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Abstract

The total irregularity is a type of graph invariant and for a given simple graph G is calculated by the formula,

irrt(G) =
1

2

∑
{u,v}⊆V (G) | degGu − degGv |, in which degGv is the degree of the vertex v of G. This paper aims to

offer a classification of polyomino chains based on segments in terms of total irregularity. We can find a sequence for
all polyomino chains concerning this graph invariant by defining a non-decreasing function.
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1 Introduction and Preliminaries

Let G be a simple and undirected graph, with vertex set V (G) and edge set E(G). If a and b are two adjacent
vertices, then the edge connecting them is denoted by e = ab. The degree of a vertex a is denoted by degGa. When
the graph under discussion is obvious in context, the subscript G will be omitted. The degree-based graph invariants
are parameters defined by degrees of vertices. Gutman and Trinajestic introduced the first graph parameters more
than thirty years ago, [8]. The Zagreb indices were originally defined as follows:

M1(G) =
∑

u∈V (G)

deg2Gu,

M2(G) =
∑

e=uv∈E(G)

degGu degGv.

Here, M1(G) and M2(G) denote the first and the second Zagreb index, respectively. Alternatively the first Zagreb
index can be expressed as

M1(G) =
∑

e=uv∈E(G)

[degGu+ degGv].

We refer the reader to [10] for the proof of this equation. These indices have a long history; interested readers can
look up additional information on Zagreb indices in [7, 10, 17, 16, 18]. The number | degGa− degGb | is an important
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parameter associated with the edge e. This number is defined as the imbalance of the edge e = ab. In [4], Albertson
defined the irregularity of G as irr(G) = 1

2

∑
e=uv∈E(G) | degGu − degGv | . The total irregularity of a graph G was

introduced by Abdo et al. [1] as irrt(G) = 1
2

∑
{u,v}⊆V (G) | degGu − degGv | . They obtained all graphs G such that

irrt(G) are the maximum possible value for them, and proved that among all trees of the same order, the star has the
maximal total irregularity.

Theorem 1.1. [1] For a simple undirected graph G with n vertices, it holds that:

irrt(G) ≤


1

12
(2n3 − 3n2 − 2n+ 3) n is odd

1

12
(2n3 − 3n2 − 2n) n is even

.

It is usual to assume that a graph invariant f is a measure of irregularity, when f(G) = 0 if and only if G is regular.
Since the irregularity and total irregularity are zero if and only if G is regular, they are measures of irregularity for
graphs. Furthermore, irrt(G) is an upper bound of irr(G). Dimitrov [5], compared these two important measures of

irregularity and proved that irrt(G) ≤ n2 irr(G)

4
, when G is an n-vertex connected graph. Moreover, for an arbitrary

n-vertex tree G, we have irrt(G) ≤ (n− 2)irr(G). For more information about results on total irregularity of graphs,
see [3, 6, 14, 19]. A plane graph is a graph can be embedded on a sphere in such a way that edges intersect each other
only in vertices of the graph. A connected graph G is called 2−connected, if for each vertex a, G − a is connected.
A finite 2−connected plane graph such that each interior face is surrounded by a regular square of length one is said
to be a polyomino system. Polyominoes have a long and rich history, we convey for the origin polyominoes, Klarner
[9]. A polyomino chain is a polyomino system, in which the joining of the centers of its adjacent regular forms a
path c1c2...cn, where ci is the center of the i−th square. Let Bn be the set of polyomino chains with n squares. For
Bn ∈ Bn, it is easy to see that |V (Bn)| = 2n+ 2 and |E(Bn)| = 3n+ 1.

The following introduces some key notions concerning polyomino chains that will be useful later. A polyomino
chain square can have one or two surrounding squares. A square is called terminal if it has only one nearby square,
and kink if it has two neighboring squares and a vertex of degree 2. In Figure 1, the kinks are denoted by the letter
K. The linear chain is a kink-free polyomino chain, see Figure 2.

Figure 1: The kinks.

Figure 2: A linear chain.

A maximal linear chain in a polyomino chain is called a segment, if it includes the kinks and/or terminal squares at
its end. The length of a segment S, l(S), is the number of squares in S. Note that for each segment S of a polyomino
chain with n ≥ 2 squares, 2 ≤ l(S) ≤ n. A polyomino chain with n squares consists of a sequence of segments
S1, S2, ..., Sr , 1 ≤ r ≤ n, with lengths l(Si) = li, 1 ≤ i ≤ r, where l1+ l2+ ...+ lr = n+ r− 1. In Figure 3, the squares
on each segments of a polyomino chain is shown by directional lines.



