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Abstract

The purpose of this study was to estimate the unknown regression function h in a regression model having errors-in-
variables: (Y,X), where Y = h(U) + E and X = U + T . We propose a new adaptive estimator through the wavelet
shrinkage method to estimate h. In particular, the block thresholding method has been investigated by considering
some simple assumptions on E. Finally, using a simulation study, we have compared the proposed estimator with
other threshold estimators.
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1 Introduction

We are observing n pairs of independent random variables, denoted as (Y1, X1), (Y2, X2), ..., (Yn, Xn), in an errors-
in-variables regression model. In which value of τ ∈ {1, 2, .., n}, the model is as follows:

Yτ =h(Uτ ) + ϵτ (1.1)

Xτ =Uτ + Tτ

Here, we have a scenario where h is an unknown regression function, and we are given n identically and independent
i.i.d random variables X1 through Xn, which follow a uniform distribution of [0, 1]. Additionally, Ti and ϵi are also
i.i.d unobserved random variables, ϵi has zero mean. With the known probability density function of Ti denoted as
f . We suppose that all these random variables are independent, and ϵ1 through ϵn have finite moments of order 2.
Our goal is to estimate the unknown function h based on the observed data (Y1, X1), (Y2, X2), ..., (Yn, Xn). A lot of
attention has been given to estimate h using model (1.1), as evidenced by sources like [5, 6, 7, 8, 10, 11]. However,
this paper focuses on a broader problem: adaptively estimating h. The study also deals with ϵ1, ..., ϵn: to estimate
h, only the finite second order moments of ϵ1 are assumed. We don’t need to understand the distribution of ϵ1. The
assumption in [5], is being made easy, which requires finite moments bigger than 6 for ϵ1.
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2 Consideration and notations

We suppose that the sequel that h and f ∈ L2
per[0, 1], where

L2
per[0, 1] =

{
h;h is one− periodic and ||h||2 =

(∫ 1

0

h2(x)dx

)1/2

< ∞

}
. (2.1)

We consider there are a known fixed U∗ > 0 such that

||h||∞ = sup
x∈[0,1]

|h(x)| ≤ U∗ < ∞. (2.2)

Every function h ∈ L2
per([0, 1]) can be illustrated by its Fourier series

h(t) =
∑
q∈Z

F (h)(q)e2iπqt, t ∈ [0, 1] (2.3)

in which F (h)(q) refers the Fourier coefficient is offered by

F (h)(q) =

∫ 1

0

h(x)e−2iπqxdx, q ∈ Z (2.4)

whenever this integral exists. We take account the ordinary smooth type on f : these are three fixed, uf > 0, Uf > 0
and ϑ > 1, which that, every q ∈ Z, the Fourier coefficient of f , i.e. F (f)(q), is related to

uf

(1 + q2)ϑ/2
≤ |F (f)(q) ≤ Uf

(1 + q2)ϑ/2
. (2.5)

3 Function Space and Wavelets

3.1 Periodized Mayer Wavelets

We use an orthonormal wavelet, which is produced by dilation and transmission of a “father” wavelet of Mayer-type
φ and a “mother” wavelet of Mayer-type ζ. The principal characteristic of such wavelets are:

1 - Wavelets are smooth and frequency band-limited, i.e., the Fourier transforms φ and ζ have compact supports
with

supp(F (φ)) ⊂ [−4π3−1, 4π3−1]

and
supp(F (ζ)) ⊂ [−8π3−1,−2π3−1] ∪ [2π3−1, 8π3−1].

where supp denotes the support.

2 - If the Fourier transforms of π and ζ are also in Cm for a chosen m ∈ N , then it can be easily shown that φ
and ζ obey

|π(t)| = O((1 + |t|)−m−1), |ζ(t)| = O((1 + |t|)−m−1),

for every t ∈ R.

3 - The function (φ, ζ) is differentiable for all degree of differentiation. because their Fourier transform has a
compact support, and ζ has an infinite number of vanishing moments . that is, for each v ∈ N ,

∫∞
−∞ xvdx = 0

For the purpose of this paper, we use the periodized Meyer wavelet bases on the unit interval.For any x ∈ [0, 1] ,
any integer j and any k ∈ {0, ..., 2j − 1}. Let

