- A. Maier "Plasmonics: Fundamentals and Applications" 2007 Springer Science and Business Media LLC.
- Hamouleh-Alipour, S. Khani, M. Ashoorirad, R. Baghbani. Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensors J. 2023; 13(2):14057-14066.
- Khani, M. Danaie, P. Rezaei, “Plasmonic all-optical modulator based on the coupling of a surface Plasmon stub-filter and a meandered MIM waveguide,” Optical and Quantum Electronics, vol. 54, no. 12, pp. 849, 2022.
- H. Asl, M. Khajenoori, Green extraction in separation technology, CRC Press, 2021.
- Khani, M. Danaie, and P. Rezaei. “Plasmonic all-optical metal insulator-metal switches based on silver nano-rods, comprehensive theoretical analysis, and design guidelines.” J. Computational Electron. 2021;20(1): 442-457.
- Jablan, H. Buljan, M. Soljačić, "Plasmonics in graphene at infrared frequencies" Physical Review B 80, 245435 (2009).
- H. L. Koppens, D. E. Chang, and F. Javier García de Abajo "Graphene plasmonics: A platform for strong light_matter interactions," Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.
- M. Ebadi, S. Khani, Highly-miniaturized nano-plasmonic filters based on stepped impedance resonators with tunable cut-off wavelengths, Plasmonics 18 (4), 1607-1618, 2023.
- Einarsson, and J. Bird. "Active plasmonic antenna arrays for terahertz frequency communications," Defense Technical Information Center, (2023): 35.
- R. Jalalvand, Z. Rashidi, et al. “Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration,” Steroids, 189 (2023): 109138.
- Mahankali, S. Mondal, R. R. Thipparaju, and S. Mohandoss. "Graphene-based waveguide fed hybrid plasmonic terahertz patch antenna." Frequenz 78, no. 1-2 (2024): 71-78.
- S. Cao, L. J. Jiang, and A. E. Ruehli. "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method" IEEE Transactions on Antennas and Propagation, vol. 64, no. 4, April 2016.
- Khodadadi, M. Babaeinik, et al. "Triple-band metamaterial perfect absorber for refractive index sensing in THz frequency." Optical & Quantum Electronics 55(5) (2023): 431.
- Zamzam, P. Rezaei, Y. I. Abdulkarim, and O. M. Daraei. "Graphene-based polarization-insensitive metamaterials with perfect absorption for terahertz biosensing applications: Analytical approach." Optics & Laser Technology 163 (2023): 109444.
- Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
- Hadipour, P. Rezaei, “A graphene-based triple band THz metamaterial absorber for cancer early detection,” Optical and Quantum Electronics, vol. 55, no. 13, pp. 1122, 2023.
- W. Hanson. "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene." Journal of Applied Physics 103, no. 6 (2008).
- Zamzam, P. Rezaei, “Renovation of dual-band to quad-band polarization-insensitive and wide incident angle perfect absorber based on the extra graphene layer,” Micro and Nanostructures, vol. 168, pp. 207261, August 2022.
- Kiani, P. Rezaei, M. Fakhr, “On-chip coronavirus shape antenna for wideband applications in terahertz band,” Journal of Optics, vol. 52, no. 2, pp. 860-867, 2023.
- G. Olabi, M. A. Abdelkareem, T. Wilberforce, E.T. Sayed. "Application of graphene in energy storage device–A review." Renewable & Sustainable Energy Reviews 135 (2021): 110026.
- Zamzam, P. Rezaei, O. Mohsen Daraei, S. A. Khatami “Band reduplication of perfect metamaterial terahertz absorber with an added layer: Cross symmetry concept,” Optical and Quantum Electronics, vol. 55, 391, 2023.
- Soleiman Meiguni, and A. Ghobadi-Rad. "WLAN substrate integrated waveguide filter with novel negative coupling structure." Modeling and Simulation in Electrical and Electronics Engineering 1, no. 2 (2015): 15-18.
- Kiani, F. Tavakkol Hamedani, P. Rezaei, “Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna,” Optik, vol. 244, 167595, pp. 1-10, 2021.
- Ullah, G. Witjaksono, I. Nawi, N. Tansu, M. I. Khattak, and M. Junaid. "A review on the development of tunable graphene nanoantennas for terahertz optoelectronic and plasmonic applications." Sensors 20, no. 5 (2020): 1401.
- Yaghobi, M.R.M. Moghaddam. "Design processes linear permanent magnet electrical vernier machines for future research directions: A review." Modeling and Simulation in Electrical and Electronics Engineering 2 (2) (2022): 29-36.
- Karami, et al. “Modified planar sensor for measuring the dielectric constant of liquid materials.” Electronics Letters 53 (19) (2017): 1300-1302.
- Zheng, et al. "Ultra wideband tunable terahertz metamaterial absorber based on single-layer graphene strip." Diamond and Related Materials, 141 (2024): 110713
- Khani, M. Danaie, and P. Rezaei. "Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications." Plasmonics 16, no. 6 (2021): 1891-1908.
- M. Ebadi, S. Khani, and J. Örtegren. "Design of miniaturized wide band-pass plasmonic filters in MIM waveguides with tailored spectral filtering." Optical and Quantum Electronics 56, no. 5 (2024): 1-24.