A classification of total irregularity of polyomino chains... 3

Figure 3: Segments of a polyomino chain.

A zigzag chain Zn with n squares is a polyomino with n − 2 kinks and in another word, a polyomino chain is a
zigzag chain if and only if the length of each segment is 2 , see Figure 4.

Figure 4: The zigzag chains Z6 and Z7.

Xu and Chen were studied the PI index of polyomino chains, [11]. After that Chen et.al. continue this program
to other topological indices, see [12, 13]. Present author in [15] continue this line of research by calculation the first
and second Zagreb indices of polyomino chains and then determine extremal polyomino chains with respect to Zagreb
indices. In [2], authors present split formula for total irregularity of polyomino chain. In this paper, we are interested
in finding relation between the number of segments and total irregularity of polyomino chains. We classify polyomino
chains based on segments by new approach and using non-decreasing real function.

2 Main results

The purpose of this section is to categorize polyomino chains according to their total irregularity based on segments.
We begin by calculating the overall irregularity of polyomino chains, We have obtained it in a different method from
the proof presented in [2]. Following that, we’ll look at total irregularity’s behavior in relation to the number of
segments in each polyomino chain. The total irregularity of G is defined as:

irrt(G) =
1

2

∑
{u,v}⊆V (G)

| degGu− degGv |,

where degGv is the degree of the vertex v of G. It is easy to know that, for any Bn ∈ Bn, {degBnu | u ∈ V (Bn)} =
{2, 3, 4}. We will denote by n2, n3 and n4, the number of vertices of degree 2, 3 and 4, respectively. It is obvious that,
n2 ≥ 4, n3 ≥ 2 and |V (Bn)| = n2 + n3 + n4. For attaining the results of this paper, firstly we consider the following
useful lemma.
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Lemma 2.1. For every Bn ∈ Bn, the following formula is hold:

irrt(Bn) =
1

2

(
n2n3 + 2n2n4 + n3n4

)
.

Proof . We begin by defining the following sets:

A1 =
{
{u, v} ⊆ V (Bn)|degBnu = degBn

v
}
,

A2 =
{
{u, v} ⊆ V (Bn)|{degBn

u, degBn
v} = {2, 3}

}
,

A3 =
{
{u, v} ⊆ V (Bn)|{degBnu, degBnv} = {2, 4}

}
,

A4 =
{
{u, v} ⊆ V (Bn)|{degBnu, degBnv} = {3, 4}

}
.

Of course clearly,
∑

A1
| degBn

u−degBn
v |= 0,

∑
A2

| degBn
u−degBn

v |= n2n3,
∑

A3
| degBn

u−degBn
v |= 2n2n4

and finally, in the same manner, we can see
∑

A4
| degBn

u− degBn
v |= n3n4.

Then, by definition of total irregularity of Bn and according above arguments, we have:

irrt(Bn) =
1

2

∑
{u,v}⊆V (Bn)

|degBn
u− degBn

v|

=
1

2

4∑
i=1

∑
Ai

|degBn
u− degBn

v|

=
1

2

(
n2n3 + 2n2n4 + n3n4

)
.

□

Now we can apply the above conclusions to special case of polyomino chains and calculate the total irregularity
of linear and zigzag chains. It is easy to see that, irrt(Ln) = 4n − 4 and irrt(Zn) = n2 + 2n − 4. The continuing of
computing total irregularity of polyomino chains is established by our theorem. In the following theorem, we obtain
total irregularity of polyomino chains according the number of segments and squares.

Theorem 2.2. Let Bn be a polyomino chain with n squares and r segments. Then,

irrt
(
Bn

)
= −r2 + 2rn+ 2n− 3.

Proof . Let us first prove the following statement P (n) by induction on natural number n.

P (n):” For each polyomino chain with n squares and r segments, n2 = r + 3, n3 = 2n− 2r and n4 = r − 1.”

obviously the statement P (n) holds for n = 1. To prove the inductive step, one assumes the induction hypothesis
for n and then uses this assumption to prove that the statement holds for n+ 1. Assume that Bn+1 be a polyomino
chain with n+ 1 squares and k segments, the statement Pn+1 is as follows for Bn+1

Pn+1 : ”For polyomino chain Bn+1 with n+1 squares and k segments, n2 = k+3, n3 = 2n−2k+2 and n4 = k−1.”

