ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2025.37212.5426



# $L_q$ mean extension for the polar derivative of a polynomial

Mahmood Bidkhama,\*, Ahmad Motamednezhadb

(Communicated by Mugur Alexandru Acu)

#### Abstract

For a polynomial p(z) of degree n, we consider an operator  $D_{\alpha}$  which map a polynomial p(z) into  $D_{\alpha}p(z) := (\alpha - z)p'(z) + np(z)$  with respect to  $\alpha$ . It was proved by Liman et al [ A. Liman, R. N. Mohapatra and W. M. Shah, Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory, 2012] that if p(z) has no zeros in |z| < 1 then for all  $\alpha$ ,  $\beta \in \mathbb{C}$  with  $|\alpha| \ge 1$ ,  $|\beta| \le 1$  and |z| = 1,

$$|zD_{\alpha}p(z) + n\beta \frac{|\alpha| - 1}{2}p(z)| \le \frac{n}{2} \{ [|\alpha + \beta \frac{|\alpha| - 1}{2}| + |z + \beta \frac{|\alpha| - 1}{2}|] \max_{|z| = 1} |p(z)|.$$

In this paper, we present the integral  $L_q$  mean extension of the above inequality for the polar derivative of polynomials. Our result generalize certain well-known polynomial inequalities.

Keywords: Polynomial, Integral inequality, Polar derivative, Restricted zeros.

2020 MSC: Primary 30A10; Secondary 30D15

#### 1 Introduction

For a polynomial p(z) of degree n, Bernstein [5], proved that

$$\max_{|z|=1} |p'(z)| \le n \max_{|z|=1} |p(z)|. \tag{1.1}$$

The  $L_q$  mean extension of inequality (1.1) as following inequality proved by Zygmund [15] in the case  $q \ge 1$  and in the case 0 < q < 1, it is due to Arestov [1],

$$\left\{ \int_{0}^{2\pi} |p'(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}} \le n \left\{ \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}}, \quad 0 < q < \infty.$$
 (1.2)

Erdös conjectured and later Lax [8] proved that if p(z) having no zeros in |z| < 1, then (1.1) can be replaced by

$$\max_{|z|=1} |p'(z)| \le \frac{n}{2} \max_{|z|=1} |p(z)|. \tag{1.3}$$

Email addresses: mbidkham@semnan.ac.ir (Mahmood Bidkham), a.motamedne@gmail.com (Ahmad Motamednezhad)

Received: March 2025 Accepted: May 2025

<sup>&</sup>lt;sup>a</sup>Department of Mathematics, University of Semnan, Semnan, Iran

<sup>&</sup>lt;sup>b</sup>Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

<sup>\*</sup>Corresponding author

As a generalization of inequality (1.3), with the same assumptions it is proved that

$$\left\{ \int_{0}^{2\pi} |p'(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}} \le nC_{\gamma} \left\{ \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}}, \text{ for } q > 0,$$
(1.4)

where

$$C_{\gamma} = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |1 + e^{i\gamma}|^{q} d\gamma \right\}^{\frac{-1}{q}}.$$
 (1.5)

In the case  $q \ge 1$  inequality (1.4) is proved by De-Brujin [6] and for the case 0 < q < 1, it is due to Rahman and Schmeisser [12].

Also Jain [7] obtained a refinement and generalization of inequality (1.3) and proved that if p(z) is a polynomial of degree n does not vanish in |z| < 1, then for every  $\beta$  with  $|\beta| \le 1$  and |z| = 1,

$$|zp'(z) + \frac{n\beta}{2}p(z)| \le \frac{n}{2}\{|1 + \frac{\beta}{2}| + |\frac{\beta}{2}|\} \max_{|z|=1}|p(z)|.$$
(1.6)

Let  $\alpha$  be a complex number. For a polynomial p(z) of degree n,  $D_{\alpha}p(z)$ , the polar derivative of p(z) is defined as

$$D_{\alpha}p(z) = np(z) + (\alpha - z)p'(z).$$

It is easy to see that  $D_{\alpha}p(z)$  is a polynomial of degree at most n-1 and that  $D_{\alpha}p(z)$  generalizes the ordinary derivative in the sense that

$$\lim_{\alpha \to \infty} \left[ \frac{D_{\alpha} p(z)}{\alpha} \right] = p'(z). \tag{1.7}$$