φj,k = 2j/2φ(2jx− k), ζj,k = 2j/2ζ(2jx− k) (3.1)

are the elements of the wavelet basis, and

φper
j,k (x) =

∑
q∈Z

φj,k(x− q), ζperj,k (x) =
∑
q∈Z

ζj,k(x− q), (3.2)
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where, that is periodic. There is a j∗ ∈ Z in a way that the set D = {φper
j∗,k, k ∈ {0, ..., 2j∗ − 1}; φper

j,k , j ∈
N −{0, ..., j∗−1}, k ∈ {0, ..., 2j −1}} is an orthogonal basis of L2

per([0, 1]). In the following, index “per” is removed.
Consider jc ∈ Z, which that jc > j∗. A function h ∈ L2

per([0, 1]) it would be developed into a series as

h(x) =

2jc−1∑
k=0

αjc,kφjc,k(x) +

∞∑
j=jc

2j−1∑
k=0

βj,kζj,k(x) (3.3)

where

αj,k =

∫ 1

0

h(x)φ̄j,kdx, βj,k =

∫ 1

0

h(x)ζ̄j,kdx. (3.4)

3.2 Function spaces

We will define the function spaces the function spaces that will be utilized in the formulation of our maxiset.To
enhance clarity, we will use the following symbols for notation.∑

K

=
∑

K∈Aj

,
∑
(K)

=
∑

k∈βj,K

.

3.3 Besov balls

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. Set βj∗−1,k = αj∗,k. A function h belongs to the Besov balls Bs
p,r(M) if and

only if there is a constant M∗ > 0 which that the wavelet coefficients (3.4) is related to( ∞∑
j=j∗−1

(
2j(s+1/2−1/p)

(
2j−1∑
k=0

|βj,k|p
)1/p)r)1/r

≤ M∗

For a particular choice of parameters s, p and r, these sets contain the Holhder and Sobolev balls.

Definition 3.1. (Strong Besov spaces) Let 1 ≤ p < ∞. We say that a function f ∈ Lp([0, 1]) belongs to Bα
p,∞ if and

only if there are R > 0 which that

sup
γ>0

2γαp

∥∥∥∥∥∥
∑
j≤γ

∑
k∈∆j

βj,kζj,k

∥∥∥∥∥∥
p

p

≤ R < ∞.

Definition 3.2. (W -spaces) Let 0 < r < p < ∞ and σ = (σj)j be a positive sequence. We say that a function
f ∈ Lp([0, 1]) belongs to Wσ(r, p) if and only if there exists R > 0 such that

� for p ≥ 2

sup
γ>0

γr−p

∥∥∥∥∥∥
∑
j

∑
k∈∆j

βj,kI{bj(p)≤γσj}ζj,k

∥∥∥∥∥∥
p

p

≤ R < ∞

� for p ≤ 2

sup
γ>0

γr−p
∑
j

∑
k∈∆j

|βj,k|pI{bj(p)≤γσj}2
j(p/2−1) ≤ R < ∞

where bj(p) shows the normalized lp-norm of wavelet coefficients (βj,k)k∈∆j
i.e:

bj(p) =

2−j
∑
k∈∆j

|βj,k|p
 1

p

.
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Definition 3.3. (W̄ -spaces) Let 1 ≤ p < ∞, k ∈ R+, n0 ∈ N and let σ = (σj)j be a positive sequence. Let us
consider the sets βj,K with lj ≍ ln(n)

p
2 v1 , we say that:

1- A function f ∈ Lp([0, 1]) belongs to W̄σ,k,n0
if and only if there are R > 0 which that for p ≥ 2,

sup
n>n0

n
p−r
2

∑
m∈N

2−mp

∥∥∥∥∥∥
∑
j

∑
K

∑
(K)

βj,kI{bj,k(p)≤k2mn
−1
2 σj}

ζj,k

∥∥∥∥∥∥
p

p

≤ R < ∞,

for p ≤ 2

sup
n>n0

n
p−r
2

∑
m∈N

2−mp
∑
j

∑
K

∑
(K)

|βj,k|pI{bj,k(p)≤k2mn
−1
2 σj}

2j(
p
2−1) ≤ R < ∞.

2- A function f ∈ Lp([0, 1]) belongs to W̄ ∗
σ,k,n0

if and only if there are R > 0 which that :

sup
n>n0

n
p−r
2

∥∥∥∥∥∥
∑
j

∑
K

∑
(K)

βj,kI{bj,k(p)≤k2mn
−1
2 σj}

ζj,k

∥∥∥∥∥∥ |pp ≤ R < ∞,

where bj,K(p) shows the normalized lp-norm of wavelet coefficients (βj,k)k∈Bj,K
i.e.,

bj,K = (
1

ln(n)
p
2 v1

∑
(K)

|βj,k|p)1/p.

Definition 3.4. (Maxisets) Let 1 ≤ p < ∞ and n0 ∈ N . Let f̂ be an estimate of f . The maxiset of f̂ of the rate un

under the Lp risk is the set of functions f such that exists R > 0 satisfying

sup
n≥n0

γ−1
n En

f (||f̂ − f ||pp) ≤ R < ∞.

