
تعداد نشریات | 21 |
تعداد شمارهها | 648 |
تعداد مقالات | 9,475 |
تعداد مشاهده مقاله | 68,306,498 |
تعداد دریافت فایل اصل مقاله | 47,823,982 |
راهکارهایی جهت بهبود عملکرد الگوریتم بهینه سازی فاخته | ||
مدل سازی در مهندسی | ||
دوره 23، شماره 82، مهر 1404، صفحه 51-64 اصل مقاله (754.21 K) | ||
نوع مقاله: مقاله صنایع | ||
شناسه دیجیتال (DOI): 10.22075/jme.2025.34272.2676 | ||
نویسندگان | ||
حسین ناهید تیتکانلو* ؛ محدثه نادرشاهی؛ محمد کلمکانی | ||
گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران | ||
تاریخ دریافت: 12 خرداد 1403، تاریخ بازنگری: 01 دی 1403، تاریخ پذیرش: 12 دی 1403 | ||
چکیده | ||
این مقاله به ارائه راهکارهایی جهت بهبود عملکرد الگوریتم فاخته میپردازد. این راهکارها شامل اصلاحات و روشهای جدیدی در تعیین تعداد تخمهای هر فاخته، تعیین شعاع تخمگذاری، و تعیین گام مهاجرت میباشد. راهکارهای پیشنهادی با استفاده از توابع محک اسفیر و راستریجین ارزیابی شدهاند و نتایج نشان میدهند که این روشها در مقایسه با نسخه اولیه الگوریتم فاخته، عملکرد بهتری دارند. پیشنهاد اول در تعیین تعداد تخمهای هر فاخته، در حل توابع محک اسفیر و راستریجین، عملکرد بسیار خوبی داشته است. همچنین، پیشنهادات اصلاحی دوم در مورد تعیین شعاع تخمگذاری و گام مهاجرت نیز به بهبود قابل قبولی در حل توابع محک مورد بررسی منجر شدهاند. در نهایت، اعمال همزمان دو پیشنهاد اصلاحی در الگوریتم پایه فاخته، بهبودهای قابل توجهی در بهینه سازی توابع محک مورد بررسی نشان داده است. لذا اصلاحات پیشنهادی میتوانند به عنوان راهکارهای قابل اتکا در کنار سایر اصلاحات اعمال شده در الگوریتم فاخته، برای حل مسائل بهینهسازی مورد استفاده قرار گیرند. | ||
کلیدواژهها | ||
الگوریتم فاخته؛ الگوریتمهای فراابتکاری؛ بهینه سازی؛ توابع محک | ||
عنوان مقاله [English] | ||
Solutions to Improve the Performance of Cuckoo Optimization Algorithm | ||
نویسندگان [English] | ||
Hossein Nahid Titkanlu؛ Mohadese Nadershahi؛ Mohammad Golmakani | ||
Department of Industrial Engineering, Payame Noor University, Tehran, Iran | ||
چکیده [English] | ||
This paper presents strategies to enhance the performance of the Cuckoo Search Algorithm. These strategies include modifications and new methods for determining the number of eggs each cuckoo lays, setting the egg-laying radius, and defining the step size of migration. The proposed strategies were evaluated using the Sphere and Rastrigin benchmark functions, and the results indicate that these methods outperform the original Cuckoo Search Algorithm. The first proposal, which focuses on determining the number of eggs each cuckoo lays, showed significant improvement in solving the Sphere and Rastrigin functions. Additionally, the second set of proposals, concerning the egg-laying radius and migration step size, also led to considerable improvements in solving the benchmark functions. Finally, the simultaneous application of both proposed modifications to the basic Cuckoo Search Algorithm demonstrated substantial enhancements in optimizing the benchmark functions. Therefore, the proposed modifications can serve as reliable strategies, alongside other improvements, for solving optimization problems using the Cuckoo Search Algorithm. | ||
کلیدواژهها [English] | ||
Cuckoo algorithm, Metaheuristic algorithms, Optimization, Benchmark functions | ||
مراجع | ||
[1] Joshi, Akshata S., Omkar Kulkarni, Ganesh M. Kakandikar, and Vilas M. Nandedkar. "Cuckoo search optimization-a review." Materials Today: Proceedings 4, no. 8 (2017): 7262-7269. [2] Rajabioun, Ramin. "Cuckoo optimization algorithm." Applied Soft Computing 11, no. 8 (2011): 5508-5518. [3] Walton, S., O. Hassan, K. Morgan, and M. R. Brown. "Modified cuckoo search: a new gradient free optimisation algorithm." Chaos, Solitons & Fractals 44, no. 9 (2011): 710-718. [4] Hamidzadeh, Javad. "Feature selection by using chaotic cuckoo optimization algorithm with levy flight, opposition-based learning and disruption operator." Soft Computing-A Fusion of Foundations, Methodologies & Applications 25, no. 4 (2021). [5] Hakim Pour, Farshad, Siamak Talat Ahary, and Abolfazl Ranjbar. "The assessment and comparison of a genetic algorithm, simulated