
تعداد نشریات | 21 |
تعداد شمارهها | 632 |
تعداد مقالات | 9,260 |
تعداد مشاهده مقاله | 67,743,661 |
تعداد دریافت فایل اصل مقاله | 8,157,602 |
An Overview of Progression and Recent Trends in Additively Manufactured AlSi10Mg Alloy through Scientometrics | ||
Mechanics of Advanced Composite Structures | ||
دوره 12، شماره 3 - شماره پیاپی 26، بهمن 2025، صفحه 707-726 اصل مقاله (892.54 K) | ||
نوع مقاله: Review Article | ||
شناسه دیجیتال (DOI): 10.22075/macs.2025.34263.1681 | ||
نویسندگان | ||
Karthikeyan Lakshmanan* 1؛ Pitchipoo Pandian2؛ Rajakarunakaran Sivaprakasam1؛ Vignesh Kumar Vijaya Kumar3 | ||
1Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, 626117, India | ||
2Department of Mechanical Engineering, PSR Engineering College, Sivakasi, 626140, India | ||
3Department of Mechanical Engineering, K. Ramakrishnan College of Technology, Trichy, 621112, India | ||
تاریخ دریافت: 07 خرداد 1403، تاریخ بازنگری: 14 فروردین 1404، تاریخ پذیرش: 24 اردیبهشت 1404 | ||
چکیده | ||
This review presents a scientometric analysis of statistical research publications in the field of additively manufactured AlSi10Mg alloy and provides an extensive stance on research transition for the interested researchers in this field. Many researchers attempted to write review articles with manual work that ended with inadequate expertise to link common areas of the literature in a systematic and sequential manner. At present, most of the researchers’ challenges include gathering bibliometric sources with mapping, keyword collections, the author’s network, and year-wise progression in research areas. In this review, the Scopus engine was used to locate, gather required information, and statistics for consideration. The keywords AlSi10Mg and additive manufacturing were used in the Scopus search engine while collecting the relevant literature archives for the last ten years from 2014 to 2023. The VOSviewer software tool was used to visualize and create the bibliometric links from 1260 related documents, which contained abstracts, bibliographic citations, and other keywords. The review also summarized the various additive manufacturing processes of AlSi10Mg alloys. This review revealed that the Journal of "Additive Manufacturing" has the highest publication record in the research on additively manufactured AlSi10Mg alloys, with Gu Dongdong being the most productive researcher with 23 articles and 2131 citations. China, Italy, and Germany have the highest publication records. Laser bed fusion is the most preferred additive manufacturing process for producing AlSi10Mg to achieve the desired properties and the facility to apply numerous processing parameters. | ||
کلیدواژهها | ||
Aluminium alloy؛ AlSi10Mg؛ Additive manufacturing؛ Scientometric analysis | ||
مراجع | ||
[1] Schwarzer, E., Holtzhausen, S., Scheithauer, U., Ortmann, C., Oberbach, T., Moritz, T. and Michaelis, A., 2019. Process development for additive manufacturing of functionally graded alumina toughened zirconia components intended for medical implant application. Journal of the European Ceramic Society, 39(2–3), pp. 522–530. doi: 10.1016/j.jeurceramsoc.2018.09.003. [2] Saltzman, D., Bichnevicius, M., Lynch, S., Simpson, T.W., Reutzel, E.W., Dickman, C. and Martukanitz, R., 2018. Design and evaluation of an additively manufactured aircraft heat exchanger. Applied Thermal Engineering, 138, pp. 254–263. doi: 10.1016/j.applthermaleng.2018.04.032. [3] Bogue, R., 2013. 