- Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A., 2023. Cancer statistics. CA: A Cancer Journal for Clinicians, 73(1), pp. 17–48.
- Sudhakar, A., 2009. History of cancer: ancient and modern treatment methods. Journal of Cancer Science and Therapy, 1, pp. 1. doi:10.4172/1948-5956.100000e2
- Valastyan, S., Weinberg, R.A., 2011. Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, pp. 275-292.
- Cortés-Guirial, D., Hübner, M., Alyami, M., Bhatt, A., Ceelen, W., Glehen, O., Lordick, F., Ramsay, R., Sgarbura, O., Speeten, K.V., Turaga, K.K., Chand, M., 2021. Primary and metastatic peritoneal surface malignancies. Nature Reviews Disease Primers, 7, p. 91.
- Coccolini, F., Gheza, F., Lotti, M., Virzi, S., Iusco, D., Ghermandi, C., Melotti, R., Baiocchi, G., Giulini, S.M., Ansaloni, L., Catena, F., 2013. Peritoneal carcinomatosis. World Journal of Gastroenterology, 19(41), pp. 6979-6994.
- Rao, W., Deng, Z. S., 2010. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38(1), pp. 1-22. doi:10.1615/CritRevBiomedEng.v38. 80
- Hedayatnasab, Z., Abnisa, F., Wan Daud, W., 2017. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials and Design, 123, pp. 174-196. doi: 10.1016/j.matdes.2017.03.036
- Darvishi, V., Navidbakhsh, M., Amanpour, S., 2022. Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat and Mass Transfer, 58, pp. 1029–1039. doi: 10.1007/s00231-021-03161-3
- Peiravi, M., Eslami, H., Ansari, M., Zare-Zardini, H., 2022. Magnetic hyperthermia: Potentials and limitations. Journal of the Indian Chemical Society, 99, pp. 100269. doi: 10.1016/j.jics.2021.100269
- Rajan, A., Sahu, N. K., 2020. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. Journal of Nanoparticle Research, 22, pp. 319. doi:10.1007/s11051-020-05045-9
- Avugadda, S. K., Fernandez-Cabada, T., Soni, N., Cassani, M., Mai, B. T., Chantrell, R., Pellegrino, T., 2021. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Soc. Rev. 50, pp. 11614–11667. doi: 10.1039/D1CS00427A
- Johannsen, M., Thiesen, B., Wust, P., Jordan, A., 2010. Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia, 26, pp. 790-795. doi: 10.3109/02656731003745740
- Golneshan, A.A., Lahonian, M., 2011. Diffusion of magnetic nanoparticles in a multi-site injection process within a biological tissue during magnetic fluid hyperthermia using lattice Boltzmann method. Mechanics Research Communications, 38, pp. 425-430. doi: 10.1016/j.mechrescom.2011.05.012
- Lahonian, M., Golneshan, A.A., 2011. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method. IEEE Transactions on NanoBioscience, 10, pp. 262-268. doi: 10.1109/TNB.2011.2177100
- Adhikary, K., Banerjee, M., 2016. A thermo fluid analysis of the magnetic nanoparticles enhanced heating effects in tissues embedded with large blood vessels during magnetic fluid hyperthermia. Journal of Nanoparticles, pp. 6309231. doi: 10.1155/2016/6309231
- Liu, W., Chen, X., 2015. Numerical analysis of electromagnetically induced heating and bioheat transfer for magnetic fluid hyperthermia. IEEE Transactions on Magnetics, 51, pp. 1-4. doi: 10.1109/TMAG.2014.2358268
- Matsumi, Y., Kagawa, T., Yano, S., Tazawa, H., Shigeyasu, K., Takeda, Sh., Ohara, T., Aono, H., Hoffman, R.M., Fujiwara T., Kishimoto, H., 2021. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model. Cell Cycle, 20, 1122–1133 doi: 10.1080/15384101.2021.1919441
- Shoshiashvili, L., Shamatava, I., Kakulia, D., Shubitidze, F., 2023. Design and Assessment of a novel biconical human-sized alternating magnetic field coil for MNP hyperthermia treatment of deep-seated cancer. Cancers, 15, pp. 1672. doi: 10.3390/cancers15061672
- Attaluri, A., Jackowski, J., Sharma, A., Kandala, S. K., Nemkov, V., Yakey, Ch., DeWeese, Th.L., Kumar, A., Goldstein, R. C., 2020. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 37, pp. 1–14. doi: 10.1080/02656736.2019.1704448
- Bobade, R. S., Yadav, Sh. K., 2017. Lateral forces in the helical compression Sspring. International Journal for Research in Applied Science & Engineering Technology, 5(4), pp. 98-102.
