
تعداد نشریات | 21 |
تعداد شمارهها | 640 |
تعداد مقالات | 9,352 |
تعداد مشاهده مقاله | 67,997,277 |
تعداد دریافت فایل اصل مقاله | 27,144,754 |
Elaboration and Characterization of Waste Inked Paper-Poly (Vinyl Chloride) Composites: Effect of Paper Deinking | ||
Mechanics of Advanced Composite Structures | ||
دوره 13، شماره 1 - شماره پیاپی 27، تیر 2026، صفحه 57-68 اصل مقاله (725.25 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22075/macs.2025.35931.1761 | ||
نویسنده | ||
Samira Sahi* | ||
University of Bejaia, Faculty of Technology, Advanced Polymer Materials Laboratory, 06000, Bejaia, Algeria | ||
تاریخ دریافت: 24 آبان 1403، تاریخ بازنگری: 05 فروردین 1404، تاریخ پذیرش: 27 اردیبهشت 1404 | ||
چکیده | ||
The waste paper poses environmental problems because it is a wood-based resource. Recovering it as fiber for the preparation of low-cost and environmentally-friendly composite materials offers significant environmental benefits, including reducing deforestation and the preservation of fossil resources. Our study presents an innovative approach by using waste inked and deinked paper as a reinforcement in thermoplastic polymer. Polyvinyl chloride (PVC)-based composites reinforced with waste inked paper (WIP) and waste de-inked paper (WDIP) fibers with loading rates ranging from 10% to 30% (Wt.%) were prepared. The effect of paper deinking processes on the mechanical, morphological, and physicochemical properties of the resulting composites was studied. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the de-inking of paper after alkali-treatment. This result was confirmed by morphological analysis using optical spectroscopy. The results for the PVC/WIP and PVC/WDIP composites showed an improvement in the mechanical properties after the de-inking of the paper fiber. The tensile strength and the Young's modulus were increased by 16.90% and 37.80%, respectively, when 30% (Wt.%) of WDIP was added to PVC compared to WIP fiber. These results were confirmed by the optical spectroscopy (OS) analysis, where a better surface was observed in the PVC/WDIP composites. The water uptake test showed that the introduction of WDIP in PVC reduced water absorption by 18.38% compared with WIP fiber at a load charge of 30% (Wt.%). However, an increase in density was recorded. These results demonstrate that the incorporation of WDIP into PVC is not only feasible but also beneficial to environmental sustainability and economic growth. | ||
کلیدواژهها | ||
Composite materials؛ Polyvinyl chloride؛ Waste paper؛ Alkali-Treatment؛ De-Inking | ||
مراجع | ||
[1] Namazi, H., 2017. Polymers in our daily life. BioImpacts, 7(2), pp. 73-74. [2] Gubanova, E., Kupinets, L., Deforzh, H., Koval, V. and Gaska, K., 2019. Recycling of polymer waste in the context of developing circular economy. Architecture Civil Engineering Environment, 12(4), pp. 99-108. [3] Samir, A., Ashour, F.H., Abedel Hakim, A.A. and Basseyouni, A., 2022. Recent advances in biodegradable polymers for sustainable applications. NPJ Materials Degradation, 6(1), pp. 68. [4] Oliveira, D.M., Bomfim, A.S.C., Carvalho Benini, K.C.C., Cioffi, M.O.H., Voorwald, H.J.C. and Rodrigue, D., 2023. Waste Paper as a Valuable Resource: An Overview of Recent Trends in the Polymeric Composites Field. Polymers, 15(2), p. 426. [5] Zhou, W., Gong, Z., Zhang, L., Liu, Y., Yan, J. and Zhao, M., 2017. Lipids from waste paper. BioResources, 12(3), pp. 5249-5263. [6] Nair, A.S., Al-Battashi, H., Al-Akzawi, A., Annamalai, N., Gujarathi, A., Al-Bahry, S., Dhillon, G.S. and Sivakumar, N., 2018. Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Management, 79, pp. 491-500. [7] Su, Ji., Jiang, Z., Fang, C.; Zheng, Y., Yang, M., Pei, L. and Huang, Z., 2022. The Reinforcing Effect of Waste Corrugated Paper Fiber on Polylactic Acid. Polymers, 14, p. 3562. [8] Abdollahiparsa, H., Shahmirzaloo, A., Teuffel, P. and Blok, R., 2023. A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs). Composites and Advanced Materials, 32(1), pp. 1-18. [9] Zhang, X., Di, J., Xu, L., Lv, J., Duan, J., Zhu, X., Li, X. and Bo, X., 2022. High-value utilization method of digital printing waste paper fibers-Co-blending filled HDPE composites and performance improvement. Polymer Testing, 116, pp. 107790. [10] Espinach, F.X., Chamorro-Trenado, M.A., Llorens, J., Tresserras, J., Pellicer, N., Vilaseca, F. and Pèlach, A., 2019. Study of the flexural modulus and the micromechanics of old newspaper reinforced polypropylene composites. BioResources, 14(2), pp. 3578-3593. [11] Luo, Y., Xiao, S., Li, C., and Chen, Y., 