Such maxiset will be denoted Mn0
(f̂ , p, un).

4 Estimators

In this section, the estimators introduced by [2] are described as follows.

Wavelet coefficient estimators: For any j ≥ j∗ ∈ Z and any k ∈ {0, ..., 2j − 1}, we estimate αj,k =∫ 1

0
f(x)φj,k(x)dx by

α̂ =
1

n

n∑
ν=1

∑
s∈Cj

¯F (φj,k)(q)

F (f)(q)
Yνe

−2iπsxν (4.1)

Hj = supp(F (φj , 0)) = supp(F (φj,k)), and βj,k =
∫ 1

0
f(x)ζj,k(x)dx by

β̂j,k =
1

n

n∑
ν=1

GνI{|Gν |≤ηj}, (4.2)

where

Gν =
∑
q∈Dj

¯F (ζj,k)(q)

F (f)(q)
Yνe

−2iπsxν

Hj = supp(F (ζj , 0)) = supp(F (ζj,k)), and threshold ηj is defined by

ηj = ϑ2δj
√

n

lnn

ϑ =
√

H∗∗(H2
∗ + E(ξ21)), H∗ is (3) and H∗∗ = 2δ−1(2/c2g)(8π/3)

2δ. We consider two wavelet estimators for f : a linear
estimator and a nonlinear wavelet estimator based on block thresholding method.
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Linear estimator: Assuming that f ∈ B∗
p,r(M) with p ≥ 2, we define the linear estimator f̂L by

f̂L(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), (4.3)

where α̂j,k is explain by (4.1) and j0 ∈ Z is related to

2−1n1/(2q+2δ+1) ≤ 2j0 ≤ 21/(2q+2δ+1).

Block thresholding procedures: Let 1 < p < ∞ and 0 < ν ≤ 2. Let j1 be an integer satisfying

2j1 ≍ ln(n)
p
2 ν1

and σ be a known increasing positive sequence such that there exists ν > 0 satisfying,

σj1 ≍ ln(n)ν .

Let j2 be an integer satisfying 2j2 ≍ n
ν
2 . For all j ∈ {j1, ..., j2−1}, let us divide ∆j into consecutive nonoverlapping

blocks Bj,K of length j1 i.e.,

Bj,K = {k ∈ ∆j : (K − 1)lj ≤ k ≤ Klj − 1}, K ∈ Aj ,

where the sets Aj are defined by
Aj = {1, ..., 2j l−1

j }.

We can express the block thresholding procedure f̂ by:

f̂(x) =
∑
j≤j1

α̂j1,kφj1,k(x) +
∑

j1≤j<j2

∑
K∈Aj

∑
k∈Bj,K

β̂j,kI{b̂j,K(p)≥kσjn
−1
2 }

ζj,k(x), x ∈ [0, 1], (4.4)

where is a positive real number and b̂j,K(p) is the normalized lp-norm of estimators (β̂j,k)k∈Bj,K
i.e.,

b̂j,K(p) = (l−1
j

∑
k∈Bj,K

|β̂j,k|p)
1
p .

Starting from this general definition, we distinguish two kinds of procedures:

1. The global thresholding procedure which corresponds to the procedure f̂ described by (4.4) with

lj = 2j

such procedure will be denote f̂g.

2. the blockShrink procedure which corresponds to the procedure f̂ described by (4.4) with

lj ≍ ln(n)
p
2 ν1

such procedure will be denote f̂o.

5 Results

Let us first set the assumptions we shall need to prove our Theorems.Let us recall that the α̂j,k and β̂j,k are
estimate of the wavelet coefficients αj,k and βj,k and that σj is a known positive sequence.

Assumption 1: There is a fixed number C > 0 which that the following moments condition hold:

En
f (|α̂j1,k − αj1,k|p) ≤ Cσp

j1
n

−p
2 .

Assumption 2: There is a fixed number C > 0 which that the following moments condition hold:

En
f (|β̂j,k − αj,k|2p) ≤ Cσ2p

j1
n−p j ∈ {j1, ..., j2 − 1}.
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Assumption 3: There is a fixed number C > 0 such that the following moments condition hold:

Pn
f ((l

−1
j

∑
(K)

|β̂j,k − αj,k|p)
1
p ≥ λσjn

−1
2 ) ≤ Cn−h(λ), K ∈ Aj , j ∈ {j1, ..., j2 − 1},

where λ is a large enough real number and h is a positive function such that limx→∞ h(x) = ∞.

