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 The torsional study of different engineering sections made up of orthotropic and functionally 

graded material is presented in this paper. Prandtl’s stress function approach is used for the 

formulation of governing differential equations. Thin plate spline (TPS) radial basis function-

based collocation meshfree method is utilized for discretization and solution of the governing 

differential equations. A classical power law is considered for the modeling of FGM material. 

A computer program is developed for the solution of the discretized partial differential 

equations. To assess the efficacy and accuracy of the present mesh-free approach, a numerical 

example of an equilateral triangle is considered to conduct a convergence and accuracy test. 

Finally, the torsional stiffness and shear stress for the orthotropic and FGM sections of the 

equilateral triangle, L-section, and T-sections are computed. The novelty in the present 

meshfree methodology lies in the handling of the singular behavior of re-entrant corners. The 

effect of stress concentration can be seen at the re-entrant corners. The proposed 

methodology shows excellent performance in solving these types of torsion problems. 
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1. Introduction 

These engineering structures made of 
composites and functionally graded material 
(FGM) are widely used in process industries, 
aeronautical structures, and construction 
industry, and many more. FGM materials are 
generally inhomogeneous bodies consisting of 
two or more elements whose volume percentages 
change throughout the body. With the use of FGM 
in the structures, the problems associated with 
delamination in the layered structures are 
mitigated and also FGMs can be made to satisfy 
the specific design requirements.  Beams made 
up of thin-walled sections such as angle, L, T, and 
other shapes are also subjected to a twisting 
moment in addition to the bending moment. The 

torsional rigidity of such thin-walled sections is 
much less in comparison to other sections. 
Torsional rigidity plays an important role in the 
proper functioning of engineering structures as it 
limits torsional deformations. Torsion problems 
become even more important in the case of the 
sections of low tensile strength structures. The 
necessity for investigating the torsional 
characteristics of such thin-walled noncircular 
cross-sections of the prismatic bar has risen 
significantly with the development of 
geometrically complicated sections composed of 
composites and FGM. Torsional analysis of 
engineering structures with non-circular cross-
sections is important for the assessment of their 
stiffness and the stresses induced therein.  
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Therefore, the study of torsional problems of 
non-circular cross-sections is of the interest of 
many researchers. The classical theory for the 
analysis of the torsion problem is well 
documented in the reference books [1–4] where 
closed-form solutions to the torsion problem of 
homogeneous isotropic cross-sections such as 
elliptical, rectangular, and triangular sections are 
discussed. General theory related to the torsion 
problem of non-homogeneous prismatic bars and 
its simple solution is given by Chen [5]. Ely and 
Zienkiewicz [6] investigated the torsion of the 
nonhomogeneous and compound prismatic bar 
using the finite difference method. A 
mathematical model is derived, and solutions are 
presented for the strain-stress analysis of torsion 
of a non-circular bar [7]. An analytical solution for 
the torsion of the rectangular prismatic bar using 
a power fit model is presented by Danao and 
Cabrera [8]. The exact solution for the torsion of 
elastic circular bars of radially inhomogeneous, 
cylindrically orthotropic materials is presented 
with end effects by Tarn and Chang [9]. Rooney 
and Ferrari [10] presented an analytical solution 
for the torsion of a circular cylindrical bar with 
angular symmetry with inhomogeneous shear 
moduli. Some authors have presented an exact 
analytical solution for the multi-layered 
inhomogeneous composite bar subjected to 
torsion [11,12]. An exact solution in terms of the 
Fourier series is presented for the Saint-Venant 
torsion of orthotropic bars with an 
inhomogeneous rectangular cross-section [13]. 
Arghavan and Hematiyan [14] presented an 
analytical solution to the torsion of thin 
to moderately thick-walled functionally graded 
hollow tubes of arbitrary shapes. Ecsedi [15] 
presented analytical solutions of non-
homogeneous cylindrical bars made up of 
functionally graded twisted elastic cylinders. 
Krahula and Lauterbach [16] used the finite 
element method for the torsion problem utilizing 
both the warping function and Prandtl’s stress 
function approach. The finite element method 
has been used for the evaluation of the torsional 
rigidity of reinforced concrete bars with arbitrary 
cross-section [17] and composite beams [18]. 
 The finite element method is used for the 
solution of the Saint-Venant torsion and bending 
problems for prismatic beams [19] and to 
determine the torsional stress in simply 
connected non-circular cross-sections [20]. 
Torsional analysis of bars with arbitrary cross-
sections subjected to warping employing the 
strain-gradient elasticity has been done using the 
finite element method [21]. Tsiatas and 
Babouskos [22] presented a new integral 
equation solution to the elastic-plastic problem of 
functionally graded bars under torsional loading.  
A hybrid finite element approach is used for 

determining torsional rigidity and maximum 
shear stresses of arbitrarily shaped orthotropic 
composite or functionally graded material 
sections [23]. Ecsedi and Baksa [24] presented an 
approximate solution for the torsion and 
Prandtl’s stress functions of an elastic cylindrical 
orthotropic solid elliptical cross-section. The 
formulation based on the boundary value 
problem to study the effect of material 
inhomogeneity on torsional response is carried 
out by Horgan and Chan [25]. Thereafter, Horgan 
[26] presented the formulation of the torsion of 
functionally graded anisotropic linearly elastic 
bars in terms of a Neumann-type boundary-value 
problem for the warping function. Sapountzakis 
[27] utilized the boundary element method to 
analyze the nonuniform torsion of multi-material 
bars. Katsikadelis and Tsiatas [28] employed the 
boundary element method for the torsion 
problem of non-homogeneous anisotropic non-
circular prismatic bars. Utilizing the mesh and 
integral free method, Nikmehr and Lashkarbolok 
[29] obtained torsional rigidity of bars with 
functionally graded material cross-sections 
weakened  by cracks. The torsional analysis of a 
bar with multiple cross-sections has been studied 
using the method of fundamental solution [30]. 
Torsion of uniform bars with polygon cross-
section using Trefftz integral is presented by 
Hassenpflug [31]. 