2017. Relationships between bubble parameters and mechanical properties of fiber porous cushioning packaging material. Scientia Silvae Sinicae, 53(5), pp. 116-124. [12] Alamri, H. and Low, I.M., 2012. Mechanical properties and water absorption behavior of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), pp. 620-628. [13] Das, S., Basak, S., Bhowmick, M., Chattopadhyay, S.K. and Ambare, M.G., 2016. Waste paper as a cheap source of natural fibre to reinforce polyester resin in production of bio-composites. Journal of Polymer Engineering, 36(5), pp. 441-447. [14] Zheng, B., Hu, C., Guan, L., Gu, J., Guo, H. and Zhang, W., 2019. Structural characterization and analysis of high-strength laminated composites from recycled newspaper and HDPE. Polymers, 11(8), pp. 1311. [15] Guan, N., Hu, C., Guan, L., Zhang, W., Yun, H. and Hu, X., 2020. A process optimization and performance study of environmentally friendly waste newspaper/polypropylene film layered composites. Materials, 13(2), p. 413. [16] Das, S., 2017. Mechanical and water swelling properties of waste paper reinforced unsaturated polyester composites. Construction and Building Materials,138, pp. 469-478. [17] Lei, W., Zhou, X., Fang, C., Li, Y., Song, Y., Wang, C. and Huang, Z., 2019. New approach to recycle office waste paper: reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management, 95(38), pp. 59-69. [18] Zhao, L., Huang, H., Han, Q., Yu, Q., Lin, P., Huang, S., Yin, X., Yang, F., Zhan, J., Wang, H. and Wang, L., 2020. A novel approach to fabricate fully biodegradable poly(butylene succinate) biocomposites using a paper-manufacturing and compression molding method. Composites part A: Applied Science and Manufacturing, 139, pp. 106-117. [19] Zhang, X., Li, S., Li, J., Fu, B., Di, J., Xu, L. and Zhu, X., 2021. Reinforcing effect of nanocrystalline cellulose and office waste paper fibers on mechanical and thermal properties of poly (lactic acid) composites. Journal of Applied Polymer and Science, 138(21), pp. 50462. [20] Baroulaki, I., Karakasi, O., Pappa, G., Tarantili, P.A., Economides, D. and Magoulas, K., 2006. Preparation and study of plastic compounds containing polyolefins and post used newspaper fibers. Composites part A: Applied Science and Manufacturing, 37(10), pp. 1613-1625. [21] López, J.P., Mutjé, P., Carvalho, A.J.F., Curvelo, A.A.S. and Gironès, J., 2013. Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: Evaluation of the mechanical, thermal and water sorption properties. Industrial Crops and Products, 44, pp. 300-305. [22] Valente, M., Tirillò, J., Quitadamo, A. and Santulli, C., 2017. Paper fiber filled polymer. Mechanical evaluation and interfaces modification. Composites Part B: Engineering, 110, pp. 520-529 [23] Sfarra, S.; Perilli, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; De Rubeis, T. and Santulli, C.A., 2017. Proposal of a new material for greenhouses on the basis of numerical, optical, thermal and mechanical approaches. Construction and Building Materials, 155, pp. 332-347. [24] Thyavihalli-Girijappa, Y.G., Mavinkere- Rangappa S., Parameswaranpillai J. and Siengchin S., 2019. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Frontiers in Materials, 6, Article 226. [25] Nedjma, S., Djidjelli, H., Boukerrou, A. et Chibani, N., 2012. Effet du désencrage et d’un traitement de surface sur les propriétés mécaniques des composites PVC/fibre de papier journal. Annales de Chimie Science des Matériaux, 37(6), pp. 201-214. [26] Nedjma, S., Djidjelli, H., Boukerrou A., Benachour, D. and Chibani, N., 2012. Deinked and Acetylated fiber of newspapars. Journal of Applied Polymer Science, 127(6), pp. 4795-4801. [27] Madueke, C.I., Pandita, S.D., Biddlestone, F. and G.F., Fernando., 2024. Effects of NaOH treatment and NaOH treatment conditions on the mechanical properties of coir fibres for use in composites manufacture. Journal of the Indian Academy of Wood Science, 21(6), pp. 100-111. [28] Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M. and Garnier, C., 2023. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, p. 101271. [29] Chowdhury, M.D.A., Nowshin, N., Uddin, M.M. and Aquib, T.I., 2024. Recovery of Cellulose Fibers from Waste Books and Writing Paper by Flotation De-inking. North American Academic Research, 7(1), pp. 55-68. [30] Elgharbawy, A.S., 2022. Poly Vinyl Chloride Additives and Applications-A Review. Journal of Risk Analysis Crisis Response; 12(3), pp. 143-151. [31] Zhou, W., Gong, Z., Zhang, L., Liu, Y., Yan, J. and Zhao, M., 2017. Feasibility of lipid production from waste paper by the oleaginous yeast cryptococcus curvatus. BioResources, 12(3), pp. 5249-5263. [32] Acharya, P., Pai, D., Bhat, K.S. and Mahesha, G.T., 2024. Effect of Surface Chemical Modifications on Thermo-Physical and Mechanical Properties of Helicteres isora Natural Fiber. Journal of Natural Fibers, 21(1), p. 2406454. [33] Baghloul, R., Babouri, L., Hebhoub, H., Boukhelf, F. and El Mendili, Y., 2024. Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste. Buildings, 14(12), p. 3877. [34] Bretzel, F., Tassi, E.L., Rosellini, I., Bretzel, F., Marouani, E., Khouaja, A. and Koubaa, A., 2024. Evaluating the properties of deinking paper sludge from the Mediterranean area for recycling in local areas as a soil amendment and to enhance growth substrates. Euro-Mediterranian Journal of Environmental Integration, 9(4), pp.1-12. [35] Prabhakar, C.G., Reddy, M.S., Rajendrachari, S., Mahale, R.S., Mahesh, V. and Pandith, A., 2024. The Behavior of Banyan (B)/Banana (Ba) Fibers Reinforced Hybrid Composites Influenced by Chemical Treatment on Tensile, Bending and Water Absorption Behavior: An Experimental and FEA Investigation. Journal of Composites Science, 8(31), pp. 1-20. [36] Prome, F.S., Hossain,M.F., Rana, M.S., Islam, M.M. and Ferdous, M.S., 2025. Different chemical treatments of natural fiber composites and their impact on water absorption behavior and mechanical strength, Hybrid Advances, 8(1), p. 100379. [37] Bernal-Lugo, I., Jacinto-Hernandez, C., Gimeno, M., Montiel, C.C., Rivero-Cruz, F. and Velasco, O., 2019. Highly efficient single-step pretreatment to remove lignin and hemicellulose from softwood. BioResources, 14(2), pp. 3567-3577. [38] Hanafiah, S.F.M., Danial, W.H., Samah, M.A.A., Samad, W.Z., Susanti, D., Salim, R.M. and Majid, ZA., 2019. Extraction and characterization of microfibrillated and nanofibrillated cellulose from office paper waste. Malaysian Journal Analytical Science, 23(5), pp. 901-913. [39] Monteiro, S.N., Terrones, L.A.H. and D’Almeida J., 2008. Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), pp. 591-595. [40] Vinod, A., Vijay, R., Singaravelu, D.L., Khan, A.S., Siengchin, S., Verpoor, F., Alamry, K.A. and Asiri, A.M., 2022. Effect of alkali treatment on performance characterization of Ziziphus mauritiana fiber and its epoxy composites. Journal of Industrials Textiles, 51(2), pp. 2444-2466. [41] Huang, S., Fu, Q., Yan, L., and Kasal, B., 2021. Characterization of interfacial properties between fibre and polymer matrix in composite materials-A critical review. Journal of Materials Research and Technology, 13(9), pp. 1441-1484. [42] Serra-Parareda, F., Espinach, F.X., Pelach, M.À., Méndez, J.A., Vilaseca, F. and Tarrés, Q., 2020. Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers. Polymers, 12(6), p. 1428. [43] Islam, M.S., Pickering, K.L. and Foreman, N.J., 2011. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science, 119(6), pp. 3696-3707. [44] Kumar, V.J.B., Raj, J.B., Karuppasamy, R. and Thanigaivelan, R., 2022. Influence of Chemical Treatment and Moisture Absorption on Tensile Behavior of Neem/banana Fibers Reinforced Hybrid Composites: An Experimental Investigation. Journal of Natural Fibers, 19(8), pp. 3051-3062. [45] Seisa, K., Chinnasamy, V. and Ude, A.U., 2022. Surface Treatments of Natural Fibres in Fibre Reinforced Composites: A Review. Fibres & Textiles in Eastern Europe, 30(2), pp. 82-89. [46] Mohammed, M.M., Rasidi, M., Mohammed, A.M., Rahman, R.B., Osman, A.F., Adam, T., Betar, B.O. and Dahham, O.S., 2022. Interfacial bonding mechanisms of natural fibre-matrix composites: An overview. BioResources, 17(4), pp. 7031-7090. [47] Boussehel, H., Mazouzi, D.E., Belghar, N., Guerira, B. and Lachi, M., 2019. Effect of chemicals treatments on the morphological, mechanical, thermal and water uptake properties of polyvinyl chloride/palm fibers composites. Revue des Composites et des Matériaux Avancés, 29(1), pp. 1-8. [48] Wang, Z., Wei, R., Wang, X., He, J. and Wang, J., 2018. Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis-Fourier Transform Infrared (TG-FTIR) and Calorimeter. Materials, 11(10), p. 1997. [49] Siekierka, P., Makarewicz, E., Wilczewski, S., Lewandowski, K., Skórczewska, K., Mirowski, J., and Osial, M., 2023. Composite of Poly (Vinyl Chloride) Plastisol and Wood Flour as a Potential Coating Material. Coatings, 13(11), p. 1892. [50] Niem, T., Hübner, A. and Wöstmann, B., 2024. Water absorption in artificial composites: Curse or blessing. Dental Materias, 40(8), pp. 1097-1112. | ||
آمار تعداد مشاهده مقاله: 49 تعداد دریافت فایل اصل مقاله: 65 |