
تعداد نشریات | 21 |
تعداد شمارهها | 632 |
تعداد مقالات | 9,260 |
تعداد مشاهده مقاله | 67,743,668 |
تعداد دریافت فایل اصل مقاله | 8,157,602 |
Round-Shaped Micro Bio-Lasers Utilizing Rhodamine B as a Gain Medium | ||
Progress in Physics of Applied Materials | ||
مقاله 3، دوره 5، شماره 2 - شماره پیاپی 9، بهمن 2025، صفحه 23-29 اصل مقاله (684.07 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2025.36146.1124 | ||
نویسندگان | ||
Shima Vahidi1؛ Maryam Aliannezhadi* 2؛ Zahra Gholizadeh1 | ||
1Physics department, Semnan university, Iran | ||
2Physics Department, Semnan University, Semnan, Iran | ||
تاریخ دریافت: 16 آذر 1403، تاریخ بازنگری: 02 اسفند 1403، تاریخ پذیرش: 21 اسفند 1403 | ||
چکیده | ||
Biolasers, new ones that utilize incorporated protein fluorophores within microscale optical cavities to produce coherent light, have a wide range of applications in medicine, including identification, diagnosing, and treating many diseases, skin repair, controlling chemical reactions, pattern generation, etc. Therefore, a new approach to form active microcavities for micro biolaser is proposed based on dye rhodamine B (RhB) and bovine serum albumin (BSA) in the paper. The results indicate the successful production of curved-shaped active cavities. The formed biocavities' average diameters and diameter dispersion are 35.221±0.674 μm and 1.9%, respectively. The output emissions of the device are studied under optical pumping by a Diode-Pumped Solid State (DPSS) laser with the Nd: YAG gain medium operated at 532 nm and an incidence angle of 45º. The output emissions are recorded at different angles, and the high output power is observed at an angle of 90° with the pump angle. Furthermore, the design device has different modes, and the lowest linewidth at half maximum (0.35 nm) and the highest quality factor (2313) are observed at an output wavelength of 809.6 nm. Therefore, the produced laser-activated microcavities can be exploited as suitable options in medical and non-medical optical applications. | ||
کلیدواژهها | ||
Bio Laser؛ Fluorescence Emission؛ Protein؛ Microcavity؛ Stimulated Emission | ||
مراجع | ||
[1] Sun, Y. and Fan, X., 2012. Distinguishing DNA by analog‐to‐digital‐like conversion by using optofluidic lasers.
[2] Fan, X. and Yun, S.H., 2014. The potential of optofluidic biolasers. Nature methods, 11(2), pp.141-147.
[3] Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters, 102(20).
[4] Van Nguyen, T., Mai, H.H., Van Nguyen, T., Duong, D.C. and Ta, V.D., 2020. Egg white based biological microlasers. Journal of Physics D: Applied Physics, 53(44), p.445104.
[5] Mai, H.H., Nguyen, T.T., Giang, K.M., Do, X.T., Nguyen, T.T., Hoang, H.C. and Ta, V.D., 2020. Chicken albumen-based whispering gallery mode microlasers. Soft Matter, 16(39), pp.9069-9073.
[6] Nguyen, V.T., Nguyen, X.T., Phan, N.N., Le, H.H. and Ta, V.D., 2023. STARCH BASED MICROSPHERE BIOLASERS. Journal of Science and Technique-Section on Physics and Chemical Engineering, 1(01).
[7] Ma, R., Pan, H., Shen, T., Li, P., Chen, Y., Li, Z., Di, X. and Wang, S., 2017. Interaction of flavonoids from Woodwardia unigemmata with bovine serum albumin (BSA): Application of spectroscopic techniques and molecular modeling methods. Molecules, 22(8), p.1317.
[8] Nguyen, T.T., Mai, H.H., Van Pham, T., Nguyen, T.X. and Ta, V.D., 2021. High quality factor, protein-based microlasers from self-assembled microcracks. Journal of Physics D: Applied Physics, 54(25), p.255108.
[9] Van Nguyen, T., 2020. High-quality factor, biological microsphere and microhemisphere lasers fabricated by a single solution process. Optics Communications, 465, p.125647.
