when the 
boundary conditions are more flexible. 

 

Fig 3. The changes of dimensionless maximum deflection 

versus nonlocal parameter for the sector nanoplate 

Figure 4. depicts the changes in dimensionless 
deflection versus bending loads. It is noted that 
by increasing the deflection, the deflection 
increases. Moreover, the difference in results 
between simply supporting boundary conditions 
and clamped conditions is more significant with 
the enhancement of the loads. 

 

Fig 4. The variation of dimensionless maximum deflection 

versus bending loads for the sector graphene sheet 

Figure 5. illustrates the changes in 
dimensionless deflection in terms of 
nondimensional radius for different boundary 
conditions. As can be seen, increasing the radius 
results in an enhancement of the deflection. 
Furthermore, increasing the radius causes a 
greater difference between the results of 
deflection in clamped and simply supported 
boundary conditions. 

 

Fig 5. The variation of dimensionless maximum deflection 

versus radius for the sector nanoplate 

The changes in non-dimension deflection 
against the elastic foundation can be seen in 
Figure 6. It can be noticed that increasing the 
values of the elastic foundation causes a 
reduction in deflection values. Also, it can be 
noted that in the higher elastic foundation values, 
the deflection values for the clamped and simply 
supported boundary conditions are in close 
proximity to each other. 

 

Fig 6. The effect of the elastic foundation on the non-

dimensional maximum deflection of the sector nanoplate 

Figure 7 shows the influence of sector plate 
angle on non-dimensional deflection for different 
boundary conditions. It is noticed that by 
increasing the sector angle, the deflection 
increases.  Also, it can be seen that the difference 
between boundary conditions is almost more 
significant at larger angles. 

Figure 7. The influence sector angle on the non-dimensional 

maximum deflection of the sector nanoplate 

Figure 8 examines the difference between linear 
and nonlinear non-dimensional deflection for the 
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clamped and simply supported boundary 
conditions. 

 It is clear that by increasing the nonlocal 
parameter, the difference increases for both 
boundary conditions, where the values of the 
simply supported condition show a more 
significant increase than the values of the 
clamped condition.  

 

Figure 8. The relation of nondimensional linear to nonlinear 

deflections versus nonlocal parameters. 

Figure 9 illustrates the effect of the thermal 
environment on the non-dimensional deflection 
for the simply supported boundary condition.  

In this figure, Rt is defined as follows: 

with temperature

without temperature

Rt



=  (74) 

It is clear that by increasing the temperature, 
the deflection increases.  

Also, it can be seen that the difference 
between thermal conditions increases by 
enhancing the nonlocal parameter.  

 

Figure 9. The relation of nondimensional linear to nonlinear 

deflections versus nonlocal parameters. 

5. Conclusions 

In this paper, the large deflection of the 
nanoplate in the thermal environment was 
studied with the aid of the nonlocal strain 
gradient theory with HSDT via DQM. The results 
were compared with a reference and showed 
good harmony. From the results of this paper, it 
can be noticed that: 

* Factors such as radius, flexibility of 
boundary conditions, load, thermal condition, 
and sector angle have direct influences on the 
large deflection of the plate. 

* Nonlocal parameters, elastic foundation, and 
rigidity of boundary conditions have 
countereffects on the large deflection of the plate.  

Nomenclature 

All variables used in this manuscript should 
be listed in nomenclature. 

It should be noted that the heading of the 
Nomenclature and the heading after it must not 
be numbered. 

, , ( , , )U V W r z  Displacement functions  

h  Thickness 

  Sector angle 

  Nonlocal parameter 

l  Strain Gradient parameter 

G  Shear module 

v  Poisson's ratio 

E  Young module 
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