Several analytical approaches for addressing 
such structural engineering issues have been 
developed, but these analytical methods can only 
be used for situations with simple geometry and 
loading conditions. Numerical techniques have 
been a valuable tool for the study of complicated 
engineering issues with the development of rapid 
computational facilities. The primary benefit of 
numerical techniques is that they can handle 
actual geometrical shapes and loadings, as 
opposed to the limited shapes and loadings that 
analytical methods can handle. Widely used 
numerical methods are finite difference method 
(FDM) and finite element methods (FEM). FEM is 
currently commonly utilized to solve issues with 
complex geometry, however, discretizing the 
domain with complex geometry is costly and 
time-consuming. In the recent past, more general 
methods known as meshless methods are in use 
that avoid the problem of mesh generation.  This 
meshless method allows a numerical simulation 
process to be built solely from a collection of 
nodes, without the need for any pre-specified 
connection between them. 

The radial basis function [32] is employed as 
a solution methodology for the analysis of 
prismatic bars. Chen et al [33] used the finite 
volume method for the torsion of homogeneous 
and composite bars. Ferreira [34] employed a 
poly-harmonic thin plate RBF for the bending 
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response of layer-wise modeled laminated and 
sandwich plates. Different types of meshfree 
methods in detail can be found in the reference 
book [35]. Hardy [36] presented the multiquadric 
equations of the topography and other irregular 
surfaces. However, several researchers have also 
utilized the RBF-based mesh-free method for the 
analysis of beams and plates [37–39] and elastic-
plastic torsional analysis of prismatic bars [40]. A 
detailed review of the mesh-free approach for the 
linear and nonlinear analysis of sandwich plates 
is presented by Solanki et al. [41]. Ferreira et al. 
[42–44] presented the multiquadric radial basis 
function method and trigonometric shear 
deformation theory for the bending analysis of 
isotropic, laminated, and sandwich plates. The 
radial basis function-based collocation method is 
used by many researchers [45–47] for solving 
partial differential equations. Singh and Shukla 
[48] presented the RBF RBF-based mesh-free 
method for the nonlinear flexural analysis of 
laminated composite plates and functionally 
graded plates [49]. Shukla and Singh [50] utilized 
the RBF RBF-based Meshfree method for the 
modeling and analysis of cross-ply and angle-ply 
laminated plates under patch loads and the 
buckling behavior of rectangular angle-ply 
laminated composite plates [51]. 

From the literature review, it is evident that 
RBF-based mesh-free methods have been used 
for different cases of bending, buckling, and 
vibrations of plates, and up to some extent for 
torsional analysis of non-circular bars made up of 
composite and FGM materials. However, 
relatively less attention is paid to the torsional 
analysis of engineering structures with a thin-
walled non-circular cross-section using the 
mesh-free collocation method. Therefore, the 
present work is focused on the torsional analysis 
of orthotropic and FGM prismatic bars of an 
equilateral triangle, L-beam, and T-beam using 
the thin-plate spline RBF-based meshfree 
collocation method. The geometry of the 
torsional problem is selected as an equilateral 
triangle with no re-entrant corner, an L-section 
with a single re-entrant corner, and a T-beam 
with two re-entrant corners. The geometry of the 
problem is created using scattered nodes in the 
entire domain. Therefore, it is easy to assign any 
value like the variable material property, shear 
modulus, etc. conveniently on the desired nodes. 
The novelty of the present work lies in the 
handling of the singular behavior of re-entrant 
corners as the mesh-free collocation method is a 
truly meshless method where the mesh elements 
are not required to model the geometry.  

2. Mathematical Formulation 

Prismatic bars of engineering sections subjected 
to twisting moment Mt are considered for the 
analysis as shown in Fig.1. 

 
Fig.1 Prismatic bar of different cross-sections subjected 

to twisting moment. 
 

The bar is fixed at z = 0 and is twisted by angle 
θ along the length.  It is assumed that the cross-
sections rotate as a rigid body. In the case of a 
non-circular shape, the cross-section does not 
remain planar and deflects in the z-direction. It is 
further assumed that the deflection and angle of 
twist θ are constant along the whole length of the 
bar. Thus, reducing the problem to a two-
dimensional one. 

According to the Saint-Venant theory, the 
displacements u, v, and w in directions x, y, and z 
respectively, can be written as: 

                                                                                      

, , ( , )u zy v zx w x y  = − = =                    (1) 

 
where ψ (x, y) is a warping function describing 
the deflection in the z-direction.  The strain 
components are expressed as: 
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Utilizing the equation (3), the stress 
components are expressed as, 
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                              (4) 

whereas other stress components are zero. 
Prandtl’s stress function can be written as  
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The first two equilibrium equations are 
satisfied identically and the third equilibrium 
equation in conjunction with equations (6) and 
(7) yields. 

                                                                                                          
2 2

2 2

1 1
2

yz xzG x G y

 


 
+ = −

 
                        (8) 

where ϕ(x,y) is Prandtl’s stress function. Gxz and 
Gyz are the shear moduli of the material and θ is 
the twist angle per unit length. The equation (8) 
can be rewritten as, 

  
2 2

2 2
2

yz

yz

xz

G
G

x G y

 


 
+ = −

 
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 
                             (9) 

where the shear modulus ratio can be defined as,   
. For isotropic material, Gyz= Gxz=G, the above 
equation (9) reduces to, 

                                                                                                                 
2 2

2 2
2G

x y

 


 
+ = −

 
                                          (10) 

The boundary condition can be proved as,  

0 = on                                                         (11) 

Resultant shear stress can be represented as,     
2 2

xz yz  = +                                                  (12) 

                                                                                                    

3. Solution Methodology 

The cross-sections of the equilateral triangle, 
L-section, and T-section are shown in Fig. 2. The 
dimension of the equilateral triangle is taken as 3 
units on each side. The dimensions of the L-
section are 3x3 (Base =3 units, Height =3 units) 
with web and flange thickness are 1 unit each. 
The geometry of these sections along with 
internal nodes and external nodes on the 
boundary are generated using computer 
programming. 