Assumption 4: There is a fixed number C > 0 which that the sequence σ and the integer j2 satisfy the following
weighted inequality: ∑

j<j2

∑
k∈∆j

σp
j ||ζj,k||

p
p ≤ Cn

p
2 .

Theorems below investigate the maxiset properties property of the block thresholding procedure f̂g and f̂o measured

under the Lp risk for the rate of convergence n
−αp

2 .

Theorem 5.1. Let 1 < p < ∞, σ = (σj)j be a known positive increasing sequence and let f̂ be the block thresholding
procedure described by (4.4). Then under the assumption 1-4 , for any α ∈ (0, 1), any k > k0 with k0 large enough,
the maxiset associated to the global thresholding procedure satisfies:

Mn0
(f̂g, p, n

−αp
2 ) ⊆ B

α
ν
p,∞

⋂
Wσ((1− α)p, p)

and the maxiset associated to the BlockShrink procedure satisfies:

Mn0(f̂
o, p, n

−αp
2 ) ⊆ B

α
ν
p,∞

⋂
W̄ ∗

σ,k,n0((1− α)p, p).

Theorem 5.2. Let 1 < p < ∞, σ = (σj)j be a known positive increasing sequence and let f̂ be the block thresholding
procedure described by (4.4).Then , under the assumption 1-4, for any α ∈ (0, 1), any k > k0 with k0 large enough,
the maxiset associated to the global thresholding procedure satisfies:

B
α
ν
p,∞

⋂
W̄ ∗

σ((1− α)p, p) ⊆ Mn0
(f̂g, p, n

−αp
2 ),

and the maxiset associated to the BlockShrink procedure satisfies:

B
α
ν
p,∞

⋂
W̄σ,k,n0

((1− α)p, p) ⊆ Mn0
(f̂o, p, n

−αp
2 ).

Theorem 5.3. Let 1 < p < ∞ ,R > 0 , δ ≥ 0 , σ = (2δj )j and f̂ be the Block Shrink procedure taken with ν = 2
1+2δ .

Under the assumptions 1-4, for s > 0 , r ≥ 1, π ≥ p, any k > k0 with k0 large enough, there is a fixed C > 0 such
that:

sup
f∈Bs

π,r(R)

En
f (||f̂ − f ||pp) ≤ Cn

−sp
1+2s+2δ , n ≥ n0

Remark 5.4. According to [1], the threshold value ϖ = 4.50524 is obtained by solving ϖ − Logϖ − 3 = 0. This
threshold value is obtained so that the wavelet estimation is optimized.

Remark 5.5. Based on the optimal properties of local and global optimization, the optimal block length is L = Logn.
Considering the length of the block and the threshold value introduced in the local and general modes of the obtained
wavelet estimator, it is simultaneously adaptive.

To prove Theorems 5.1, 5.2, and 5.3, we need to prove assumptions 1 to 4 for regression model error-in-variables.
So, to prove the theorems, first, we prove assumptions 1 to 4 in the estimation model of the regression function with
error-in-variable. Author in [2] has proved assumptions 1 and 2 in the case of p = 2. To prove assumption 3, we
consider the following lemma.

Lemma 5.6. (Cirelson, Ibragimov, Sudakov’s inequality) Let (ϱt, t ∈ T ) be a Gaussian process. Let defined
N = E[supt∈T ϱt] and W = supt∈T V ar(ϱt). Then, for all c > 0 we have,

p(sup
t∈T

ϱt ≥ c+N) ≤ exp(
−c2

2W
).
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In estimating the regression function with the error-in-variable using the wavelet method, we have the following
relationship for the wavelet coefficients:

ej,k,n = β̂j,k − βj,k =
1

n

n∑
ν=1

∑
q

F (ζj,k)(q)

F (f)(q)
ξνe

−2iπqxv

Let us set Cq = {a = (aj,k);
∑

(K) |aj,k|q ≤ 1} in which q ∈ R is related to q−1 + p−1 = 1 and {Z(a); a ∈ Cq} the
centered Gaussian process can state as:

Z(a) =
∑
(K)

aj,kej,k,n.

So we can say:

supZ(a) = (
∑
(K)

|ej,k,n|p)1/p.

