
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,970 |
تعداد دریافت فایل اصل مقاله | 7,656,409 |
Expanded U-Net Model for Road Extraction from Satellite Images | ||
Modeling and Simulation in Electrical and Electronics Engineering | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 01 اسفند 1403 اصل مقاله (531.76 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/mseee.2025.35100.1175 | ||
نویسندگان | ||
Mahdi Pahlevani؛ Fatemeh Zahra Pahlevan؛ Razieh Rastgoo* | ||
Electrical and Computer Engineering Department, Semnan University, Semnan, Iran. | ||
تاریخ دریافت: 01 شهریور 1403، تاریخ بازنگری: 05 آبان 1403، تاریخ پذیرش: 01 اسفند 1403 | ||
چکیده | ||
Reliable extraction of information from aerial images is a challenging issue with many practical applications. One of the specific challenges within this problem is the automatic detection of roads. Due to the presence of shadows, obstructions, and a wide variety of non-road objects, this task is considered as a complex problem in computer vision. Despite the previous efforts in the field of automatic road detection, there is still room for improving in this area. This paper aims to enhance detection accuracy by proposing a model for road segmentation in satellite images based on image segmentation techniques. To this end, we introduce a novel model, namely Expanded U-Net (EU-Net) by embedding the VGG19 layers to the base U-Net model. Evaluation results on the DeepGlobe Road Extraction dataset indicate enhancements in results compared to a base U-Net model. | ||
کلیدواژهها | ||
U-Net؛ VGG؛ Road Extraction؛ Image Segmentation؛ Satellite Images | ||
مراجع | ||
[1] World health organization (2020). https://www.who.int/news-room/fact-sheets/detail/road traffic-injuries
[2] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR. (2015)
[3] Majidi, N., Kiani, K., Rastgoo, R.: A deep model for super-resolution enhancement from a single image. Journal of AI and Data Mining, vol. 8, no. 4, pp. 451-460, 2020.
[4] Rastgoo, R., Sattari Naeini, V.: A neurofuzzy QoS-aware routing protocol for smart grids. 2014 22nd Iranian Conference on Electrical Engineering (ICEE), pp. 1080-1084, 2014.
[5] Kiani, K., Hematpour, R., Rastgoo, R.: Automatic grayscale image colorization using a deep hybrid model. Journal of AI and Data Mining, vol. 9, no. 3, pp. 321-328, 2021.
[6] Rastgoo, R., Kiani, K., Escalera, S., Sabokrou, M.: Multi-modal zero-shot dynamic hand gesture recognition. Expert Systems with Applications, vol. 247, pp. 123349, 2024.
[7] Rastgoo, R., Kiani, K.: Face recognition using fine-tuning of Deep Convolutional Neural Network and transfer learning. Journal of Modeling in Engineering, vol. 17, no. 58, pp. 103-111, 2019.
[8] Rastgoo, R., Sattari-Naeini, V.: Tuning parameters of the QoS-aware routing protocol for smart grids using genetic algorithm. Applied Artificial Intelligence, vol. 30, no. 1, pp. 52-76, 2016.
[9] Rastgoo, R., Sattari-Naeini, V.: Gsomcr: Multi-constraint genetic-optimized qos-aware routing protocol for smart grids. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 42, pp. 185-194, 2018.
[10] Zarbafi, S., Kiani, K., Rastgoo, R.: Spoken Persian digits recognition using deep learning. Journal of Modeling in Engineering, vol. 21, no. 74, pp. 163-172, 2023.
[11] Bagherzadeh, F., Rastgoo, R.: Deepfake image detection using a deep hybrid convolutional neural network. Journal of Modeling in Engineering, vol. 21, no. 75, pp. 19-28, 2023.
[12] Ahmadi, AM., Kiani, K., Rastgoo, R.: A Transformer-based model for abnormal activity recognition in video. Journal of Modeling in Engineering, vol. 22, no. 76, pp. 213-221, 2024.
[13] Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., Yuille, A.: The role of context for object detection and semantic segmentation in the wild. In: CVPR. (2014)
[14] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. In: ICLR. (2014)
[15] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR. (2015)
[16] Y. Wang et al., "DDU-Net: Dual-Decoder-U-Net for Road Extraction Using High-Resolution Remote Sensing Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022, Art no. 4412612, doi: 10.1109/TGRS.2022.3197546.
[17] Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved U-Net++. Remote Sens. 2019, 11, 1382. https://doi.org/10.3390/rs11111382
[18] J. Chen et al., "DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 1194-1206, 2021, doi: 10.1109/JSTARS.2020.3037893.
[19] Wang, Z., Jiang, K., Yi, P., Han, Z., & He, Z. (2020). Ultra-dense GAN for satellite imagery super-resolution. Neurocomputing, 398, 328-337.
[20] Zeng, L., Wardlow, B. D., Xiang, D., Hu, S., & Li, D. (2020). A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 237, 111511.
[21] Tarasiou, M., Chavez, E., & Zafeiriou, S. (2023). ViTs for SITS: Vision Transformers for Satellite Image Time Series. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10418-10428).
[22] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-241). Springer International Publishing.
[23] Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2022, October). Swin-unet: Unet-like pure transformer for medical image segmentation. In European conference on computer vision (pp. 205-218). Cham: Springer Nature Switzerland.
[24] Hoang, T. N., Nguyen, H. V. N., Nguyen, K. H., & Quach, L. D. (2023). Lane Road Segmentation Based on Improved UNet Architecture for Autonomous Driving. International Journal of Advanced Computer Science and Applications, 14(7).
[25] Singh, N. J., & Nongmeikapam, K. (2023). Semantic segmentation of satellite images using deep-UNet. Arabian Journal for Science and Engineering, 48(2), 1193-1205.
[26] Aghalari, M., Aghagolzadeh, A., & Ezoji, M. (2021). Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomedical signal processing and control, 69, 102841.
[27] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[28] Thakur, P. S., Sheorey, T., & Ojha, A. (2023). VGG-ICNN: A Lightweight CNN model for crop disease identification. Multimedia Tools and Applications, 82(1), 497-520.
[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal visual object classes (voc) chal- lenge. International Journal of Computer Vision, 88(2):303– 338, June 2010
[30] W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap measures for evaluation and validation in medical image analysis.,” IEEE Trans. Med. Imaging, vol. 25, no. 11, pp. 1451– 61, Nov. 2006.
[31] Demir, Ilke, et al. "Deepglobe 2018: A challenge to parse the earth through satellite images." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018. | ||
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 1 |