Remove one of a terminal square of Bn+1. By this removing, we obtain a polyomino chain with n squares, call it
Bn. There are two cases for Bn:

Case 1: If removing terminal square be in the segment S of length rather than 2, (l(S) > 2) in Bn+1, then Bn

has k segments, see Figure 5. By hypothesis induction we have n′
2 = k + 3, n′

3 = 2n − 2k and n′
4 = k − 1, in

which n′
2, n

′
3 and n′

4 are the number of vertices of degree 2, 3 and 4, respectively. Now by adding removed square
and creating Bn+1 again, one can see that the number of vertices of degree 2 and 4 are not changed and just the
number of vertices of degree 3 are increased. Because v1, v2 ∈ V (Bn+1) as vertices of degree 2 are added to Bn. Since
degBn

v3 = degBn
v4 = 2 and degBn+1

v3 = degBn+1
v4 = 3, then v3 and v4 aren’t vertices of degree 2 in Bn+1. It is easy

to check that n2 = n′
2 = k+3, n3 = n′

3 +2 = 2n− 2k+2 and n4 = n′
4 = k− 1. Hence, the statement P (n+1) is hold

for Bn+1.
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Figure 5: Removing terminal square in Case 1.

Case 2: If removing square be in a segment S of length 2 in Bn+1, then Bn has k − 1 segments, see Figure 6. By
hypothesis induction, the number of vertices of degree 2, 3 and 4 are as n′

2 = k+ 2, n′
3 = 2n− 2k+ 2 and n′

4 = k− 2,
respectively. Add removed square to create Bn+1 again. So one added to the vertices of degree 2 and 4 , but the
number of the vertices of degree 3 is not changed. Because v1, v2 ∈ V (Bn+1) as vertices of degree 2 are are added,
also degBn

v3 = 2 and degBn+1
v3 = 3, moreover, degBn+1

v3 = 3 and degBn+1
v4 = 4. It is a simple matter to check that

n2 = n′
2 + 1 = k + 3, n3 = n′

3 = 2n− 2k + 2 and n4 = n′
4 + 1 = k − 1. In this case as well the statement P (n+ 1) is

hold for Bn+1.

Figure 6: Removing terminal square in Case 2.

By above argument about statement P (n) and Lemma 2.1, we have

irrt
(
Bn

)
=

1

2

(
n2n3 + 2n2n4 + n3n4

)
=

1

2

(
(r + 3)(2n− 2r) + 2(r + 3)(r − 1) + (2n− 2r)(r − 1)

)
= −r2 + 2rn+ 2n− 3.

□

We denote a polyomino chain with n squares and r segments by Br
n, clearly 1 ≤ r ≤ n− 1.It is necessary to note

that B1
n and Bn−1

n be linear and zigzag chain with n squares.

Corollary 2.3. The following are hold:

irrt
(
B1

n

)
= 4n− 4

irrt
(
B2

n

)
= 6n− 7

...

irrt
(
Bn−1

n

)
= n2 + 2n− 4.

In the following theorem, we define a non-decreasing real function and use it to achieve our desired classification.

Theorem 2.4. Let Br
n and Br−1

n be polyomino chain with n squares and r and r − 1 segments, respectively. Then

irrt
(
Br−1

n

)
< irrt

(
Br

n

)
.
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Proof . We define the function f : ℜ −→ ℜ, by f(x) = −x2+2rn+2n−3. One can see that f ′(x) = −2r+2n > 0 on
[1, n−1], so f is strictly non-decreasingre function. Thus, for every x, x−1 ∈ [1, n−1], we get f(x) < f(x−1). By using
Theorem 2.3, irrt

(
Br−1

n

)
= f(r−1) and irrt

(
Br

n

)
= f(r) for r, r−1 ∈ [1, n−1]∩N. Therefore irrt

(
Br−1

n

)
< irrt

(
Br

n

)
and this completes the proof. □

Corollary 2.5. (i) Let Br
n be a polyomino chain with n squares and r segments, for 1 ≤ r ≤ n − 1.The following

inequalities are hold:
irrt

(
B1

n

)
< irrt

(
B2

n

)
< · · · < irrt

(
Bn−1

n

)
.

(ii) For any Bn ∈ Bn, irrt(Ln) ≤ irrt(Bn) ≤ irrt(Zn), with right (left) equality if and only if Bn
∼= Zn (Bn

∼= Ln).
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