3D printing: The dawn of a new era in manufacturing. Assembly Automation, 33(4), pp. 307–311. doi: 10.1108/AA-06-2013-055. [4] Kleer, R. and Piller, F.T., 2019. Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing. International Journal of Production Economics, 216, pp. 23–34. doi: 10.1016/j.ijpe.2019.04.019. [5] Attaran, M., 2017. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), pp. 677–688. doi: 10.1016/j.bushor.2017.05.011. [6] Thijs, L., Kempen, K., Kruth, J.P. and Van Humbeeck, J., 2013. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia, 61(5), pp. 1809–1819. doi: 10.1016/j.actamat.2012.11.052. [7] Alexopoulos, N.D. and Pantelakis, S.G., 2004. Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Materials & Design, 25(5), pp. 419–430. doi: 10.1016/j.matdes.2003.11.007. [8] Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J. and Masanet, E., 2016. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, pp. 1559–1570. doi: 10.1016/j.jclepro.2015.04.109. [9] Duda, T. and Raghavan, L.V., 2018. 3D metal printing technology: the need to re-invent design practice. AI & SOCIETY, 33(2), pp. 241–252. doi: 10.1007/s00146-018-0809-9. [10] Herzog, D., Seyda, V., Wycisk, E. and Emmelmann, C, 2016. Additive manufacturing of metals. Acta Materialia, 117, pp. 371–392. doi: 10.1016/j.actamat.2016.07.019. [11] Aboulkhair, N. T., Simonelli, M., Parry, L., Ashcroft, I., Tuck, C. and Hague, R., 2019. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science, 106, pp. 100578. doi: 10.1016/j.pmatsci.2019.100578. [12] Amin, M.N., Ahmad, W., Khan, K. and Sayed, M.M., 2022. Mapping Research Knowledge on Rice Husk Ash Application in Concrete: A Scientometric Review. Materials (Basel), 15(10) pp. 3431. doi: 10.3390/ma15103431. [13] Markoulli, M.P., Lee, C. I. S. G., Byington, E. and Felps, W. A., 2017. Mapping Human Resource Management: Reviewing the field and charting future directions. Human Resource Management Review, 27(3), pp. 367–396. doi: 10.1016/j.hrmr.2016.10.001. [14] Lasda Bergman, E. M., 2012. Finding Citations to Social Work Literature: The Relative Benefits of Using Web of Science, Scopus, or Google Scholar. The Journal of Academic Librarianship, 8(6), pp. 370–379. doi: 10.1016/j.acalib.2012.08.002. [15] Meho, L.I., 2019. Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics, 13(1), pp. 419–433. doi: 10.1016/j.joi.2019.02.006. [16] Yang, D., Zhao, J., Ahmad, W., Amin, M.N., Aslam, F., Khan, K. and Ahmad, A., 2022. Potential use of waste eggshells in cement-based materials: A bibliographic analysis and review of the material properties. Construction and Builing Materials, 344(4), pp. 128143. doi: 10.1016/j.conbuildmat.2022.128143. [17] Wuni, I.Y., Shen, G.Q.P. and Osei-Kyei, R., 2019. Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018. Energy and Buildings, 190, pp. 69–85. doi: 10.1016/j.enbuild.2019.02.010. [18] Oraee, M., Hosseini, M. R., Papadonikolaki, E., Palliyaguru, R. and Arashpour, M., 2017. Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. International Journal of Project Management, 35(7), pp. 1288–1301. doi: 10.1016/j.ijproman.2017.07.001. [19] Yu, F. and Hayes, B., 2018. Applying Data Analytics and Visualization to Assessing the Research Impact of the Cancer Cell Biology (CCB) Program at the University of North Carolina at Chapel Hill. Journal of eScience Librarianship, 7(1), pp. e1123. doi: 10.7191/jeslib.2018.1123. [20] Martin, J.H., Yahata, B.D., Hundley, J. M., Mayer, J. A., Schaedler, T. A. and Pollock, T. M. 2017. 