
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,804 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
Symmetry reduction and one-dimensional optimal system of the Hunter-Saxton equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 24 بهمن 1403 اصل مقاله (367.49 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2024.34657.5184 | ||
نویسندگان | ||
Mehdi Jafari* ؛ Sajiyeh Safaeinejad | ||
Department of Mathematics, Payame Noor University, PO BOX 19395-4697, Tehran, Iran | ||
تاریخ دریافت: 15 خرداد 1403، تاریخ پذیرش: 29 مرداد 1403 | ||
چکیده | ||
This study introduces the Hunter-Saxton equation to describe one model for nematic liquid crystals. We investigate the symmetry group of the Hunter-Saxton equation by applying the classical Lie symmetry methods. Also, by utilizing the classification of one-dimensional subalgebras of the symmetry algebra for this equation, we compute the optimal system of one-parameter subalgebras. Then by using this optimal system and differential invariants, we reduce the equation and obtain the group-invariant solutions and conservation laws for the Hunter-Saxton equation. | ||
کلیدواژهها | ||
Hunter-Saxton equation؛ Optimal system؛ Group-invariant solutions؛ Conservation laws | ||
مراجع | ||
[1] H. Almusawa, R. Ghanam, and G. Thompson, Classification of symmetry lie algebras of the canonical geodesic equations of five-dimensional solvable lie algebras, Symmetry 11 (2019), 1354. [2] E.G. Virga, Variational Theories for Liquid Crystals, Chapman Hall, London, 1994. [3] G. Baumann, Symmetry Analysis of Differential Equations with Mathematica, Telos/ Springer, New York, NY, USA, 2000. [4] J.K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), 1498–1521. [5] A.G. Johnpillai and Ch.M. Khalique, Symmetry reductions, exact solutions, and conservation laws of a modified Hunter-Saxton equation, Abstr. Appl. Anal. 2013 (2013), 1–5. [6] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982. [7] M.Ch. Kakuli, W. Sinkala, and Ph. Masemola, Conservation laws and symmetry reductions of the Hunter-Saxton equation via the double reduction method, Math. Comput. Appl. 28 (2023), no. 5, 92. [8] M. Jafari, A. Zaeim, and A. Tanhaeivash, Symmetry group analysis and conservation laws of the potential modified KdV equation using the scaling method, Int. J. Geom. Meth. Mod. Phys. 19 (2022), no. 7, 2250098. [9] A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, I. Khan, D. Baleanu, and K. Sooppy Nisar, Lie analysis, conservation laws and travelling wave structures of nonlinear Bogoyavlenskii-Kadomtsev-Petviashvili equation, Results Phys. 19 (2020), 103492. [10] W. Liu, Y. Zhang, T. Houria, M. Mirzazadeh, M. Ekici, Q. Zhou, A. Biswas, and M. Belic, Interaction properties of solitonic in inhomogeneous optical fibers, Nonlinear Dyn. 95 (2019), no. 1, 557–563. [11] M. Nadjafikhah and S. Shaban, Computation of symmetry and conservation law for the Camassa-Holm and Hunter-Saxton equation, AUT J. Math. Comput. 4 (2023), no. 2, 113–122. [12] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer: New York, NY, USA, 1993. [13] P.J. Olver and Ph. Rosenau, Group-invariant solutions of differential equations, SIAM J. Appl. Math. 47 (1987), no. 2, 263–278. [14] W. Sinkala, Ch.M. Kakuli, T. Aziz, and A. Aziz, Double reduction of the Gibbons-Tsarev equation using admitted Lie point symmetries and associated conservation laws, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 713-721. [15] Sh.-W. Yao, S. Gulsen, M. Sajad Hashemi, M. Inc, and H. Bicer, Periodic Hunter-Saxton equation parametrized by the speed of the Galilean frame: Its new solutions, Nucci’s reduction, first integrals and Lie symmetry reduction, Results Phys. 47 (2023), 106370. | ||
آمار تعداد مشاهده مقاله: 14 تعداد دریافت فایل اصل مقاله: 30 |