
تعداد نشریات | 21 |
تعداد شمارهها | 660 |
تعداد مقالات | 9,647 |
تعداد مشاهده مقاله | 68,703,788 |
تعداد دریافت فایل اصل مقاله | 48,196,422 |
ساختار گرافن جاذب تراهرتز کامل چند باندی با قابلیت تنظیم فرکانس و مستقل از قطبش قابل استفاده در حسگرهای زیستی | ||
مدل سازی در مهندسی | ||
دوره 23، شماره 83، دی 1404، صفحه 1-10 اصل مقاله (935.45 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2025.33666.2647 | ||
نویسندگان | ||
یوسف رفیق ایرانی؛ جواد جاویدان* ؛ حمید حیدرزاده | ||
دانشکده مهندسی برق و کامپیوتر، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
تاریخ دریافت: 13 فروردین 1403، تاریخ بازنگری: 28 دی 1403، تاریخ پذیرش: 28 بهمن 1403 | ||
چکیده | ||
در این مقاله، یک ساختار ناهمگن از گرافن به عنوان جاذب کامل چند باندی در محدوده تراهرتز و به صورت مستقل از پلاریزاسیون طراحی شده است. این ساختار شامل سه لایه مس، دی اکسید سیلیکون و گرافن ناهمگن به همراه آنالیت میباشد. با تغییر ابعاد لایههای زیرین و شکل هندسی برشهای گرافن، میتوان تعداد باندها، کیفیت و میزان جذب را تنظیم کرد. همچنین، با تغییر پتانسیل شیمیایی گرافن، امکان تنظیم فرکانسهای جذب به مقادیر دلخواه وجود دارد. این ساختار میتواند در حسگرهای بیولوژیکی برای شناسایی پروتئینها، ویروسها و سلولهای سرطانی، همچنین در کاربردهای مخابراتی و تصویربرداری مورد استفاده قرار گیرد. برشهای هندسی گرافن در فرکانسهای THz 4.99، THz 9.21، THz 10.5 و THz 11.7 به ترتیب جذبهایی معادل 99.6، 99.3، 99.6 و 94.7 درصد را به دست آوردهاند. قرار دادن آنالیت بر روی ساختار پیشنهادی موجب تغییر در مقادیر فرکانس جذب میشود که این تغییر به دلیل تفاوتهای ضریب شکست مواد مختلف است. از این ویژگی مهم در طراحی حسگرهای زیستی بهرهبرداری شده است. بالاترین میزان حساسیت در باند سوم GHz / RIU 994 مشاهده میشود که با توجه به ساختار ساده متشکل از سه لایه و استفاده از مس به جای طلا، و همچنین مقایسه نتایج این تحقیق با مطالعات قبلی، میتواند بهترین گزینه برای ساخت حسگر زیستی باشد. یکی از ویژگیهای کلیدی این سازه این است که به قطبی شدن حساس نیست. شبیهسازیها با استفاده از نرمافزار شبیهسازی کامپیوتری (CST) انجام شده است. | ||
کلیدواژهها | ||
حسگر زیستی؛ ساختار ناهمگن گرافن؛ تراهرتز؛ فراماده؛ ضریب شکست | ||
عنوان مقاله [English] | ||
A Complete Multi-Band Terahertz Absorber Graphene Structure with Frequency Tunable and Polarization-Independent for Use in Biosensors | ||
نویسندگان [English] | ||
Yousef Rafig Irani؛ Javad Javidan؛ Hamid Heidarzadeh | ||
Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
چکیده [English] | ||
In this paper, the heterogeneous structure of multi-band perfect absorbing graphene in the terahertz range is designed independent of polarization. The proposed structure consists of three layers of copper, silicon dioxide and heterogeneous graphene structure and analyte. By changing the dimensions of the sub-layers and the geometric shape of the graphene slices, the number of bands, the quality, and the amount of absorption can be changed. Also, by changing the chemical potential of graphene, the absorption frequencies can be adjusted to the required values. The application of this structure in biological sensors is to detect proteins, viruses, cancer cells, telecommunication waves and imaging. With the cuts made on graphene in geometric shapes at the frequencies 4.99 THz, 9.21 THz, 10.5 THz, and 11.7 THz, absorption values of 99.6, 99.3, 99.6 and 94.7% have been obtained, respectively. placing the analyte on the proposed structure causes the displacement of the absorption frequency values, which is due to the different values of the refractive index of different materials. This important property has been used for biosensor design. The highest sensitivity value in the third band is994GHz/RIU, which due to the simple structure consisting of three layers and the use of copper instead of gold, and also by comparing the output values of this research with previous research, can be the best option for making a biosensor. One of the important features of this structure is that it is not sensitive to polarization. The simulations were done in computer simulation software (CST). | ||