3D printing of high-strength aluminium alloys. Nature, 549 (7672), pp. 365–369. doi: 10.1038/nature23894. [21] Aboulkhair, N. T., Everitt, N. M., Ashcroft, I. and Tuck, C., 2014. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1–4, pp. 77–86. doi: 10.1016/j.addma.2014.08.001. [22] Mower, T.M. and Long, M.J., 2016. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Materials Science and Engineering: A, 651, pp. 198–213. doi: 10.1016/j.msea.2015.10.068. [23] Li, Y. and Gu, D., 2014. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Materials & Design., 63, pp. 856–867. doi: 10.1016/j.matdes.2014.07.006. [24] Li, X.P., Ji, G., Chen, Z., Addad, A., Wu, Y., Wang, H.W., Vleugels, J., Van Humbeeck, J. and Kruth, J.P., 2017. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Materialia, 129, pp. 183–193. doi: 10.1016/j.actamat.2017.02.062. [25] Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I. and Everitt, N.M., 2016. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Materials Science and Engineering: A, 667, pp. 139–146. doi: 10.1016/j.msea.2016.04.092. [26] Beretta, S. and Romano, S., 2017. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. International Journal of Fatigue, 94, pp. 178–191. doi: 10.1016/j.ijfatigue.2016.06.020. [27] Takata, N., Kodaira, H., Sekizawa, K., Suzuki, A. and Kobashi, M., 2017. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments. Materials Science and Engineering: A, 704, pp. 218–228. doi: 10.1016/j.msea.2017.08.029. [28] Romano, S., Brückner-Foit, A., Brandão, A., Gumpinger, J., Ghidini, T. and S. Beretta., 2018. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Engineering Fracture Mechanics, 187, pp. 165–189. doi: 10.1016/j.engfracmech.2017.11.002. [29] Kempen, K., Thijs, L., Van Humbeeck, J. and Kruth, J.P., 2015. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation. Materials Science and Technology, 31, no. 8, pp. 917–923. doi: 10.1179/1743284714Y.0000000702. [30] Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F. and Du plessis, A., 2021. Metal additive manufacturing in aerospace: A review. Materials & Design, 209, pp. 110008. doi: 10.1016/j.matdes.2021.110008. [31] WANG, Z. and ZHANG, Y., 2021. A Review of Aluminum Alloy Fabricated by Different Processes of Wire Arc Additive Manufacturing. Materials Science, 27(1), pp. 18–26. doi: 10.5755/j02.ms.22772. [32] Attaran, M., 2017. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Buiness Horizons, 60(5), pp. 677–688. doi: 10.1016/j.bushor.2017.05.011. [33] Liu.J. and Wen, P., 2022. Metal vaporization and its influence during laser powder bed fusion process. Materials & Design, 215, pp. 110505. doi: 10.1016/j.matdes.2022.110505. [34] Bhatt, P.M., Peralta, M., Bruck, H. A. and Gupta, S. K., 2018. Robot Assisted Additive Manufacturing of Thin Multifunctional Structures. in Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing, American Society of Mechanical Engineers. doi: 10.1115/MSEC2018-6620. [35] Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P. and Chmielus, M., 2021. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, pp. 100707. doi: 10.1016/j.pmatsci.2020.100707. [36] Ahn, D.G., 2021. Directed Energy Deposition (DED) Process: State of the Art. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(2), pp. 703–742. doi: 10.1007/s40684-020-00302-7. [37] Soundararajan, B., Sofia, D., Barletta, D. and Poletto, M., 2021. Review on modeling techniques for powder bed fusion processes based on physical principles. Additive Manufacturing, 47, pp. 102336. doi: 10.1016/j.addma.2021.102336. [38] Najmon, J.C., Raeisi, S. and Tovar, A., 2019. Review of additive manufacturing technologies and applications in the aerospace industry. Additive Manufacturing for the Aerospace Industry, Elsevier, pp. 7–31. doi: 10.1016/B978-0-12-814062-8.00002-9. [39] Song, X., Zhai, W., Huang, R., Fu, J., Fu, M.W. and Li, F., 2022. Metal-Based 3D-Printed Micro Parts and Structures. Encyclopedia of Materials: Metals and Alloys, Elsevier, pp. 448–461. doi: 10.1016/B978-0-12-819726-4.00009-0. [40] Ishfaq, K., Abdullah, M. and Mahmood, M. A., 2021. A state-of-the-art direct metal laser sintering of Ti6Al4V and AlSi10Mg alloys: Surface roughness, tensile strength, fatigue strength and microstructure. Optics & Laser Technology, 143, pp. 107366. doi: 10.1016/j.optlastec.2021.107366. [41] Alojaly, H. M., Hammouda, A. and Benyounis, K. Y., 2023. Review of recent developments on metal matrix composites with particulate reinforcement. Reference Module in Materials Science and Materials Engineering, Elsevier. doi: 10.1016/B978-0-323-96020-5.00041-8. [42] Ligon, S.C., Liska, R., Stampfl, J., Gurr, M. and Mülhaupt, R., 2017. Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 117(15), pp. 10212–10290. doi: 10.1021/acs.chemrev.7b00074. [43] Ziaee, M. and Crane, N. B., 2019. Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, pp. 781–801. doi: 10.1016/j.addma.2019.05.031. [44] Marczyk, J., Ostrowska, K. and Hebda, M., 2022. Influence of binder jet 3D printing process parameters from irregular feedstock powder on final properties of Al parts. Advanced Powder Technology, 33 (11), pp. 103768. doi: 10.1016/j.apt.2022.103768. [45] Svetlizky, D., Das, M., Zheng, B., Vyatskikh, A.L., Bose, S., Bandyopadhyay, A., Schoenung, J.M., Lavernia, E.J., Eliaz, N., 2021. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 49, pp. 271–295. doi: 10.1016/j.mattod.2021.03.020. [46] Tomar, B., Shiva, S. and Nath, T., 2022. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances. Materials Today Communication, 31, pp. 103739. doi: 10.1016/j.mtcomm.2022.103739. [47] Casalino, G., Karamimoghadam, M. and Contuzzi, N., 2023. Metal Wire Additive Manufacturing: A Comparison between Arc Laser and Laser/Arc Heat Sources. Inventions, 8(2), pp. 52. doi: 10.3390/inventions8020052. [48] Li.B., Wang, L., Wang, B., Li, D., Oliveira, J.P., Cui, R., Yu, J., Luo, L., Chen, R., Su, Y., Guo, J., fu, H., 2022. Electron beam freeform fabrication of NiTi shape memory alloys: Crystallography, martensitic transformation, and functional response. Materials Science and Engineering: A, 843, pp. 143135. doi: 10.1016/j.msea.2022.143135. [49] Rao, V.R., Pattanayak, D. K. and Vanitha, C., 2023. Hot Impression Creep Behavior of AlSi10Mg Alloy Fabricated through SLM Route. Transactions of the Indian Institute of Metals, 76(2), pp. 271–277. doi: 10.1007/s12666-022-02663-w. [50] Šutka, J., Medvecká, D., Koňar, R., Bruna, M. and Matejka, M., 2023. Evaluation of Selected Technological Parameters for Selective Laser Melting of AlSi10Mg Metal Powder. Manufacturing Technology, 23 (1), pp. 110–117. doi: 10.21062/mft.2023.003. [51] Wu, C., Xu, W., Wan, S., Luo, C., Lin, Z. and Jiang.m, X., 2022. Determination of Heat Transfer Coefficient by Inverse Analyzing for Selective Laser Melting (SLM) of AlSi10Mg. Crystals, 12(9), pp. 1309. doi: 10.3390/cryst12091309. [52] Ashwath, P., Xavior, M. A., Batako, A., Jeyapandiarajan, P. and Joel, J., 2022. Selective laser melting of Al–Si–10Mg alloy: microstructural studies and mechanical