Several researchers have explored the polar derivative of polynomials (see [10, 13, 14]). Aziz and Shah [4] extended (1.1) to the polar derivative and proved that for any  $\alpha$  with  $|\alpha| \geq 1$ ,

$$\max_{|z|=1} |D_{\alpha}p(z)| \le n|\alpha| \max_{|z|=1} |p(z)|. \tag{1.8}$$

They also proved that if  $p(z) \neq 0$  in |z| < 1, then for  $\alpha \in \mathbb{C}$  with  $|\alpha| \geq 1$ ,

$$\max_{|z|=1} |D_{\alpha}p(z)| \le \frac{n}{2} (|\alpha|+1) \max_{|z|=1} |p(z)|. \tag{1.9}$$

As an generalization of inequality (1.4) to polar derivative, Aziz and Rather [3] proved that if p(z) is a polynomial of degree n does not any zeros in |z| < 1, then for any complex number  $\alpha$  with  $|\alpha| \ge 1$ ,

$$\left\{ \int_{0}^{2\pi} |D_{\alpha} p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}} \leq nC_{\gamma}(|\alpha|+1) \left\{ \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}}, \text{ for } q \geq 1.$$
 (1.10)

where  $C_{\gamma}$  is in (1.5). As an improvement and generalization to the inequalities (1.10) and (1.6), for a polynomial of degree n as p(z) which does not any zeros in |z| < 1, Liman et al [9] proved that for all complex numbers  $\beta$ ,  $\alpha$  with  $|\beta| \le 1$ ,  $|\alpha| \ge 1$  and |z| = 1,

$$|zD_{\alpha}p(z) + n\beta \frac{|\alpha| - 1}{2}p(z)| \le \frac{n}{2} \{ |\alpha + \beta \frac{|\alpha| - 1}{2}| + |z + \beta \frac{|\alpha| - 1}{2}| \} \max_{|z| = 1} |p(z)|.$$
(1.11)

Recently Mir and Wani [11] proved that if p(z) is a polynomial of degree n having no zeros in |z| < 1, then for all  $\alpha$ ,  $\beta \in \mathbb{C}$  with  $|\alpha| \ge 1$ ,  $|\beta| \le 1$  and  $0 \le \theta \le 2\pi$ , we have for q > 0

$$\left\{ \int_0^{2\pi} \left| e^{i\theta} D_{\alpha} p(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} p(e^{i\theta}) \right|^q d\theta \right\}^{\frac{1}{q}} \leq nC_{\gamma} \left( |\alpha| + 1 + |\beta| (|\alpha| - 1) \right) \left\{ \int_0^{2\pi} |p(e^{i\theta})|^q d\theta \right\}^{\frac{1}{q}}, \tag{1.12}$$

where  $C_{\gamma}$  is in (1.5). Obviously, inequalities (1.6) and (1.11) are not derived from inequality (1.12). In this paper, we will solve these problems.

More precise, in the following theorem we obtain the  $L_q$  mean extension and a refinement of the inequality (1.11).

**Theorem 1.1.** Let p(z) be a polynomial of degree n does not vanish in |z| < 1, then for all  $\alpha$ ,  $\delta$ ,  $\beta \in \mathbb{C}$  with  $|\alpha| \ge 1$ ,  $|\delta| \le 1$ ,  $|\beta| \le 1$  and  $0 \le \theta \le 2\pi$ , we have for q > 0

$$\left\{ \int_0^{2\pi} \left| e^{i\theta} D_{\alpha} p(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} p(e^{i\theta}) \right|^q d\theta \right\}^{\frac{1}{q}} \leq nC_{\gamma} \left( \left| \alpha + \beta \frac{|\alpha| - 1}{2} \right| + \left| e^{i\theta} + \beta \frac{|\alpha| - 1}{2} \right| \right) \left\{ \int_0^{2\pi} |p(e^{i\theta})|^q d\theta \right\}^{\frac{1}{q}}. \quad (1.13)$$

where  $C_{\gamma}$  is in (1.5).

**Remark 1.2.** Let  $q \to \infty$  then inequality (1.13) reduce to inequality (1.11).

By dividing both sides of (1.13) by  $|\alpha|$  and let  $|\alpha| \to \infty$ , we obtain the following result that is the  $L_q$  mean extension of the inequality (1.6).