[10] Nguyen, T.V., Nguyen, T.D., Pham, N.V., Nguyen, T.A. and Ta, D.V., 2021. Monodisperse and size-tunable high-quality factor microsphere biolasers. Optics Letters, 46(10), pp.2517-2520.
[11] Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters, 102(20).
[12] Aliannezhadi, M., Mozaffari, M.H. and Amirjan, F., 2023. Optofluidic R6G microbubble DBR laser: A miniaturized device for highly sensitive lab-on-a-chip biosensing. Photonics and Nanostructures-Fundamentals and Applications, 53, p.101108.
[13] Liu, Y., Yang, X., Wang, Y. and Gong, Y., 2024. Fiber Optofluidic Microlasers Toward High‐performance Biochemical Sensing. Optical and Electronic Fibers: Emerging Applications and Technological Innovations, pp.95-117.
[14] de Armas-Rillo, S., Abdul-Jalbar, B., Salas-Hernández, J., Raya-Sánchez, J.M., González-Hernández, T. and Lahoz, F., 2024. Analysis of Random Lasing in Human Blood. Biosensors, 14(9), p.441.
[15] Prasetyanto, E.A., Wasisto, H.S. and Septiadi, D., 2022. Cellular lasers for cell imaging and biosensing. Acta Biomaterialia, 143, pp.39-51.
[16] Gather, M.C. and Yun, S.H., 2011. Single-cell biological lasers. Nature Photonics, 5(7), pp.406-410.
[17] Van Nguyen, T., Van Pham, N., Mai, H.H., Duong, D.C., Le, H.H., Sapienza, R. and Ta, V.D., 2019. Protein-based microsphere biolasers fabricated by dehydration. Soft Matter, 15(47), pp.9721-9726.
[18] Cortes, F.R.U., Falomir, E., Lancis, J. and Mínguez-Vega, G., 2024. Pulsed laser fragmentation synthesis of carbon quantum dots (CQDs) as fluorescent probes in non-enzymatic glucose detection. Applied Surface Science, 665, p.160326.
[19] Zhang, Y., Shi, B., Zhang, B., Lv, H., Zhang, S., Wang, M. and Wang, X., 2024. Coherent random laser in Enteromorpha prolifera. Journal of Luminescence, 275, p.120760.
[20] Pan, T., Lu, D., Xin, H. and Li, B., 2021. Biophotonic probes for bio-detection and imaging. Light: Science & Applications, 10(1), p.124.
[21] Li, J., Li, X., Zheng, T., Chu, J., Shen, C., Sang, Y., Hu, S. and Guo, J., 2021. Random lasing based on abalone shell. Optics Communications, 493, p.126979. [3] Wu, X., Chen, Q., Sun, Y. and Fan, X., 2013. Bio-inspired optofluidic lasers with luciferin. Applied Physics Letters, 102(20).
[22] Pham, N.V., Nguyen, Q.N., Nguyen, T.V., Nguyen, T.A. and Ta, V.D., 2024. High quality factor, monodisperse micron-sized random lasers based on porous PLGA spheres. Optics Letters, 49(21), pp.6165-6168.
[23] Ta, V.D., Nguyen, T.V., Doan, T.A., Duong, D.C., Caixeiro, S., Saxena, D. and Sapienza, R., 2024. Random lasing in micron-sized individual supraparticles. Optics Letters, 49(14), pp.3886-3889.
[24] Gholizadeh, Z., Aliannezhadi, M., Ghominejad, M. and Tehrani, F.S., 2024. Novel boehmite and η-alumina nanostructures synthesized using a green ultrasonic-assisted hydrothermal method by clove extract for water treatment. Journal of Water Process Engineering, 65, p.105786.
[25] Al-Shemri, M.I., Aliannezhadi, M., Ghaleb, R.A. and Al-Awady, M.J., 2024. Au-H2Ti3O7 nanotubes for non-invasive anticancer treatment by simultaneous photothermal and photodynamic therapy. Scientific Reports, 14(1), p.25998.
[26] Aliannezhadi, M., Doost Mohamadi, F., Jamali, M. and Shariatmadar Tehrani, F., 2025. Ultrasound-assisted green synthesized ZnO nanoparticles with different solution pH for water treatment. Scientific Reports, 15(1), p.7203. | ||
آمار تعداد مشاهده مقاله: 74 تعداد دریافت فایل اصل مقاله: 91 |