properties assessment. Journal of Materials Research and Technology, 17, pp. 2249–2258. doi: 10.1016/j.jmrt.2022.01.135. [53] Magerramova, L., Isakov, V., Shcherbinina, L., Gukasyan, S., Petrov, M., Povalyukhin, D., Volosevich, D., Klimova-Korsmik, O., 2021. Design, Simulation and Optimization of an Additive Laser-Based Manufacturing Process for Gearbox Housing with Reduced Weight Made from AlSi10Mg Alloy. Metals (Basel), 12(1), pp. 67. doi: 10.3390/met12010067. [54] Eom, Y. S., Kim, K. T., Kim, D. W., Jung, S. H., Nam, S.H., J. W., Yang, D. Y., Choe, J., Yu, J. H. and Son, I., 2021. Fabrication and mechanical properties of Al–Si-based alloys by selective laser melting process. Powder Metallargy, 64(3), pp. 198–205. doi: 10.1080/00325899.2021.1899470. [55] Gao, C., Wu, W., J. Shi, Z. Xiao. and Akbarzadeh. A.H., 2020. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Additive Manufacturing, 34, pp. 101378. doi: 10.1016/j.addma.2020.101378. [56] Uzan, N. E., Ratzker, B., Landau, P., Kalabukhov, S. and Frage, N., 2019. Compressive creep of AlSi10Mg parts produced by selective laser melting additive manufacturing technology. Additive Manufacturing, 29, pp. 100788. doi: 10.1016/j.addma.2019.100788. [57] Schneller, W., Leitner, M., Springer, S., Grün, F. and Taschauer, M., 2019. Effect of HIP Treatment on Microstructure and Fatigue Strength of Selectively Laser Melted AlSi10Mg. Journal of Manufacturing and Materials Processing, 3(1), pp. 16. doi: 10.3390/jmmp3010016. [58] Leon, A. and Aghion, E., 2017. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Materials Characterization, 131, pp. 188–194. doi: 10.1016/j.matchar.2017.06.029. [59] Tahmasbi, K., Muhammad, M., Avateffazeli, M., Yaghoobi, M., Tridello, A., Paolino, D.S., Shao, S., Shamsaei, N. and Haghshenas, M., 2024. Very high cycle fatigue characteristics of laser beam powder bed fused AlSi10Mg: A systematic evaluation of part geometry. International Journal of Fatigue, 189 (August), pp. 108544. doi: 10.1016/j.ijfatigue.2024.108544. [60] Avateffazeli, M., Shakil, S.I., Amir, H., Babak, S.A., Hadi, P., Mahyar, M. and Meysam, H., 2023. On microstructure and work hardening behavior of laser powder bed fused Al-Cu-Mg-Ag-TiB2 and AlSi10Mg alloys. Materials Today Communication, 35(March), pp. 105804. doi: 10.1016/j.mtcomm.2023.105804. [61] Shakil, S.I., Hadadzadeh, A., Pirgazi, H., Mohammadi, M. and Haghshenas, M., 2021. Indentation-derived creep response of cast and laser powder bed fused AlSi10Mg alloy: Air temperature. Micron, 150(September), pp. 103145. doi: 10.1016/j.micron.2021.103145. [62] Shakil, S. I., Hadadzadeh, A., Shalchi Amirkhiz, B., Pirgazi, H., Mohammadi, M. and Haghshenas, M 2021. Additive manufactured versus cast AlSi10Mg alloy: Microstructure and micromechanics. Results in Materials, 10(January), pp. 100178. doi: 10.1016/j.rinma.2021.100178. [63] Alghamdi, F., Song, X., Hadadzadeh, A., Shalchi-Amirkhiz, B., Mohammadi, M. and Haghshenas M., 2020. Post heat treatment of additive manufactured AlSi10Mg: On silicon morphology, texture and small-scale properties. Materials Science and Engineering: A, 783(January), pp. 139296. doi: 10.1016/j.msea.2020.139296. [64] Alghamdi, F. and Haghshenas, M., 2019. Microstructural and small-scale characterization of additive manufactured AlSi10Mg alloy. SN Applied Sciences, 1(3), pp. 1–10. doi: 10.1007/s42452-019-0270-5. [65] Jatti, V.S., Murali Krishnan, R., Saiyathibrahim, A., Preethi, V., Suganya Priyadharshini, G., Abhinav Kumar., Sharma, S., Islam, S., Kozak, D. and