Corollary 1.3. Let p(z) be a polynomial of degree n does not vanish in |z| < 1, then for all  $\beta \in \mathbb{C}$  with  $|\beta| \le 1$  and |z| = 1, we have for q > 0

$$\left\{ \int_{0}^{2\pi} \left| e^{i\theta} p'(e^{i\theta}) + \frac{n\beta}{2} p(e^{i\theta}) \right|^{q} d\theta \right\}^{\frac{1}{q}} \le nC_{\gamma} \left( |1 + \frac{\beta}{2}| + \frac{|\beta|}{2} | \right) \left\{ \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta \right\}^{\frac{1}{q}}. \tag{1.14}$$

where  $C_{\gamma}$  is in (1.5).

**Remark 1.4.** Let  $q \to \infty$  then inequality (1.14) reduce to inequality (1.6).

### 2 Lemma

We need the following Lemmas, for the proofs of the theorem. The first Lemma is due to Aziz and Rather [2].

**Lemma 2.1.** Let p(z) be a polynomial of degree n and  $q(z) = z^n \overline{p(\frac{1}{z})}$ , then for each  $\gamma$ ,  $0 \le \gamma < 2\pi$ , and q > 0,

$$\int_0^{2\pi} \int_0^{2\pi} |p'(e^{i\theta}) + e^{i\gamma} q'(e^{i\theta})|^q d\theta d\gamma \le 2\pi n^q \int_0^{2\pi} |p(e^{i\theta})|^q d\theta.$$

The following Lemma is due to Liman et al [9].

**Lemma 2.2.** Let p(z) be a polynomial of degree n, does not vanish in |z| < 1, then for  $\beta$ ,  $\alpha \in \mathbb{C}$  with  $|\beta| \le 1$ ,  $|\alpha| \ge 1$  and |z| = 1, we have

$$\left| z D_{\alpha} p(z) + n\beta \frac{|\alpha| - 1}{2} p(z) \right| \le \left| z D_{\alpha} q(z) + n\beta \frac{|\alpha| - 1}{2} q(z) \right|.$$

where  $q(z) = z^n \overline{p(\frac{1}{z})}$ .

## 3 Proof of the theorem 1.1

As  $q(z) = z^n \overline{p(\frac{1}{\overline{z}})}$ , then  $p(z) = z^n \overline{q(\frac{1}{\overline{z}})}$ . It can be obtained that for  $0 \le \theta \le 2\pi$ ,

$$np(e^{i\theta}) - e^{i\theta}p'(e^{i\theta}) = e^{i(n-1)\theta}\overline{q'(e^{i\theta})},$$
  

$$nq(e^{i\theta}) - e^{i\theta}q'(e^{i\theta}) = e^{i(n-1)\theta}\overline{p'(e^{i\theta})},$$
(3.1)

By adding the above equalities we have

$$n\Big(p(e^{i\theta}) + e^{i\gamma}q(e^{i\theta})\Big) - e^{i\theta}\Big(p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})\Big) = e^{i(n-1)\theta}\Big(\overline{q'(e^{i\theta})} + e^{i\gamma}\overline{p'(e^{i\theta})}\Big)$$

which gives

$$n\Big(p(e^{i\theta}) + e^{i\gamma}q(e^{i\theta})\Big) = e^{i\theta}\Big(p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})\Big) + e^{i(n-1)\theta}e^{i\gamma}\Big(\overline{p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})}\Big)$$
(3.2)

Also from (3.1) we get

$$np(e^{i\theta}) - e^{i\theta}p'(e^{i\theta}) + e^{i\gamma}\left\{nq(e^{i\theta}) - e^{i\theta}q'(e^{i\theta})\right\} = e^{i(n-1)\theta}\left\{\overline{q'(e^{i\theta})} + e^{i\gamma}\overline{p'(e^{i\theta})}\right\}$$
$$= e^{i(n-1)\theta}e^{i\gamma}\left\{\overline{p'(e^{i\theta})} + e^{i\gamma}q'(e^{i\theta})\right\}$$
(3.3)