 

 
Fig.2 Equilateral Triangle, L-section, and T-section with 

internal and external nodes 
 

The governing differential equation (9) and 
boundary condition (11) are discretized using 
the radial basis function. Radial basis function-
based meshless formulation works on the 

principle of interpolation of scattered data over 
the entire domain. 

The variable ϕ can be interpolated in the form 
of the radial distance between nodes. The 
solution of the governing differential equations is 
assumed in thin-plate spline (TPS) radial basis 
function for nodes 1: N, as, 

                                                                                                 

( )
1
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N

j j

j

g X X 
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= −                    (13) 

where ( )2 logcg r r= with the optimized value 

of shape parameter c=3 for the present problem 
and the radial distance between two points. 
where, N is the total number of nodes, which are 
equal to the summation of boundary nodes NB 

and domain interior nodes NI j

 .   are unknown 

coefficients to be evaluated. 
The left-hand side of Eqn. (9) can be 

discretized as, 
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Similarly, boundary condition (11) can be 

discretized as,        
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K g


= + =

 =                    (15) 

The above problem in matrix form is 
expressed as,    
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1

1
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[ ] 0

yzI
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K


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The unknown coefficients  are calculated from 

equation (16) and finally using equation (13), the 
Prandtl’s stress function ϕ at desired locations is 
obtained as, 
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, cj jN NN N
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The shear stresses are calculated as, 
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Once the Prandtl’s stress function ϕ is 
obtained, the twisting moment can be 
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determined using the following expression: 

Twisting Moment 2tM GJ dxdy 


= =    (20) 

The torsional stiffness and maximum shear 
stress for isotropic equilateral triangle beam are 
determined using the following expressions: 

Dimensionless Torsional Stiffness,                                                                           

2

J

A
 =                                                                       (21) 

Dimensionless Maximum Shear Stress,                                                            

max

max
AG





=                                                             (22) 

where A is the area of the equilateral triangle. 
For an orthotropic equilateral triangle,  

Dimensionless Torsional Stiffness,                                                                        

2

xz

GJ

A G
 =                                                               (23) 

Dimensionless Maximum Shear Stress,                                                            

max

max

xzAG





=                                                           (24) 

4. Results and Discussion  

4.1 Convergence and Accuracy Test 

The convergence and accuracy tests are 
performed for the equilateral triangle, L-beam, 
and T-beam to select the number of nodes till 
little or no significant difference is observed in 
the results. The results obtained for 
dimensionless torsional stiffness and 
dimensionless maximum shear stress for 
equilateral triangle beam are shown in Table 1. 
The value of the shear modulus of rigidity and 
angle of twist is assumed as unity. Fig. 3 shows 
the convergence test for the equilateral triangle 
for the maximum shear stress. It can be observed 
that very good convergence is obtained at the 
nodes of 961 and beyond for torsional stiffness 
and maximum shear stress. In the present 
analysis, 961 nodes are taken in order to have 
better accuracy in the results. As can be seen, the 
present results are in close agreement with the 
theoretical result, therefore it shows showing 
efficacy and accuracy of the present solution 
methodology. It can be seen from Fig.4 that at 
1729 nodes and beyond the percentage 
difference in the results are within 0.1%. 
Therefore, the number of nodes for all the further 
analysis is taken as 1729. 

The torsional stiffness and maximum shear 
stress for the T section are computed and 
tabulated in Table 3. The convergence test results 
are depicted in Fig. 5. 

 

 

 

   

Fig. 3 Convergence test for the equilateral triangle 
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Fig. 4 Convergence test for L-section beam 
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            Fig. 5 Convergence test for T-section 
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Table 1: Convergence and validation study for the equilateral triangle 

No. of Nodes  (β) Error % 

Max. Shear Stress ( max
) 

Error % 

25 0.1005 -12.99 1.1070 68.24 
36 0.1123 -2.77 0.6964 5.84 
121 0.1182 2.34 0.6588 0.12 
256 0.1185 2.60 0.6583 0.05 
441 0.1182 2.34 0.6582 0.03 
676 0.1179 2.08 0.6581 0.02 
961 0.1176 1.82 0.6581 0.02 
1296 0.1174 1.65 0.6581 0.02 
Ref. [31] 0.1155  0.6580  

 Table 2: Convergence study for L section 

 
No. of Nodes Torsional Stiffness 

(GJ) 
Error %  Max. Shear 

Stress (τmax) 
Error % 

64 1.1585 24.14 0.7702 55.70 
105 1.3397 12.27 1.0720 38.34 
369 1.4716 3.63 1.2013 30.90 
793 1.5002 1.76 1.4603 16.00 
1065 1.5067 1.34 1.5612 10.20 
1377 1.5110 1.05 1.6504 5.07 
1729 1.5141 0.85 1.7307 0.45 
1920 1.5153 0.77 1.7682 1.71 
2121 1.5164 0.70 1.8041 3.77 
FEA[52] 1.5271  1.7385  