annealing and cuckoo optimization algorithm for optimization of the facility location under competitive conditions (Case Study: Banks)." Journal of Modeling in Engineering 15, no. 48 (2017): 231-246. (in Persian) [6] Hazrati Moghim, Zahra, Ali Kheyroddin, Hossein Naderpour, and Hossein Rahmani. "Comparing the optimization of prestressed concrete bridge deck according to the AASHTO LRFD and AASHTO standard procedures using cuckoo algorithm." Journal of Modeling in Engineering 16, no. 55 (2018): 209-219. (in Persian) [7] Armaghani, Saber, and Nima Amjady. "Multi-objective Multi-area Environmental and Economic Dispatch Using Cuckoo Optimization Algorithm." Journal of Modeling in Engineering 12, no. 37 (2014): 89-104. (in Persian) [8] Yaqoob, Abrar, Navneet Kumar Verma, and Rabia Musheer Aziz. "Optimizing gene selection and cancer classification with hybrid sine cosine and cuckoo search algorithm." Journal of Medical Systems 48, no. 1 (2024): 10. [9] Zhu, Chang-sheng, Guang-zhao Li, Naranjo Villota Jose Luis, Wen-jing Dong, and Li-jun Wang. "Optimization of RF to alloy elastic modulus prediction based on cuckoo algorithm." Computational Materials Science 231 (2024): 112515. [10] Huang, Shengxu, Ni Lin, Zhenpo Wang, Zhaosheng Zhang, Shuang Wen, Yue Zhao, and Qian Li. "A novel data-driven method for online parameter identification of an electrochemical model based on cuckoo search and particle swarm optimization algorithm." Journal Of Power Sources 601 (2024): 234261. [11] Shadkam, Elham. "The problem of Resource Leveling in Multi-Project Mode by Cuckoo Optimization Algorithm." Journal of Civil and Environmental Engineering 53, no. 110 (2023): 187-197. [12] Shehab, Mohammad, Ahamad Tajudin Khader, and Mohammed Azmi Al-Betar. "A survey on applications and variants of the cuckoo search algorithm." Applied Soft Computing 61 (2017): 1041-1059. [13] Žalik, Krista Rizman. "An efficient k′-means clustering algorithm." Pattern Recognition Letters 29, no. 9 (2008): 1385-1391. [14] Kahramanli, Humar. "A modified cuckoo optimization algorithm for engineering optimization." International Journal of Future Computer and Communication 1, no. 2 (2012): 199. [15] Boveiri, Hamid Reza, and Mohamed Elhoseny. "RETRACTED ARTICLE: A-COA: an adaptive cuckoo optimization algorithm for continuous and combinatorial optimization." Neural computing and applications 32, no. 3 (2020): 681-705. [16] Boushaki, Saida Ishak, Nadjet Kamel, and Omar Bendjeghaba. "A new quantum chaotic cuckoo search algorithm for data clustering." Expert Systems with Applications 96 (2018): 358-372. [17] Ouaarab, Aziz, Belaïd Ahiod, and Xin-She Yang. "Discrete cuckoo search algorithm for the travelling salesman problem." Neural Computing and Applications 24, no. 7 (2014): 1659-1669. [18] Layeb, Abdesslem. "A novel quantum inspired cuckoo search for knapsack problems." International Journal of bio-inspired Computation 3, no. 5 (2011): 297-305. [19] Salesi, Sadegh, and Georgina Cosma. "A novel extended binary cuckoo search algorithm for feature selection." In 2017 2nd International Conference on Knowledge Engineering and Applications (ICKEA), pp. 6-12. IEEE, 2017. [20] Valian, Ehsan, Saeed Tavakoli, Shahram Mohanna, and Atiyeh Haghi. "Improved cuckoo search for reliability optimization problems." Computers & Industrial Engineering 64, no. 1 (2013): 459-468. [21] Shishavan, Saeid Talebpour, and Farhad Soleimanian Gharehchopogh. "An improved cuckoo search optimization algorithm with genetic algorithm for community detection in complex networks." Multimedia Tools and Applications 81, no. 18 (2022): 25205-25231. [22] Naseri, K. "A hybrid cuckoo-gravitation algorithm for cost-optimized QFD decision-making problem." Journal of Mathematics and Computer Science 9, no. 4 (2014): 342-351. [23] Mahmoudi, Shadi, and Shahriar Lotfi. "Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem." Applied Soft Computing 33 (2015): 48-64.
| ||
آمار تعداد مشاهده مقاله: 96 تعداد دریافت فایل اصل مقاله: 54 |