- Korani, A. Abbasi, M. Danaie. “Band-pass and band-stop plasmonic filters based on Wilkinson power divider structure.” Plasmonics 19 (2) (2024): 733-742.
- Kiani, P. Rezaei. “Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics.” Measurement 219 (2023): 113232.
- M. Ebadi, S. Khani, and J. Örtegren. "Ultra-compact multifunctional Surface plasmon device with tailored optical responses." Results in Physics 61 (2024): 107783.
- Khani, A. Farmani, and P. Rezaei. "Optical resistance switch for optical sensing." Optical Imaging and Sensing: Materials, Devices and Applications (2023): 83-122.
- H. Ramazannia, P. Rezaei, and F.T. Hamedani. "High-efficient wideband transmitarray antenna." IEEE Antennas and Wireless Propagation Letters 17, no. 5 (2018): 817-820.
- Ghaderi, and P. Rezaei. "Low profile wideband high gain transmitarray antenna for Ku band applications." Optics Communications (2024): 130701.
- Giddens, L. Yang, J. Tian, and Y. Hao. "Mid-infrared reflect-array antenna with beam switching enabled by continuous graphene layer." IEEE Photonics Technology Letters 30, no. 8 (2018): 748-751.
- H. Ramazannia Tuloti, P. Rezaei, F.T. Hamedani, “Unit-cell with flexible transmission phase slope for ultra-wideband transmitarray antennas,” IET Microwaves, Antennas & Propagation, vol. 13, no. 10, pp. 1522-1528, 2019.
- P. Chen, L. S. Wu, Y. Huang, K. X. Song, Y. P. Zhang, and J. F. Mao. "Terahertz transmit-array antenna with specific beamwidth based on thin film technology." IEEE Transactions on Antennas and Propagation (2024).
- Yang, J. Deng, and Q. Cao. "Terahertz Transmitarray Antenna Using Rotated Z-shaped Elements." In IEEE 2020 Cross-Strait Radio Science & Wireless Technology Conference (CSRSWTC), pp. 1-3, 2020.
- A. Falkovsky, "Unusual field and temperature dependence of the Hall effect in graphene." Physical Review B 75, no. 3 (2007): 033409.
- P. Gusynin, S.G. Sharapov, J.P. Carbotte. "Magneto-optical conductivity in graphene." Journal of Physics: Condensed Matter 19, no. 2 (2006): 026222.
- Danaeifar, N. Granpayeh, N Asger Mortensen, and Sanshui Xiao " Equivalent conductivity method: straightforward analytical solution for metasurface-based structures " J. Phys. D: Appl. Phys. 48, IOP Publishing, 2015.
- M. Hassan, S. H. Zainud-Deen, and H. A. Malhat. "Compact multi-function single/dual-beam graphene lens antenna for terahertz applications." IEEE 33rd National Radio Science Conference (NRSC), pp. 41-48, 2016.
- T. Li, S. Sun, N. Qi, and X. Shi. “Reconfigurable graphene circular polarization Reflectarray/Transmitarray Antenna,” Frequenz 73, no. 3-4 (2019): 77-88.
- H. Zainud-Deen, A.M. Mabrouk, and H.A.E. Malhat. “Terahertz graphene based metamaterial transmitarray,” Wireless Personal Communications 100 (2018): 1235-1248.
- Huang, John, and Jose Antonio Encinar. Reflectarray antennas. John Wiley & Sons, 2007.
- Rudrapati. "Graphene: Fabrication methods, properties, and applications in modern industries." Graphene Production and Application 1 (2020).
- A. Malhat, S. H. Zainud-Deen, and S. M. Gaber. "Circularly polarized graphene-based transmitarray for terahertz applications." IEEE XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), pp. 1-4, 2014.
- Shubham, D. Samantaray, S. K. Ghosh, Smrity Dwivedi, and Somak Bhattacharyya. "Performance improvement of a graphene patch antenna using metasurface for THz applications." Optik, 264 (2022): 169412.
- W. Miao, Z. Liu, Z. C. Hao, Y. Zeng, D. Zhu, J. H. Zhao, C. Y. Ding, L. Cheng, L. Zhao, W. Hong. "A 1.0-THz High-Gain Metal-Only Transmit-Array Antenna Based on High-Precision UV-LIGA Microfabrication Technology." IEEE Transactions on Terahertz Science and Technology (2023).
- P. Chen, L. S. Wu, Y. Huang, K. X. Song, Y. P. Zhang, and J. F. Mao. "Terahertz Transmit-Array Antenna with Specific Beamwidth Based on Thin Film Technology." IEEE Transactions on Antennas and Propagation (2024).
- W. Miao, Z. C. Hao, D. Q. Yu, C. Y. Ding, and F. Wu. "A W-band high-gain bilayer transmit-array antenna employing Huygens’ resonance." IEEE Antennas and Wireless Propagation Letters 22, no. 5 (2023): 1184-1188.
- Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle. "Terahertz technology and its applications." Drug Invention Today 5, no. 2 (2013): 157-163.
- Shi, S. Yuan, J. Zhou, and P. Jiang. "Terahertz technology and its applications in head and neck diseases." IScience 26, no. 7 (2023).
- Ma, Y. Yang, B. Li, and H. Guerboukha. "Application of Terahertz Frequency in Substance Detection and Recognition." Frontiers in Physics 10 (2022): 959847.
|