  
Table 3: Convergence study for T-section 

 
No. of Nodes Torsional Stiffness 

(GJ) 
Error % Max. Shear 

Stress (τmax) 
Error % 

33 0.8727 46.44 1.3815 27.36 
105 1.3560 16.77 1.1511 39.47 
217 1.4865 8.76 1.1227 40.97 
369 1.5408 5.43 1.2999 31.65 
561 1.5686 3.73 1.4505 23.73 
793 1.5848 2.73 1.5745 17.21 
1065 1.5951 2.10 1.6810 11.61 
1377 1.6023 1.66 1.7751 6.66 
1729 1.6074 1.34 1.8598 2.21 
2121 1.6113 1.10 1.9371 1.86 
2553 1.6142 0.93 2.0086 5.62 
3025 1.6166 0.78 2.0751 9.11 
FEA[52] 1.6293  1.9018  

It can be seen from Fig.5 that the percentage 
difference in the results is within 0.1% at the 
nodes of 2121 and beyond. Therefore, the 
number of nodes for all the further analysis of the 
T-beam is taken as 2121. It is seen from the above 
convergence and validation study that the 

proposed mesh-free method gives very good 
agreement with the reference results obtained by 
finite element analysis (FEA). New results are 
reported in the next section by varying the 
material properties. 
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4.2 Orthotropic Beams 

The torsional property of the beam can be 
altered by using orthotropic material as per 
desired need. In this section, the torsional 
analysis of the orthotropic beam is considered by 
varying the shear modulus ratio (Gyz/Gxz). The 

dimensionless torsional stiffness (β) and 

dimensionless maximum shear stress ( max ) for 

equilateral triangles are calculated and tabulated 
in Table 4. 

 
Table 4: Effect of Gyz/Gxz ratio on dimensionless torsional stiffness and dimensionless max shear stress for the equilateral triangle 

 

Gyz/Gxz β 
max

 

1 0.1176 
0.6581 

2 
0.1604 

0.9673 

3 
0.1852 

1.1663 

5 
0.2139 

1.4202 

10 
0.2453 

1.7410 

20 0.2671 2.0214 

30 0.2760 2.2196 

40 0.2808 2.3534 

50 0.2839 2.4414 

As the shear modulus ratio increases the value 
of the torsional stiffness and maximum shear 
stress increases. The higher value of the shear 
modulus ratio can be taken for increased 
torsional stiffness while designing a beam of the 
equilateral triangular cross-section. 

The contours of Prandtl stress function and 
shear stresses are obtained and shown in Fig. 6. It 
shows the variation of Prandtl’s stress function 
and shear stresses over the entire domain. The 
contours are plotted by varying the orthotropy 

ratio (Gyz/Gxz). It can be observed that the value 
of resultant shear stress at the corner of the 
equilateral triangle is zero and maximum at the 
middle of sides as expected. The computed 
Prandtl’s stress function at the center is 
maximum and zero on the boundary of the 
triangular section. The variation in the shear 
stresses τxz and τyz can be observed along the 
bottom surface of the triangle and along the left 
or right surface of the triangle, respectively. 
 

 
 

(a) (b) 

Fig.6 The contours of Prandtl’s stress function and shear stress for the orthotropic equilateral triangle at (a) Gyz/Gxz 
= 1 and (b) Gyz/Gxz = 20 

 

Now the effect of the orthotropy ratio on the 
torsional stiffness and maximum shear stress is 
computed for the L-beam and shown in Table 5. 
It can be seen that the torsional stiffness and 

maximum shear stress increase with the increase 
in the orthotropy ratio. 

Figure 7 shows the contours of Prandtl stress 
function (ϕ), shear stress in the x-direction (τxz), 
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shear stress in the y-direction (τyz) and resultant 
shear stress (τ) for L-beam. It shows the variation 
of Prandtl’s stress function and shear stresses 
over the entire domain. It can be seen that the 
obtained Prandtl’s stress function at the center of 
the L-section junction is maximum. The resultant 
shear stress vanishes at the external corners of 
the L-beam and is maximum due to stress 
concentrations at the junction (re-entrant 
corner) of the flange and web of the L-beam. The 
variation in the shear stresses τxz and τyz can be 
observed along the bottom side of the L-section 
and along the left or right side of the L-section, 
respectively. 

Figure 8 shows the contours of Prandtl stress 
function (ϕ), shear stress in the x-direction (τxz), 
shear stress in the y-direction (τyz) in two 
dimensions, and resultant shear stress (τ) in 
isometric view for the T-beam. It shows the 
variation of Prandtl’s stress function and shear 
stresses over the entire domain. It can be seen 
that the obtained Prandtl’s stress function is 
maximum near the center of the T-section 
junction. The  

resultant shear stress vanishes at the external 
corners of the T-beam. The resultant shear stress 
is maximum at both junctions (re-entrant 
corners) of the web and flange of the T- T-T-
section due to stress concentrations. 

 

Table 5: Effect of Gyz/Gxz ratio on torsional stiffness and max shear stress for L-Section 

 

Gyz/Gxz GJ τmax 

1 1.5141 
1.7307 

2 
2.1662 

2.7671 

3 
2.6838 

3.6029 

5 
3.4817 

4.9125 

10 
4.7351 

7.0780 

20 5.9696 9.7584 

30 6.5975 12.0893 

40 6.9864 13.9932 

50 7.2552 15.6385 

                     

  

(a) (b) 

Fig.7 The contours of Prandtl’s stress function and shear stress for orthotropic L-section at (a) Gyz/Gxz = 1 and (b) Gyz/Gxz = 20 

 
To study the effect of the orthotropy ratio, the 

torsional stiffness and maximum shear stress are 
computed for the T-beam and shown in Table 6. 
There are two re-entrant corners in the T-beam.  

 
Cross-section, formed at the junction of the 

web and flange. It can be seen that the torsional 
stiffness and maximum shear stress increase with 
the increase in the orthotropy ratio.

