N
A

L, mean extension for the polar derivative of a polynomial

Mahmood Bidkham?*, Ahmad Motamednezhad®

2Department of Mathematics, University of Semnan, Semnan, Iran

bFaculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

(Communicated by Mugur Alexandru Acu)

Abstract

For a polynomial p(z) of degree n, we consider an operator D, which map a polynomial p(z) into D,p(z) :=
(o — 2)p'(2) + np(z) with respect to a. It was proved by Liman et al [ A. Liman, R. N. Mohapatra and W. M. Shah,
Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, 2012] that if p(z) has no zeros in
|z| <1 then forall a, 8 € C with |a] > 1, |8] <1 and |z| =1,

al—1 n al—1 al—1
2Dup() + n88 () < P+ B0z 8l e o),
2 2 2 2 |z]=1
In this paper, we present the integral L, mean extension of the above inequality for the polar derivative of polynomials.
Our result generalize certain well-known polynomial inequalities.
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1 Introduction

For a polynomial p(z) of degree n, Bernstein [5], proved that

maxt[p'(2)] < nmasx [p(2)] (L1)

|z|= z

The L, mean extension of inequality({1.1)) as following inequality proved by Zygmund [I5] in the case ¢ > 1 and in
the case 0 < g < 1, it is due to Arestov [I],

{f T penas)’ < nf /

Erdos conjectured and later Lax [8] proved that if p(z) having no zeros in |z| < 1, then (1.1)) can be replaced by

2m

|p(e“’)|qde}5, 0<q< oo (1.2)

, n
max |p (2)| < — max |p(2)]|. 1.3
max [p'(2)] < § max p(2) (13)
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As a generalization of inequality (1.3]), with the same assumptions it is proved that

{/O% |p/(ei9)|qd9}% SnCW{/O

27 1
|p(ei9)|ch} " for ¢ > 0, (1.4)

where

-1

I ; K
S iv|q
c, {277/0 |1+ ¢€"| d’y} . (1.5)

In the case ¢ > 1 inequality (|1.4) is proved by De-Brujin [6] and for the case 0 < ¢ < 1, it is due to Rahman and
Schmeisser [12].

Also Jain [7] obtained a refinement and generalization of inequality (1.3)) and proved that if p(z) is a polynomial
of degree n does not vanish in |z| < 1, then for every g with |8] <1 and |z] =1,

/() + G p(a)| < B+ 51+ 15 1) max (o) (16)

Let o be a complex number. For a polynomial p(z) of degree n, D,p(2), the polar derivative of p(z) is defined as
Dap(z) = np(2) + (o — 2)p'(2).

It is easy to see that D,p(z) is a polynomial of degree at most n — 1 and that D,p(z) generalizes the ordinary
derivative in the sense that

| = ¥(2). (L.7)

lim |
a—o00 o

Several researchers have explored the polar derivative of polynomials (see [10, 13} [14]). Aziz and Shah [4] extended
(1.1) to the polar derivative and proved that for any a with |a| > 1,

max |Dap(2)| < n|af |Inlax [p(2)]. (1.8)
=1 z|=1

2=
They also proved that if p(z) # 0 in |2| < 1, then for a € C with |a| > 1,

max | Dap(2)| < 5 (|a] +1) max p(2)]. (1.9)

|2l 2=

As an generalization of inequality ([1.4]) to polar derivative, Aziz and Rather [3] proved that if p(z) is a polynomial
of degree n does not any zeros in |z| < 1, then for any complex number « with |a| > 1,

)
{[ 1Dapteyran}™ < ol +0{ |

where C,, is in (1.5). As an improvement and generalization to the inequalities (1.10) and (1.6)), for a polynomial of
degree n as p(z) which does not any zeros in |z| < 1, Liman et al [9] proved that for all complex numbers 8, a with
18] <1, |a] > L and |z] =1,

27 1
|p(ew)|qd9} " forg > 1. (1.10)

2Dep() + 082 p(2)) < P+ 8

al—1 al -1
)+ ) mac ) (111)

Recently Mir and Wani [I1] proved that if p(z) is a polynomial of degree n having no zeros in |z| < 1, then for all
a, € Cwith |a] > 1, |8] <1and 0 <8 < 27w, we have for ¢ > 0

{f " pen|an}* < nc, (Jal+ 1+ [8l(lal - 1) / Tipenya)”, (1

where C,, is in (L.5). Obviosly, inequalities (1.6) and (L.11)) are not derived from inequality (1.12). In this paper, we

will solve these problems.

ol =1

e’ Dop(e) +np3

More precise, in the following theorem we obtain the L, mean extension and a refinement of the inequality (1.11).
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Theorem 1.1. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, then for all o, §, 8 € C with
la] > 1, ,]6] <1, |8] <1 and 0 <6 < 2w, we have for ¢ >0

([

where C, is in ([1.5).

Remark 1.2. Let ¢ — oo then inequality (1.13]) reduce to inequality (|1.11)).

ol =1 ol =1

e Dap(e’) + nﬁTp(ew)‘qu}% §n07<‘a + BT‘ + €% + BMQ_lD{/O% |p(ei9)|qd0}%. (1.13)

By dividing both sides of (1.13) by |a| and let || — oo, we obtain the following result that is the L, mean
extension of the inequality (1.6]).

Corollary 1.3. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, then for all 5 € C with || < 1 and
|z] = 1, we have for ¢ > 0

2m
{/
where C, is in ([1.5).