کلیدواژهها [English] | ||
Biosensor, Graphen heterogeneous structure, Terahertz, Metamaterial, Refractive index | ||
مراجع | ||
[1] Kshetrimayum, Rakhesh S. "A brief intro to metamaterials." IEEE potentials 23, no. 5 (2004): 44-46. [2] Norouzi-Razani, Amirhossein, and Pejman Rezaei. "Multiband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the heterogeneous structure of graphene." Optical and Quantum Electronics 54, no. 7 (2022): 407. [3] Valentine, Jason, Shuang Zhang, Thomas Zentgraf, Erick Ulin-Avila, Dentcho A. Genov, Guy Bartal, and Xiang Zhang. "Three-dimensional optical metamaterial with a negative refractive index." nature 455, no. 7211 (2008): 376-379. [4] Zhao, Fei, Jiangchuan Lin, Zhenhua Lei, Zao Yi, Feng Qin, Jianguo Zhang, Li Liu, Xianwen Wu, Wenxing Yang, and Pinghui Wu. "Realization of 18.97% theoretical efficiency of 0.9 μm thick c-Si/ZnO heterojunction ultrathin-film solar cells via surface plasmon resonance enhancement." Physical Chemistry Chemical Physics 24, no. 8 (2022): 4871-4880. [5] Zheng, Zhipeng, Ying Zheng, Yao Luo, Zao Yi, Jianguo Zhang, Zhimin Liu, Wenxing Yang, Yang Yu, Xianwen Wu, and Pinghui Wu. "A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection." Physical chemistry chemical physics 24, no. 4 (2022): 2527-2533. [6] Wu, Xianglong, Ying Zheng, Yao Luo, Jianguo Zhang, Zao Yi, Xianwen Wu, Shubo Cheng, Wenxing Yang, Yang Yu, and Pinghui Wu. "A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity." Physical Chemistry Chemical Physics 23, no. 47 (2021): 26864-26873. [7] Ghods, Mohammad Mahdi, and Pejman Rezaei. "Graphene-based Fabry-Perot resonator for chemical sensing applications at mid-infrared frequencies." IEEE Photonics Technology Letters 30, no. 22 (2018): 1917-1920. [8] Zamzam, Pouria, Pejman Rezaei, and Seyed Amin Khatami. "Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface." Physica E: Low-dimensional Systems and Nanostructures 128 (2021): 114621. [9] Landy, Nathan I., Soji Sajuyigbe, Jack J. Mock, David R. Smith, and Willie J. Padilla. "Perfect metamaterial absorber." Physical review letters 100, no. 20 (2008): 207402. [10] Fang, Panpan, Xinwei Shi, Chang Liu, Xiang Zhai, Hongjian Li, and Lingling Wang. "Single-and dual-band convertible terahertz absorber based on bulk Dirac semimetal." Optics Communications 462 (2020): 125333. [11] Zhong, Min, Xiaoting Jiang, Xuliang Zhu, Jin'an Chen, Shunxin Wu, Jing Zhang, Jinglin Zhong et al. "Design and measurement of a single-dual-band tunable metamaterial absorber in the terahertz band." Physica E: Low-dimensional Systems and Nanostructures 124 (2020): 114343. [12] Wu, Jun, Xiayin Liu, and Zhe Huang. "Broadband light absorption with doped silicon for the terahertz frequency." Optics & Laser Technology 119 (2019): 105657. [13] Song, Zhengyong, Mingwei Jiang, Yide Deng, and Apeng Chen. "Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material." Optics Communications 464 (2020): 125494. [14] Xu, Jianping, Jiayun