 
 
 
Table 6: Effect of Gyz/Gxz ratio on torsional stiffness and max shear stress on T-Section 
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Gyz/Gxz GJ τmax 

1 1.6113 
1.9371 

2 
2.2831 

2.9872 

3 
2.8053 

3.8284 

5 
3.6004 

5.1510 

10 
4.8365 

7.3571 

20 6.0462 9.8919 

30 6.6600 12.0466 

40 7.0401 13.8464 

50 7.3028 15.3813 

 
 

 

  
(a) (b) 

 
Fig. 8 The contours of Prandtl’s stress function and shear stress for orthotropic L-section at (a) Gyz/Gxz = 1 and (b) Gyz/Gxz = 20 

 

It can be concluded that the proposed 
meshfree method is capable of modeling the 
singular behavior of the re-entrant corners as 
evident from the L-section and T-section analysis 
presented in this section. A similar study for the 
simulation of re-entrant corners is presented 
[33] in which it is shown that the finite volume 
method (FVM) is better than the finite difference 
method (FDM) approach for the modeling of re-
entrant corners. However, the present meshfree 
method can be used in a simple form to model the 
re-entrant corners. 
 

4.3 Functionally Graded Material 

(FGM) beams 

FGM materials are widely used for structural 
engineering purposes. The torsional behavior of 
the beam can be changed by employing the FGM 
section for a specific application. In this section, 
the torsional analysis of the FGM beam is 
considered by varying the shear modulus from 
the bottom to the top of the section. The 
distribution of shear modulus is considered to 
vary from bottom to top along the y-axis of the 
rectangular FGM section according to a classical 
power law. Fig. 9. shows the distribution of the 
shear modulus of the FGM section. 
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Fig.9. Distribution of the shear modulus of FGM section 

The equation for the distribution of shear 
modulus is given by classical power law, 

( ) ( - ).( )b t bG y G G G y H = +          (25) 

in which Gb and Gt are the shear moduli at the 
bottom (y=0) and top (y=h) respectively. λ is the 
gradient factor. When (λ=0), the material 
becomes homogeneous. The dimensionless 
torsional rigidity and dimensionless maximum 
shear stress for an equilateral triangle is given by, 

Dimensionless Torsional rigidity, 

2

b

GJ

A G
 =                                                                    (26) 

Shear stress factor, 

max
max

bAG





=                                          (27) 

The dimensionless torsional stiffness (β) and 

dimensionless maximum shear stress ( max  ) for 

equilateral triangles are calculated and 
tabulated in Table 7 and Table 8 respectively. 

Table-7. Effect of different  and λ on torsional stiffness of equilateral triangle 

Torsional Stiffness (β) 

     G. F. (λ) 

/t bG G
  

0 0.5 1 3 5 7 10 

1 0.1176 0.1176 0.1176 0.1176 0.1176 0.1176 0.1176 

5 0.5880 0.3045 0.1982 0.1222 0.1180 0.1176 0.1176 

10 1.1760 0.5381 0.2989 0.1279 0.1185 0.1177 0.1176 

20 2.3519 1.0053 0.5005 0.1393 0.1195 0.1178 0.1176 

40 4.7038 1.9398 0.9035 0.1622 0.1216 0.1180 0.1176 

The effect of the gradient index on the 
dimensionless torsional stiffness is plotted in Fig. 
10 with various shear modulus ratios varying 
from the bottom to the top of the equilateral 
triangle. It can be seen from Fig.10 that as the 
shear modulus ratio increases the torsional 
stiffness of the equilateral triangle increases and 

with the increase in the gradient index the 
torsional stiffness decreases. It can further be 
observed that the effect of the gradient index is 
negligible beyond 3 for the equilateral triangle 
considered here. 
 

 

 

 

Table-8. Effect of different  and λ on maximum shear stress of equilateral triangle 
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Max. Shear Stress ( max
) 

     G. F. (λ) 

/t bG G
  

0 0.5 1 3 5 7 10 

1 0.6581 0.6581 0.6581 0.6581 0.6581 0.6581 0.6581 

5 3.2904 1.8703 1.2506 0.6914 0.6603 0.6582 0.6581 

10 6.5808 3.4003 2.0328 0.7402 0.6630 0.6585 0.6581 

20 13.1616 6.4751 3.6130 0.8647 0.6685 0.6589 0.6581 

40 26.3232 12.6261 6.8004 1.1895 0.6822 0.6599 0.6581 

The effect of gradient index on the 
dimensionless maximum shear stress is depicted 
in Fig. 11 with various shear modulus ratios 
varying from bottom to top of the equilateral 
triangle. It can be observed that the maximum 
shear stress increases with the increase in the 
shear modulus ratio from bottom to top. 
However, the maximum shear stress decreases 
with the increase in gradient index. The contour 
of the Prandtl stress function, shear stress in the 
x-direction, shear stress in the y-direction, and 
resultant shear stress are shown in Fig.12 for the 
equilateral triangle. 
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Fig. 10. Variation of torsional stiffness of equilateral triangle 

at different and λ 
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Fig. 11. Variation of maximum shear stress of equilateral 

triangle at different and λ 

It can be observed from Fig. 12 that the 
Prandtl stress function is maximum near the 
center of the equilateral triangle and the 
resultant shear at the external corners is 
vanishing towards zero, as expected.  
Now, the torsional stiffness (β) and maximum 

shear stress (τmax) for the L-beam are 

computed and tabulated in Table 9 and Table 10 

respectively. 