Now we have

$$D_{\alpha}p(e^{i\theta}) + e^{i\gamma}D_{\alpha}q(e^{i\theta}) = np(e^{i\theta}) + (\alpha - e^{i\theta})p'(e^{i\theta}) + e^{i\gamma}\left(nq(e^{i\theta}) + (\alpha - e^{i\theta})q'(e^{i\theta})\right)$$

$$= \left\{np(e^{i\theta}) - e^{i\theta}p'(e^{i\theta}) + e^{i\gamma}\left(nq(e^{i\theta}) - e^{i\theta}q'(e^{i\theta})\right)\right\} + \alpha\left(p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})\right)$$

$$= e^{i(n-1)\theta}e^{i\gamma}\left(\overline{p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})}\right) + \alpha\left(p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})\right). \tag{3.4}$$

By using (3.2) and (3.4) and taking  $S(e^{i\theta}) = p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})$  we have

$$\begin{split} &e^{i\theta}D_{\alpha}p(e^{i\theta}) + n\beta\frac{|\alpha|-1}{2}p(e^{i\theta}) + e^{i\gamma}\Big\{e^{i\theta}D_{\alpha}q(e^{i\theta}) + n\beta\frac{|\alpha|-1}{2}q(e^{i\theta})\Big\} \\ &= &e^{i\theta}\Big\{D_{\alpha}p(e^{i\theta}) + e^{i\gamma}D_{\alpha}q(e^{i\theta})\Big\} + +\beta\frac{|\alpha|-1}{2}n\Big\{p(e^{i\theta}) + e^{i\gamma}q(e^{i\theta})\Big\} \\ &= &e^{i\theta}\Big\{e^{i(n-1)\theta}e^{i\gamma}\overline{S(e^{i\theta})} + \alpha S(e^{i\theta})\Big\} + \beta\frac{|\alpha|-1}{2}\Big\{e^{i\theta}S(e^{i\theta}) + e^{i(n-1)\theta}e^{i\gamma}\overline{S(e^{i\theta})}\Big\} \\ &= &\Big(e^{i\theta} + \beta\frac{|\alpha|-1}{2}\Big)e^{i(n-1)\theta}e^{i\gamma}\overline{S(e^{i\theta})} + \Big(\alpha + \beta\frac{|\alpha|-1}{2}\Big)e^{i\theta}S(e^{i\theta}). \end{split}$$

Since  $|\overline{S(e^{i\theta})}| = |S(e^{i\theta})| = |p'(e^{i\theta}) + e^{i\gamma}q'(e^{i\theta})|$ . This conclude that

$$\left| e^{i\theta} D_{\alpha} p(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} p(e^{i\theta}) + e^{i\gamma} \left\{ e^{i\theta} D_{\alpha} q(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} q(e^{i\theta}) \right\} \right| 
\leq \left\{ \left| e^{i\theta} + \beta \frac{|\alpha| - 1}{2} \right| + \left| \alpha + \beta \frac{|\alpha| - 1}{2} \right| \right\} |S(e^{i\theta})|.$$

With the Lemma 2.1, it implies that for each q > 0,

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left| e^{i\theta} D_{\alpha} p(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} p(e^{i\theta}) + e^{i\gamma} \left\{ e^{i\theta} D_{\alpha} q(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} q(e^{i\theta}) \right\} \right|^{q} d\theta d\gamma$$

$$\leq \left( \left| e^{i\theta} + \beta \frac{|\alpha| - 1}{2} \right| + \left| \alpha + \beta \frac{|\alpha| - 1}{2} \right| \right)^{q} \int_{0}^{2\pi} \int_{0}^{2\pi} |p'(e^{i\theta}) + e^{i\gamma} q'(e^{i\theta})|^{q} d\theta d\gamma$$

$$\leq 2\pi n^{q} \left( \left| e^{i\theta} + \beta \frac{|\alpha| - 1}{2} \right| + \left| \alpha + \beta \frac{|\alpha| - 1}{2} \right| \right)^{q} \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta.$$

This implies for each q > 0, that

$$\int_{0}^{2\pi} \int_{0}^{2\pi} |f(\theta) + e^{i\gamma} g(\theta)|^{q} d\theta d\gamma \le 2\pi n^{q} \left( \left| e^{i\theta} + \beta \frac{|\alpha| - 1}{2} \right| + \left| \alpha + \beta \frac{|\alpha| - 1}{2} \right| \right)^{q} \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta$$
(3.5)

where

$$f(\theta) = |e^{i\theta} D_{\alpha} p(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2} p(e^{i\theta})|$$
(3.6)

and

$$g(\theta) = |e^{i\theta}D_{\alpha}q(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2}q(e^{i\theta})|.$$