Lozanovic, J., 2024. Predicting specific wear rate of laser powder bed fusion AlSi10Mg parts at elevated temperatures using machine learning regression algorithm: Unveiling of microstructural morphology analysis. Journal of Materials Research and Technology, 33(September), pp. 3684–3695. doi: 10.1016/j.jmrt.2024.09.244. [66] Maleki, E. and Shamsaei, N., 2024. A comprehensive study on the effects of surface post-processing on fatigue performance of additively manufactured AlSi10Mg: An augmented machine learning perspective on experimental observations. Additive Manufacturing, 86(April), pp. 104179. doi: 10.1016/j.addma.2024.104179. [67] Fathi, P., Rafieazad, M., Duan, X., Mohammadi, M. and Nasiri, A.M., 2019. On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering. Corrosion Science, 157, pp. 126–145. doi: 10.1016/j.corsci.2019.05.032. [68] Palumbo, B., Del Re, F., Martorelli, M., Lanzotti, A. and Corrado, P., 2017. Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling. Materials (Basel), 10(2), pp. 144. doi: 10.3390/ma10020144. [69] Ghasri-Khouzani, M., Peng, H., Attardo, R., Ostiguy, P., Neidig, J., Billo, R., Hoelzle, D. and Shankar, M.R., 2019. Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes. Journal of Manufacturing Processes, 37, pp. 274–280. doi: 10.1016/j.jmapro.2018.12.005. [70] Baxter, C., Cyr, E., Odeshi, A. and Mohammadi, M., 2018. Constitutive models for the dynamic behaviour of direct metal laser sintered AlSi10Mg_200C under high strain rate shock loading. Materials Science and Engineering: A, 731, pp. 296–308. doi: 10.1016/j.msea.2018.06.040. [71] Hadadzadeh, A., Amirkhiz, B.S., Odeshi, A. and Mohammadi, M., 2018. Dynamic loading of direct metal laser sintered AlSi10Mg alloy: Strengthening behavior in different building directions. Materials & Design, 159, pp. 201–211. doi: 10.1016/j.matdes.2018.08.045. [72] Lorusso, M., Aversa, A., Manfredi, D., Calignano, F., Ambrosio, E.P., Ugues, D. and Pavese, M., 2016. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS). Journal of Materials Engineering and Performanc, 25(8), pp. 3152–3160. doi: 10.1007/s11665-016-2190-5. [73] Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E. and Atzeni, E., 2013. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering. Materials (Basel), 6(3), pp. 856–869. doi: 10.3390/ma6030856. [74] Vishnu, V., Prabhu, T. R. and Vineesh., K.P., 2024. Effect of hard anodizing and T6 heat treatment on the dry sliding wear behavior of AlSi10Mg fabricated by direct metal laser sintering. Wear, 564–565, no. December 2024, pp. 205677. doi: 10.1016/j.wear.2024.205677. [75] Prasad, R.M., Santhosh, U. N. K. N., Keshava, N. C. and Banakara, N., 2024. DMLS ‑ Based Additive Manufacturing of AlSi10Mg Alloy Samples and Investigation of Heat Treatment Effects on Mechanical Properties for Biomedical Applications. Journal of The insitution of Engineers (India) Series D, 0123456789. doi: 10.1007/s40033-024-00850-1. [76] Bian, H., Aoyagi, K., Zhao, Y., Maeda, C., Mouri, T. and Chiba, A., 2020. Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting. Additive Manufacturing, 32, pp. 100982. doi: 10.1016/j.addma.2019.100982. [77] Calignano, F., Mercurio, V., Rizza, G. and Galati, M., 2022. Investigation of surface shot blasting of AlSi10Mg and Ti6Al4V components produced by powder bed fusion technologies. Precision Engineering, 78, pp. 79–89. doi: 10.1016/j.precisioneng.2022.07.008. | ||
آمار تعداد مشاهده مقاله: 48 تعداد دریافت فایل اصل مقاله: 55 |