The effect of the gradient index on the 
torsional stiffness is plotted in Fig. 13 with 
various shear modulus ratios varying from the 
bottom to the top of the L-section. 
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Fig. 12. Contours of Prandtl stress function and shear stress for the equilateral triangle at λ=1, Gb=1, Gt=50 

                                                 Table-9. Effect of different  and λ on torsional stiffness of L-shape 

Torsional Stiffness (β) 

     G. F. (λ) 

/t bG G
  

0 0.5 1 5 10 20 50 

1 1.5141 1.5141 1.5141 1.514
1 

1.514
1 

1.514
1 

1.514
1 

5 7.5706 4.8398 3.6042 1.913
8 

1.677
9 

1.571
8 

1.525
8 

10 15.141
1 

8.9969 6.2168 2.413
4 

1.882
5 

1.644
0 

1.540
4 

20 30.282
2 

17.311
2 

11.442
1 

3.412
6 

2.291
9 

1.788
2 

1.569
7 

40 60.564
5 

33.939
7 

21.892
6 

5.411
1 

3.110
7 

2.076
8 

1.598
1 

It can be seen from Fig.13 that as the shear 
modulus ratio increases the torsional stiffness of 
the L-section increases and with the increase in 
the gradient index the torsional stiffness 
decreases. Insignificant variation in the torsional 
stiffness is observed beyond the gradient index of 
20 for the L-beam considered here. The effect of 
gradient index on the maximum shear stress is 
depicted in Fig. 14 with various shear modulus 
ratios varying from bottom to top of the L-
section. It can be observed that the maximum 
shear stress increases with the increase in the 
shear modulus ratio from bottom to top. 
However, the maximum shear stress decreases 
with the increase in the gradient index of the L-
beam. The contour of the Prandtl stress function, 

shear stress in the x-direction, shear stress in the 
y-direction, and resultant shear stress are shown 
in Fig.15 for the L-beam. The effect of stress 
concentration at the re-entrant corners can be 
observed in Fig.15. This shows the utility of the 
present mesh-free method for the modeling of 
singular locations. The torsional stiffness (β) and 
maximum shear stress (τmax) for the T-beam are 
computed and tabulated in Table 11 and Table 
12, respectively. 
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Fig. 16. Variation of torsional stiffness of T-shape at different 

and λ

Fig. 13. Variation of torsional stiffness of L-shape at different 

and λ 
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Fig. 14. Variation of maximum shear stress of L-shape at 

different  and λ 

 

Fig. 15. Contours of Prandtl stress function and shear stress 

for L-beam at λ=1, Gb=1, Gt=20 
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Fig. 17. Variation of maximum shear stress of T-shape at 

different  and λ 

 

Fig. 18. Contours of Prandtl stress function and shear stresses 

for T-beam at λ=1, Gb=1, Gt=20 
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Table-10. Effect of different  and λ on maximum shear stress of L-shape 

Max. Shear Stress (τmax) 

     G. F. (λ) 

/t bG G
  

0 0.5 1 5 10 20 50 

1 1.7307 1.7307 1.7307 1.7307 1.7307 1.730
7 

1.730
7 

5 8.6536 5.3800 3.7585 2.5706 2.0664 1.732
5 

1.731
0 

10 17.307
3 

9.9427 7.0068 4.8572 3.7226 2.637
6 

1.731
3 

20 34.614
5 

19.068
4 

13.790
0 

9.4304 7.0350 4.744
5 

2.459
6 

40 69.229
1 

37.320
0 

27.356
2 

18.576
7 

13.659
9 

8.958
3 

2.927
3 

Table-11. Effect of different  and λ on torsional stiffness of T-shape 

Torsional Stiffness (β) 

     G. F. (λ) 

/t bG G
  

0 0.5 1 5 10 20 50 

1 1.6113 1.6113 1.6113 1.6113 1.611
3 

1.611
3 

1.611
3 

5 8.0563 6.7190 5.8650 3.3308 2.439
1 

1.919
0 

1.673
7 

10 16.112
6 

13.103
7 

11.182
3 

5.4802 3.473
8 

2.303
8 

1.751
6 

20 32.225
3 

25.873
0 

21.816
7 

9.7789 5.543
4 

3.073
2 

1.907
6 

40 64.450
5 

51.411
7 

43.085
7 

18.376
5 

9.682
4 

4.612
1 

2.219
6 

Table-12. Effect of different  and λ on maximum shear stress of T-shape 

Max. Shear Stress (τmax) 

     G. F. (λ) 

/t bG G
  

0 0.5 1 5 10 20 50 

1 1.9371 1.9371 1.9371 1.9371 1.9371 1.9371 1.937
1 

5 9.6857 8.4537 7.5495 4.0101 2.8222 2.1479 1.972
1 

10 19.371
3 

16.599
6 

14.612
1 

6.7723 4.9176 3.3682 2.063
3 

20 38.742
7 

32.914
7 

28.737
2 

13.023
9 

9.1085 5.8374 3.082
7 

40 77.485
3 

65.562
1 

56.987
6 

25.527
2 

17.490
3 

10.775
9 

5.121
5 

The effect of the gradient index on the 
torsional stiffness is plotted in Fig. 16 with 
various shear modulus ratios varying from the 
bottom to the top of the T-section. It can be seen 
from Fig.16 that as the shear modulus ratio 
increases the torsional stiffness of the T-section 
increases however, with the increase in the 
gradient index the torsional stiffness decreases. 
There is negligible change in the torsional 
stiffness beyond the gradient index of 50 for the 
T-beam considered here. 

The effect of gradient index on the maximum 
shear stress is depicted in Fig. 17 with various 
shear modulus ratios varying from bottom to top 
of the T-section. It can be observed that the 
maximum shear stress increases with the 
increase in the shear modulus ratio from bottom 
to top. However, the maximum shear stress 
decreases with the increase in gradient index for 
the T-beam. The contour of the Prandtl stress 
function, shear stress in the x-direction, shear 
stress in the y-direction, and resultant shear 
stress are shown in Fig.18 for the T-beam. 
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The effect of stress concentration at the 
intersection of the flange and web can be 
observed in Fig.18. The singular location present 
in the T-beam is modeled effectively using the 
proposed mesh-free method. 
 

5. Conclusions 

The main objective of the present paper was to 

show the capability of the meshfree collocation 

method for the torsional analysis of the prismatic 

bars made up of non-circular cross-sections such 

as equilateral triangles, L-section, and T-section 

containing re-entrant corners. The proposed 

methodology is employed for the determination 

of torsional stiffness and shear stresses by 

varying the orthotropy ratio and gradient index 

of orthotropic and FGM sections, respectively. 