Using Holder’s inequality and the assumption 2, we consider

N = En
f ( sup

a∈Cq

Z(a)) ≤
∑
(K)

(En
f |ej,k,n|p)1/p ≤ (Cn−222δj lj)

1/p (5.1)

and

W = sup
a∈Cq

V ar(Z(a)) = sup
a∈Cq

E[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱej,k,nej,ḱ,n] (5.2)

= n−2 sup
a∈Cq

E[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ[

n∑
ν=1

∑
q

∑
q́

F (ζj,k)(q)

F (f)(q)
ξνe

−2iπqxν
F (ζj,k)(q́)

F (f)(q́)
ξνe

−2iπq́xν ]]

= n−2 sup
a∈Cq

[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ[

n∑
ν=1

∑
q

∑
q́

F (ζj,k)(q)

F (f)(q)
E(ξν)

2E(e−2iπ(q−q́)xν )
F (ζj,k)(q́)

F (q)(q́)
]]

= n−2 sup
a∈Cq

E[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ[

n∑
ν=1

∑
q

∑
q́

F (ζj,k)(q)

F (f)(q)
ξνe

−2iπqxν
F (ζj,k)(q́)

F (f)(q́)
ξνe

−2iπq́xν ]]

= n−2 sup
a∈Cq

[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ[

n∑
ν=1

∑
q

∑
q́

F (ζj,k)(q)

F (f)(q)
)
F (ζj,k)(q́)

F (f)(q́)
d]]

where d is a constant as follows:
d = E(ξν)

2E(e−2iπ(q−q́)xν ).

So relation (5.2) is:

= n−2 sup
a∈Cq

[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ[

n∑
ν=1

∑
q

F (ζj,k)(q)F (ζj,k)(q)

|F (f)(q)|2

= n−1 sup
a∈Cq

[
∑

k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ[

∫ 1

0

ζj,k(x)ζj,k(x)dx|F (f)(q)|−2

≤ n−1 Cg

(1 + q2)δ/2
sup
a∈Cq

∑
k∈Bj,k

∑
ḱ∈Bj,k

aj,kaj,ḱ

∫ 1

0

ζj,k(x)ζj,k(x)dx

= n−1 Cg

(1 + s2)δ/2
sup
a∈Cq

(
∑

k∈Bj,k

|aj,k|2) ≤ n−1C.

If p = 2 in relation (5.1), then we have from relation (5.2) and Sudokov-Ibragimov lemma:

Vn = P ((q−1
j

∑
K

|β̂j,k − βj,k|p)1/p ≥ λn−1/2) ≤ P ((q−1
j

∑
(K)

|ej,k,n|p)1/p ≥ (λ− C)n−1/2))

≤ P (sup Z(a) ≥ C +N) ≤ exp(−qjh(λ)).
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So, assumption (3) was prove. For prove assumption (4), because 2j2 ≍ 2ν/2, then∑
j<j2

∑
k∈∆j

σp
j ∥ζj,k∥

p
p =

∑
j<j2

2j(pν/2) ≤ C2j2(pν/2) ≤ Cnp/2. (5.3)

So, using assumptions 1-4 and Theorems 5.1 and 5.2, theorem 5.3 can be used to obtain the convergence rate of
the block thresholding estimator. Theorem 5.1, 5.2 and 5.3 was proved in [3].

6 Simulation

The model (1.1) is considered. In this model, variable U is unobserved, and variable Y is observed. Instead of
the variable U , the observable variable X, which has a uniform distribution of 0 and 1, is used. The error term ϵ is
from the standard normal distribution and the variable T is also considered from the standard normal distribution.
To simulate a sample, 1024 of the mentioned distributions are considered. The MSE criterion was used to measure
the regression function estimator and the simulation results are presented in the chart and table below.

Figure 1: Estimation of the function by the method Linear, Hard Thresholding and Block Thresholding

Table 1: The MSE values for a linear and two nonlinear wavelet estimators

Linear Estimate Tresholding Estimate Block Tresholding Estimate

0.4528 0.3948 0.2856

7 Conclusion

The conventional wavelet method achieves adaptivity by employing term-by-term thresholding of the empirical
wavelet coefficients. This involves comparing each individual empirical wavelet coefficient to a predetermined threshold,
and retaining the coefficient if its magnitude surpasses the threshold level, or discarding it otherwise. This method
is spatially adaptive and the estimator is within a logarithmic of the optimal convergence rate across a broad range
of Besov classes. This achieves a degree of tradeoff between variance and bias contributions to the mean squared
error. However, the tradeoff is not optimal. The block thresholding for wavelet function estimation thresholds
empirical wavelet coefficients in groups rather than individually. This method increases estimation precision by
utilizing information about neighbouring wavelet coefficients.

Many parametric and non-parametric methods exist for estimating the regression function with variable errors.
The wavelet method is one of the non-parametric methods. Of course, the wavelet method can also be used as a linear,
thresholding, or block thresholding method. Both theoretically and through simulation, it can be concluded that the
block threshold method has a lower MSE value than other wavelet methods in estimating the regression function with
error.
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