Now for every real  $\gamma$  and  $r \geq 1$ , from the fact that

$$|r + e^{i\gamma}| > |1 + e^{i\gamma}|$$

implies that

$$\int_0^{2\pi} |r + e^{i\gamma}|^q d\gamma \ge \int_0^{2\pi} |1 + e^{i\gamma}|^q d\gamma.$$

For  $f(\theta) \neq 0$ , we can take  $r = \frac{|g(\theta)|}{|f(\theta)|}$ , by Lemma 2.2 we have  $r \geq 1$ . It yields

$$\int_{0}^{2\pi} |f(\theta) + e^{i\gamma} g(\theta)|^{q} d\gamma = |f(\theta)|^{q} \int_{0}^{2\pi} |1 + e^{i\gamma} \frac{g(\theta)}{f(\theta)}|^{q} d\gamma$$

$$= |f(\theta)|^{q} \int_{0}^{2\pi} |\frac{g(\theta)}{f(\theta)} + e^{i\gamma}|^{q} d\gamma$$

$$= |f(\theta)|^{q} \int_{0}^{2\pi} |\frac{g(\theta)}{f(\theta)}| + e^{i\gamma}|^{q} d\gamma$$

$$\ge |f(\theta)|^{q} \int_{0}^{2\pi} |1 + e^{i\gamma}|^{q} d\gamma. \tag{3.7}$$

In the case  $f(\theta) = 0$ , the inequality (3.7) is apparent. Now by substituting  $f(\theta)$  from (3.6) and combining inequalities (3.5) and (3.7) we obtain

$$\int_{0}^{2\pi} |1 + e^{i\gamma}|^{q} d\gamma \int_{0}^{2\pi} \{|e^{i\theta}D_{\alpha}p(e^{i\theta}) + n\beta \frac{|\alpha| - 1}{2}p(e^{i\theta})|\}^{q} d\theta$$

$$\leq 2\pi n^{q} \left( \left| e^{i\theta} + \beta \frac{|\alpha| - 1}{2} \right| + \left| \alpha + \beta \frac{|\alpha| - 1}{2} \right| \right)^{q} \int_{0}^{2\pi} |p(e^{i\theta})|^{q} d\theta.$$

The proof is completed for Theorem 1.1.

### References

- [1] V.V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 3–22 (in Russian), English Transl. Math. USSR Izv. 18 (1982), 1–17.
- [2] A. Aziz and N.A. Rather, Some Zygmund type L<sup>q</sup> inequalities for polynomials, J. Math. Anal. Appl. 289 (2004), 14–29.
- [3] A. Aziz and N.A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Inequal. Appl. 1 (1998), 231—238.
- [4] A. Aziz and W. M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. Appl. 7 (2004), 379–391.
- [5] S. Bernstein, Sur la limitation des derivees des polnomes, C. R. Acad. Sci. Paris 190 (1930), 338-341.
- [6] N.G. De-Bruijn, *Inequalities concerning polynomials in the complex domain*, Nederl. Akad. Wetensch. Proc. **50** (1947), 1265–1272.
- [7] V.K. Jain, Generalization of certain well known inequalities for polynomials, Glas. Math. 32 (1997), 45–51.
- [8] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc. **50** (1944), 509–513.
- [9] A. Liman, R.N. Mohapatra, and W.M. Shah, *Inequalities for the polar derivative of a polynomial*, Complex Anal. Oper. Theory **6** (2012), 1199–1209.
- [10] S.A. Malik, B.A. Zargar, F.A. Zargar, and F.A. Sofi, Turan type inequalities for a class of polynomials with constraints, Int. J. Nonlinear Anal. Appl. 12 (2021), 583–594.
- [11] A. Mir and A. Wani, Polynomials with polar derivatives, Funct. Approx. 55 (2016), 139–144.
- [12] Q. I. Rahman and G. Schmeisser,  $L^p$  inequalities for polynomials, J. Approx. Theory, 53 (1998), 26–32.
- [13] N. A. Rather, N. Wani, T. Bhat, and I. Dar, *Inequalities for the generalized polar derivative of a polynomial*, Int. J. Nonlinear Anal. Appl. **16** (2025), no. 6, 153—159.

- [14] X. Zhao, Integral inequality for the polar derivatives of polynomials, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 2, 371–378.
- [15] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 (1932), 392–400.