The results for the prismatic bar with the 

equilateral triangle section are compared with 

the numerical results published in the literature 

to examine the validity of the proposed method. 

It is found that the results are in good agreement 

with the published literature.  

The proposed solution methodology method 
is presented for the triangular section with no re-
entrant corner, the L-section with a single re-
entrant corner, and T- the section with two re-
entrant corners. The singular location at the re-
entrant corners is very well handled by the 
proposed mesh-free methodology. The results 
were found to be stable and capable of modeling 
the singular points using thin-plate spline RBF for 
the problems related to the structural 
engineering application. The study conducted for 
the orthotropic sections reveals that the torsional 
rigidity and shear stresses increase with the 
increase in the orthotropy ratio. However, in the 
case of FGM sections, the torsional rigidity and 
shear stress increase with the increased shear 
modulus from the bottom surface to the top 
surface and decrease as the gradient index 
increases. The proposed methodology is found to 
be a suitable computational tool for the torsional 
analysis of orthotropic and FGM sections of non-
circular cross-sections including the sections 
containing re-entrant corners. Therefore, the 
present mesh-free method can be extended as a 
computational tool for the parametric analysis of 
structural engineering design and for solving the 
torsion problem with composite and 
heterogenous material as well as for the curved 
geometry of the arbitrary shapes. Also, 
reinforcement of re-entrant corners can be 
considered for reducing the stress concentration 
at the re-entrant corners. 
References 

[1] Timoshenko S, Goodier JN. Theory of 
Elasticity. 3rd ed. McGraw-Hill Book 
Company; 1970. 

[2] Muskhelishvili NI. Some basic problems of 
the mathematical theory of Elasticity. 2nd 
ed. Springer-Science+ Business Media, B.V.; 
1977.  

[3] Boresi AP, Schmidt RJ. Advanced Mechanics 
of Materials. 6th ed. John Wiley & Sons, Inc.; 
2003.  

[4] Sadd MH. Elasticity. 3rd ed. Elsevier 
Academic Press; 2014. 

[5] Chen Y., 1964. Torsion of nonhomogeneous 
bars. J Franklin Inst, 277, pp 50–4.  

[6] Ely JF, Zienkiewicz OC, 1960. Torsion of 
Compound Bars- A Relaxation Solution. Int J 
Mech Sci,1, pp 356–365. 

[7] Franců J, Nováčková P, Janíček P, 2012. 
Torsion of a Non-Circular Bar. Eng Mech;19, 
pp 45–60. 

[8] Angelo Danao LM, Cabrera RM. Torsion of a 
rectangular prismatic bar: Solution using a 
power fit model. Philipp Eng J 2007;28, pp 
77–98. 

[9] Tarn JQ, Chang HH., 2008. Torsion of 
cylindrically orthotropic elastic circular bars 
with radial inhomogeneity: some exact 
solutions and end effects. Int J Solids Struct 
,45, pp 303–19.  

[10] Rooney FJ, Ferrari M. 1995. Torsion and 
flexure of inhomogeneous elements. Compos 
Eng, 5, pp 901–11.  

[11] Swanson SR. 1998 Torsion of laminated 
rectangular rods. Compos Struct, 42, pp 23–
31.  

[12] Savoia M, Tullini N., 1993.Torsional 
response of inhomogeneous and 
multilayered composite beams. Compos 
Struct ,25, pp 587–94.  

[13] Rongqiao X, Jiansheng H, Weiqiu C. 2010, 
Saint-Venant torsion of orthotropic bars 
with inhomogeneous rectangular cross 
section. Compos Struct ,92, pp1449–57.  

[14] Arghavan S, Hematiyan MR., 2009. Torsion 
of functionally graded hollow tubes. Eur J 
Mech A/Solids ,28, pp 551–9.  

[15] Ecsedi I., 2009. Some analytical solutions for 
Saint-Venant torsion of non-homogeneous 
cylindrical bars. Eur J Mech A/Solids,28, pp 
985–990.  

[16] Krahula J.L., Lauterbach G.F., 1969. Finite 
Element Solution for Saint-Venant Torsion. 
AIAA J ,7, pp 2200–3. 



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page 

16 

[17] Li Z, Ko JM, Ni YQ., 2000. Torsional rigidity of 
reinforced concrete bars with arbitrary 
sectional shape. Finite Elem Anal Des,35, pp 
349–61.  

[18] Saygun A, Omurtag MH, Orakdogen E, Girgin 
K, Kucukarslan S, Darilmaz K., 2007. A 
simplified solution of the torsional rigidity of 
the composite beams by using FEM. Adv 
Struct Eng,10, pp 467–73.  

[19] Jog CS, Mokashi IS., 2014. A finite element 
method for the Saint-Venant torsion and 
bending problems for prismatic beams. 
Comput Struct,135, pp 62–72.  

[20] Abdelkader K, Toufik Z, Mohamed BJ., 2015. 
Torsional stress in non-circular cross 
sections by the finite element method. Adv 
Mech Eng,7, pp 1–20.  

[21] Beheshti A., 2018. A numerical analysis of 
Saint-Venant torsion in strain-gradient bars. 
Eur J Mech A/Solids,70, pp 181–90.  

[22] Tsiatas GC, Babouskos NG., 2017. Elastic-
plastic analysis of functionally graded bars 
under torsional loading. Compos Struct ,176, 
pp 254–67.  

[23] Darılmaz K, Orakdö E., 2018. Saint-Venant 
torsion of arbitrarily shaped orthotropic 
composite or FGM sections by a hybrid finite 
element 1398, pp 1387–98.  