- Misron, N., Ying, L. Q., Firdaus, R. N., Abdullah, N., Mailah N. F., Wakiwaka, H., 2011. Effect of inductive coil Sshape on sensing performance of linear displacement sensor using thin inductive coil and pattern guide. Sensors, 11, pp. 10522-10533. doi: 10.3390/s111110522
- Rouni, M.A., Shalev, B., Tsanidis, G., Markakis, I., Kraus, S., Rukenstein, P., Suchi, D., Shalev, O., Samaras, T., 2024. A validated methodological approach to prove the safety of clinical electromagnetic induction systems in magnetic hyperthermia. Cancers, 16, pp. 621. doi: 10.3390/cancers16030621
- Chia, D.K., Demuytere, J., Ernst, S., Salavati, H., Ceelen, W., 2023. Effects of hyperthermia and hyperthermic intraperitoneal chemoperfusion on the peritoneal and tumor immune contexture. Cancers, 15, pp. 4314. doi: 10.3390/cancers15174314
- Dev, K., Kadian, A., Manikandan, V., Pant, M., Mahapatro, A.K., Annapoorni, S., 2025. Annealing influence on the magnetic and thermal stability of FeNi3 nanoparticles for magnetic hyperthermia applications. Materials Today Communications, 43, pp. 111669. doi: 10.1016/j.mtcomm.2025.111669
- Singh, A., Kumar, P., Pathak, S., Jain, K., Garg, P., Pant, P., Mahapatro, A.K., Singh, R.K., Rajput, P., Kim, S.K., Maurya, K.K., Pant, R.P., 2024. Tailored nanoparticles for magnetic hyperthermia: Highly stable aqueous dispersion of Mn-substituted magnetite superparamagnetic nanoparticles by double surfactant coating for improved heating efficiency. Journal of Alloys and Compounds, 976, pp. 172999. doi: 10.1016/j.jallcom.2023.172999
- Salati, A., Ramazani, A., Kashi, M.A., 2020. Tuning hyperthermia properties of FeNiCo ternary alloy nanoparticles by morphological and magnetic characteristics. Journal of Magnetism and Magnetic Materials, 498, pp. 166172. doi: 10.1016/j.jmmm.2019.166172
- Litewka, J. D., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K., Karewicz, A., 2019. Superparamagnetic Iron Oxide nanoparticles—current and prospective medical applications. Materials, 12, 617. doi: 10.3390/ma12040617
- Khan, D., Rahman, A.U., Kumam, P., Watthayu, W., Sitthithakerngkiet, K., Gala, A.M., 2022. Thermal analysis of different shape nanoparticles on hyperthermia therapy on breast cancer in a porous medium: A fractional model. Heliyon, 8, pp. 10170.
- Khan, D., Rahman, A.U., Kumam, P., Watthayu, W., 2022. A fractional analysis of hyperthermia therapy on breast cancer in a porous medium along with radiative microwave heating. Fractal and Fractional, 6, pp. 82. doi: 10.3390/fractalfract6020082
- Shokri, A. J., Tavakoli, M. H., Sabouri Dodaran A. A., Akhoundi Khezrabad, M. S., 2016. Numerical study of the influence of coil step on the induction heating process in three-dimensional. Journal of Applied Electromagnetics, 4, pp. 37-44.
- Rosensweig, R.E., 2002. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, pp. 370–374. doi: 10.1016/S0304-8853(02)00706-0
- Pennes, H.H., 1948. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), pp. 93-122. doi: 10.1152/jappl.1948.1.2.93
- Giustini, A.J., Ivkov, R., Hoopes, P.J., 2010. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life, 1(1), pp. 17-32.
- Dürr, S., Janko, C., Lyer, S., Tripal, P., Schwarz, M., Zaloga, J., Tietze, R., Alexiou, C., 2013. Magnetic nanoparticles for cancer therapy. Nanotechnology Reviews, 2, pp. 395–409.
- http://itis.swiss/virtualpopulation/tissue-properties/database/
- Rezaeian, M., Sedaghatkish, A., Soltani, M., 2019. Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Delivery, 26, pp. 898–917. doi: 10.1080/10717544.2019.1660435
- Leeuwen, R.V., 2021. Development of an accurate temperature model for intraperitoneal hyperthermia. Master's Thesis, University of Twente.
- Liu, K., Wang, C., Cheng, P.J., 2013. Nonlinear behavior of thermal lagging in laser-irradiated layered tissue. Advances in Mechanical Engineering, 5, pp. 732575. doi: 10.1155/2013/732575
- Tang, Y., Jin, T., Flesch, R.C.C., Gao, Y., 2020. Improvement of solenoid magnetic field and its influence on therapeutic effect during magnetic hyperthermia. Journal of Physics D: Applied Physics, 53, pp. 235401. doi: 10.1088/1361-6463/ab87c5
- Rudnev, V., Loveless, D., Cook, R.L., 2017. Handbook of Induction Heating. 2nd ed. CRC Press, Boca Raton.
- Schooneveldt, G., Leijsen, Y.V., Balidemaj, E., Crezee, H., 2018. Clinical validation of a novel thermophysical bladder model designed to improve the accuracy of hyperthermia treatment planning in the pelvic region. International Journal of Hyperthermia, 35, pp. 383-397. doi: 10.1080/02656736.2018.1506164
|