Wang, Rongcao Yang, Jinping Tian, Xinwei Chen, and Wenmei Zhang. "Frequency-tunable metamaterial absorber with three bands." Optik 172 (2018): 1057-1063. [15] Ma, Ben, Shaobin Liu, Borui Bian, Xiangkun Kong, Haifeng Zhang, Zhiwen Mao, and Beiyin Wang. "Novel three-band microwave metamaterial absorber." Journal of Electromagnetic Waves and Applications 28, no. 12 (2014): 1478-1486. [16] Hu, Fangrong, Li Wang, Baogang Quan, Xinlong Xu, Zhi Li, Zhongan Wu, and Xuecong Pan. "Design of a polarization insensitive multiband terahertz metamaterial absorber." Journal of Physics D: Applied Physics 46, no. 19 (2013): 195103. [17] Wang, Ben-Xin, Gui-Zhen Wang, Tian Sang, and Ling-Ling Wang. "Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure." Scientific reports 7, no. 1 (2017): 41373. [18] Akter, Naznin, Muhammad Mahmudul Hasan, and Nezih Pala. "A review of THz technologies for rapid sensing and detection of viruses including SARS-CoV-2." Biosensors 11, no. 10 (2021): 349. [19] Hou, Xinfu, Xieyu Chen, Tianming Li, Yaoyao Li, Zhen Tian, and Mingwei Wang. "Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection." Optical Materials Express 11, no. 7 (2021): 2268-2277. [20] Veeraselvam, Aruna, Gulam Nabi Alsath Mohammed, and Kirubaveni Savarimuthu. "A novel ultra-miniaturized highly sensitive refractive index-based terahertz biosensor." Journal of Lightwave Technology 39, no. 22 (2021): 7281-7287. [21] Park, S. J., S. H. Cha, G. A. Shin, and Y. H. Ahn. "Sensing viruses using terahertz nano-gap metamaterials." Biomedical optics express 8, no. 8 (2017): 3551-3558. [22] Ahmed, Kawsar, Fahad Ahmed, Subrata Roy, Bikash Kumar Paul, Mst Nargis Aktar, Dhasarathan Vigneswaran, and Md Saiful Islam. "Refractive index-based blood components sensing in terahertz spectrum." IEEE Sensors Journal 19, no. 9 (2019): 3368-3375. [23] Shalini, V. Baby. "A polarization insensitive miniaturized pentaband metamaterial THz absorber for material sensing applications." Optical and Quantum Electronics 53, no. 5 (2021): 213. [24] Tahseen, Muhammad M., and Ahmed A. Kishk. "Wideband textile-based conformal antennas for WLAN band using conductive thread." In 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1-5. IEEE, 2016. [25] Chen, Pai-Yen, and Andrea Alu. "Atomically thin surface cloak using graphene monolayers." ACS nano 5, no. 7 (2011): 5855-5863. [26] Deng, Xin-Hua, Jiang-Tao Liu, Jiren Yuan, Tong-Biao Wang, and Nian-Hua Liu. "Tunable THz absorption in graphene-based heterostructures." Optics Express 22, no. 24 (2014): 30177-30183. [27] Cheng, Ruijian, Ling Xu, Xin Yu, Liner Zou, Yun Shen, and Xiaohua Deng. "High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces." Optics Communications 473 (2020): 125850. [28] Veeraselvam, Aruna, Gulam Nabi Alsath Mohammed, Kirubaveni Savarimuthu, and Radha Sankararajan. "A novel multi-band biomedical sensor for THz regime." Optical and Quantum Electronics 53, no. 7 (2021): 354. [29] Nourinovin, Shohreh, and Akram Alomainy. "A terahertz electromagnetically induced transparency-like metamaterial for biosensing." In 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1-5. IEEE, 2021. [30] El-Wasif, Zienab, Tawfik Ismail, and Omnia Hamdy. "Design and optimization of highly sensitive multi-band terahertz metamaterial biosensor for coronaviruses detection." Optical and Quantum Electronics 55, no. 7 (2023): 604. | ||
آمار تعداد مشاهده مقاله: 139 تعداد دریافت فایل اصل مقاله: 88 |