[24] Ecsedi I, Baksa A., 2019. Saint-Venant torsion 
of cylindrical orthotropic elliptical cross 
section. Mech Res Commun,99, pp 42–6.  

[25] Horgan CO, Chan AM., 1998. Torsion of 
functionally graded isotropic linearly elastic 
bars. J Elast, 52, pp 181–99.  

[26] Horgan CO., 2007. On the torsion of 
functionally graded anisotropic linearly 
elastic bars. IMA J Appl Math (Institute Math 
Its Appl, 72,pp 556–562.  

[27] Sapountzakis EJ., 2001. Nonuniform torsion 
of multi-material composite bars by the 
boundary element method. Comput Struct, 
79, pp 2805–16.  

[28] Katsikadelis JT, Tsiatas GC., 2016. Saint - 
Venant Torsion of Non - homogeneous 
Anisotropic Bars. J Appl Comput Mech,2, pp 
42–53.  

[29] Nikmehr O, Lashkarbolok M., 2019. A 
Numerical Investigation on the Torsional 
Rigidity of Bars with Functionally Graded 
Material (FGM) Cross Sections Weakened by 
Cracks. Iran J Sci Technol - Trans Civ Eng ,43, 
pp 117–123.  

[30] Gorzelańczyk P., 2010. Method of 
fundamental solutions and random numbers 

for the torsion of bars with multiply 
connected cross sections. Comput Assist 
Mech Eng Sci,17, pp 99–112. 

[31] Hassenpflug WC., 2003. Torsion of Uniform 
Bars with Polygon Cross-Section. Comput 
Math with Appl, 46, pp 313–92.  

[32] Kołodziej JA, Gorzelańczyk P., 2012. 
Application of method of fundamental 
solutions for elasto-plastic torsion of 
prismatic rods. Eng Anal Bound Elem, 36, pp 
81–6.  

[33] Chen H, Gomez J, Pindera MJ., 2020. Saint 
Venant’s torsion of homogeneous and 
composite bars by the finite volume method. 
Compos Struct ,242, pp 112–128.  

[34] Ferreira AJM., 2004. Polyharmonic (thin-
plate) splines in the analysis of composite 
plates. Int J Mech Sci ,46, pp 1549–69.  

[35] Liu GR., 2009. Mesh Free Methods: Moving 
beyond the finite element method. 2nd ed. 
CRC Press. 

[36] Hardy RL., 1971. Multiquadric Equations of 
Topography and Other Irregular Surfaces. J 
Geophys Res,76, pp 1905–1915. 

[37] Bui TQ, Nguyen MN, Zhang C., 2011. An 
efficient meshfree method for vibration 
analysis of laminated composite plates. 
Comput Mech ,48(2), pp 175–93.  

[38] Bui TQ, Nguyen MN., 2013. Meshfree 
Galerkin Kriging model for bending and 
buckling analysis of simply supported 
laminated composite plates. Int J Comput 
Methods,10,pp 1350011.  

[39] Bui TQ, Khosravifard A, Zhang C, Hematiyan 
MR, Golub M V., 2013. Dynamic analysis of 
sandwich beams with functionally graded 
core using a truly meshfree radial point 
interpolation method. Eng Struct,47,pp 90–
104.  

[40] Mukhtar FM, Al-Gahtani HJ., 2016. 
Application of radial basis functions to the 
problem of elasto-plastic torsion of 
prismatic bars. Appl Math Model,40, pp 436–
50.  

[41] Solanki MK, Mishra SK, Singh J. 2016. 
Meshfree approach for linear and nonlinear 
analysis of sandwich plates: A critical review 
of twenty plate theories. Eng Anal Bound 
Elem ,69, pp 93–103.  

[42] Liew KM, Zhao X, Ferreira AJM., 2011. A 
review of meshless methods for laminated 
and functionally graded plates and shells. 
Compos Struct ,93, pp 2031–41.  



Authors / Mechanics of Advanced Composite Structures Vol (year) first page-last page 

17 

[43] Ferreira AJM., 2005. Free Vibration Analysis 
of Timoshenko Beams and Mindlin Plates By 
Radial Basis Functions. Int J Comput 
Methods ,02, pp 15–31.  

[44] Ferreira AJM, Roque CMC, Jorge RMN., 
2005.Analysis of composite plates by 
trigonometric shear deformation theory and 
multiquadrics. Comput Struct 83, pp 2225–
37.  

[45] Fasshauer GE., 1997. Solving Partial Di 
erential Equations by Collocation with 
Radial Basis Functions. Construction, 93,pp 
1–8. 

[46] Fasshauer GE., 1999. Solving differential 
equations with radial basis functions: 
Multilevel methods and smoothing. Adv 
Comput Math, 11, pp 139–59.  

[47] Franke C, Schaback R., 1998. Solving partial 
differential equations by collocation using 
radial basis functions. Appl Math Comput,93, 
pp 73–82.  

[48] Singh J, Shukla KK.,2012. Nonlinear flexural 
analysis of laminated composite plates using 
RBF based meshless method. Compos Struct 
,94, pp 1714–20.  

[49] Singh J, Shukla KK., 2012. Nonlinear flexural 
analysis of functionally graded plates under 
different loadings using RBF based meshless 
method. Eng Anal Bound Elem ,36, pp 1819–
27.  

[50] Shukla V, Singh J., 2020. Modeling and 
analysis of cross-ply and angle-ply laminated 
plates under patch loads using RBF based 
meshfree method and new HSDT. Comput 
Math with Appl ,79, pp 2240–57.  

[51] Shukla V, Singh J., 2020. Buckling behavior of 
rectangular angle-ply laminated composite 
plates subjected to thermal and mechanical 
loads using the meshfree method. Int J 
Comput Mater Sci Eng , 09, pp 2050021.  

[52] Skyciv Section Builder Software. Skyciv Platf 
2021.  

 

 

 