Remark 1.4. Let ¢ — oo then inequality (1.14) reduce to inequality ([1.6).

/() + (e an} " < e (114 5+ 12 / " lp(epran” (1.14)

2 Lemma

We need the following Lemmas, for the proofs of the theorem. The first Lemma is due to Aziz and Rather [2].

Lemma 2.1. Let p(z) be a polynomial of degree n and ¢(z) = z”p(%)7 then for each v, 0 < v < 27, and ¢ > 0,
27 2 ) ) ) 27 )
[ [ W+ engeypaoay < amnt [ pepras,
o Jo 0

The following Lemma is due to Liman et al [9].

Lemma 2.2. Let p(z) be a polynomial of degree n, does not vanish in |z| < 1, then for 5, a € C with |5| < 1, |a| > 1
and |z| =1, we have

ol =1 ol =1

2Dap(2) +nf q(z)|-

p(2)| < |2Dad(z) +nB

where ¢(z) = 2"p(2).

3 Proof of the theorem [1.1]

As q(z) = 2"p(2), then p(z) = 2"q(2). It can be obtained that for 0 < 6 < 2,

np(ew) _ eiép/(eie) _ ei(n—l)Gq/(ew)’

A , (3.1)
ng(e’) — eq'(e") = "V (),

By adding the above equalities we have

n(pe”) + e7q(e?)) = e ( () + e7q (7)) = 1 (G () + e () )

which gives

n(p(ew) + e”q(ew)) = e (p'(ew) + e”q'(ew)) + eln=10giv (p’(ew) + e”q’(eie)) (3.2)



4 Bidkham, Motamednezhad

Also from (3.1)) we get

np(e’®) — 9/ (e) + ¢ {ng(e"") — g/ ()} = V() + e () }

, , (3.3)
- e%(n—l)aew{p/(ew) n ei“/q’(e“’)}
Now we have
Dap(e) + €7 Dag(e) = np(e”) + (o — )/ () + ¢ (ng(e”) + (o — )/ (c"))
~{np(e®) = ep/ () + e (na(e?) — /() ) } + a P () + €7q (7))
—pin=1)0 iy (p/(ew) T emq/(ew)) n a(p’(ew) n ei’yq/(ew)). (3.4)
By using (3.2) and (3.4) and taking S(e?) = p/(e?) + ¢/ (") we have
. ) -1 ) . 1 )
¢ Dap(e) £+ nB L) + e {0 Dg(e) + gL ()
_ . . _ _1 _ o
= { Dp(e) + ¢ Dag(e®)} + +82 L n{p(e) + e%(e%}
2
o[ — , 1 . o
:ew{ez(n—l)@erys<619) + 045(610)} 8 |a|2 {6105(619) + ez(n—l)Qez'yS(e,e)}
6 | | i(n— 1)0 Y Q0 |a| -1 6 16
—(e + g ) S(e?) + (a+672 )e”s(e).
Since |S(ei®)| = [S(e?)| = |p'(e?) + €"7¢' (¢?)|. This conclude that
. . -1 ey . 1.
GZGDap(GZG)—FTLﬂ‘Od p(eze)+617{619Daq(610)+n5|a|2 q(ew)H
o olal—1 ol
Lo gl ‘ ‘ ‘ i
<{]e + = + |+ 85— JIS(?).
With the Lemma it implies that for each ¢ > 0,
27 21 ) ) -1 ) ) ) ] -1 )
/ / e“gDap(ew) + nﬁL| p(e’g) + e”{ewDaq(ew) + HBLA q(e“g)} ‘qdﬁd’y
o Jo
2w 27
S( 10 +B|0“ ’_'_‘ _’_5|a| / / 10 _,_emq( 19)|qd9d’y
. -1 1
§2mq( ¢ 4 pglol =1 ‘ ‘ L gl =1 \ ) / Ip(c?)|7d6.
2 0
This implies for each ¢ > 0, that
2 27 2
, —1 -1 ,
/ / 0)+eg(0)|?dody < 27mq( e+ ﬁ|a|2 ‘ ‘ + B|a| D / Ip(e?)|7df (3.5)
0
where
0) = 19D i0 la =1
f(0) = [ Dap(e”) +np p(e”)] (3.6)
and
) ) ol —1 .
0(0) = 16 Dag(e”) + 82— Lg(e)]

Now for every real v and r > 1, from the fact that

e > |14 e
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implies that

2m ) 27 )
/ |r + ey > / |1+ e |%dy.
0 0

For f(0) # 0, we can take r = ‘g(z;ﬂ, by Lemmawe have r > 1. Tt yields

1f(

o iy q _ q o ei’yﬂq
| 1@+ era@ray =i [ e Eia

. q 2r 9(9) ei’yq
i) [5G + ey
_ q o g(e) ei'yq
=I1)7 [ 155 + e

2
>[f(0)]1 / 11+ eM|edy. (3.7)

In the case f(f) = 0, the inequality (3.7)) is apparent. Now by substituting f(#) from (3.6) and combining

inequalities (3.5)) and (3.7)) we obtain

27 ) 2m 0 0 |O¢|*1 1]
| ey [ e Daple) + ns = e yras

. -1 —1pna [T .
<o (e + 1= o fa s 5B [ piejean,
0
The proof is completed for Theorem [1.1 O
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