| تعداد نشریات | 21 |
| تعداد شمارهها | 664 |
| تعداد مقالات | 9,694 |
| تعداد مشاهده مقاله | 69,028,635 |
| تعداد دریافت فایل اصل مقاله | 48,497,497 |
ارائه رویکردهایی جدید در بررسی طول عمر و رفتار رشد ترک در روسازیهای آسفالتی به روش مکانیک شکست | ||
| مهندسی زیر ساخت های حمل و نقل | ||
| مقاله 4، دوره 11، شماره 2 - شماره پیاپی 42، تیر 1404، صفحه 65-84 اصل مقاله (2.49 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22075/jtie.2025.36692.1713 | ||
| نویسندگان | ||
| حسن زیاری1؛ ندا کامبوزیا* 2؛ محمدرضا خاکباز3؛ محمدرضا محمدعلیها4 | ||
| 1استاد، گروه راه و ترابری، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
| 2استادیار، گروه راه و ترابری، دانشکده عمران، دانشگاه علم و صنعت ایران، تهران. | ||
| 3دانشجوی دکتری راه و ترابری، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
| 4دانشیار، دانشکده مهندسی صنایع، دانشگاه علم و صنعت ایران، تهران، ایران. | ||
| تاریخ دریافت: 04 بهمن 1403، تاریخ بازنگری: 22 فروردین 1404، تاریخ پذیرش: 07 خرداد 1404 | ||
| چکیده | ||
| با افزایش ناوگان حملونقل جادهای، روسازیهای آسفالتی با طول عمر بالاتر، اهمیت ویژهای دارند. در این راستا، در سالهای اخیر، علم مکانیک شکست به روند تحقیقات مهندسی روسازی کمکهای فراوانی کرده است. با تحقیقات صورت گرفته در این تحقیق، دو نمونه SCB و ENDB به عنوان نمونههای برتر برای انجام آزمایشهای مکانیک شکست در مودهای مختلف خالص و ترکیبی شناخته شدهاند. ضمن اینکه تعیین چقرمگی شکست، مهمترین نکته در شناخت وضعیت و تخمین طول عمر و معیارهای رفتاری روسازیهای آسفالتی محسوب میگردد. اما اکثر تحقیقات موجود، تنها به بررسی چقرمگی شکست نمونههای آسفالتی با هندسههای مختلف و الیاف و افزودنیهای مختلف و همچنین، تأثیرات اندازه نمونهها در چقرمگی شکست پرداخته است. نتایج مطالعات نشان میدهد که عدم توجه به پارامترهای غیرتکین تنش در مدلهای کلاسیک، تا ۳۰ درصد خطا در پیشبینی عمر روسازی ایجاد میکند. از این رو، بهکارگیری رویکردهای پیشرفتهتری مانند GMTS که اثرات این پارامترها را لحاظ میکنند، ضروری است. تحقیقات آینده میتواند با بهبود طراحی و پیشبینی عملکرد روسازیها، به کاهش هزینههای نگهداری و افزایش پایداری و کارایی زیرساختهای جادهای کمک کند. | ||
| کلیدواژهها | ||
| روسازی آسفالتی؛ مکانیک شکست؛ چقرمگی شکست؛ هندسه مکانیک شکست | ||
| عنوان مقاله [English] | ||
| Presenting New Approaches for Investigating the Lifespan and Crack Growth Behavior in Asphalt Pavements Using Fracture Mechanics | ||
| نویسندگان [English] | ||
| Hasan Ziari1؛ Neda Kamboozia2؛ Mohammad Reza Khakbaz3؛ Mohammad Reza Mohammad Aliha4 | ||
| 1Professor, school of Highway and Transportation Engineering, Iran University of Science and Technology, Tehran, I. R. Iran. | ||
| 2Assistant Professor, school of Highway and Transportation Engineering, Iran University of Science and Technology, Tehran, I. R. Iran. | ||
| 3PhD Student in Highway and Transportation Engineering, Faculty of Civil Engineering, Iran University of Science and Technology, Tehran, I. R. Iran. | ||
| 4Associate Professor, school of Industrial Engineering, Iran University of Science and Technology, Tehran, I. R. Iran. | ||
| چکیده [English] | ||
| With the increase in the road transportation fleet, asphalt pavements with longer lifespans have gained significant importance. In this regard, in recent years, the science of fracture mechanics has greatly contributed to the research process in pavement engineering. Based on studies in the technical literature, the SCB and ENDB specimens have been recognized as the top samples for conducting fracture mechanics tests under various pure and mixed-mode conditions. Furthermore, determining fracture toughness is considered the most critical aspect in understanding the condition and estimating the lifespan and behavioral criteria of asphalt pavements. However, most existing research has only focused on investigating the fracture toughness of asphalt specimens with different geometries, fibers, and additives, as well as the effects of specimen size on fracture toughness. Studies have shown that neglecting non-singular stress parameters in classical models can lead to up to 30% error in predicting pavement lifespan. Therefore, employing more advanced approaches such as GMTS, which account for these parameters, is essential. Future research can contribute to reducing maintenance costs and enhancing the durability and efficiency of road infrastructure by improving pavement design and performance prediction. | ||
| کلیدواژهها [English] | ||
| Asphalt pavement, Fracture Mechanics, Fracture Toughness, Fracture mechanics geometry | ||
| مراجع | ||
|
Aliha, M. R. M. 2019. “On predicting mode II fracture toughness (KIIc) of hot mix asphalt mixtures using the strain energy density criterion”. Theor.Appl. Fract. Mech., 99: 36-43.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J. and Pavier, M. J. 2010. “Geometry and size effects on fracture trajectory in a , rock under mixed mode loading”. Eng. Fract. Mech., 77(11): 2200-2212.
Aliha, M. M., Behbahani, H., Fazaeli, H. and Rezaifar, M. H. 2014. “Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures”. Constr. Build. Mater., 54: 623-635.
Aliha, M. R. M., Fazaeli, H., Aghajani, S. and MoghadasNejad, F. 2015a. “Effect of temperature and air void on mixed mode fracture toughness of modified asphalt mixtures”. Constr Build. Mater., 95: 545-555.
Aliha, M. R. M., Behbahani, H., Fazaeli, H. and Rezaifar, M. H. 2015b. “Experimental study on modeI fracture toughness of different asphalt mixtures”. Sci. Iran., 22(1): 120-130.
Aliha, M. R. M., Bahmani, A. and Akhondi, S. 2016. “A novel test specimen for investigating the mixed mode I+ III fracture toughness of hot mix asphalt composites–Experimental and theoretical study”. Int. J. Solids Struct., 90: 167-177.
Aliha, M. R. M., Razmi, A. and Mansourian, A. 2017. “The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials. Eng. Fract. Mech., 182: 322-336.
Aliha, M. R. M., Mahdavi, E. and Ayatollahi, M. R. 2018a. “Statistical analysis of rock fracture toughness data obtained from different chevron notched and straight cracked mode I specimens”. Rock Mech. Rock Eng., 51: 2095-2114.
Aliha, M. R. M., Linul, E., Bahmani, A. and Marsavina, L. 2018b. “Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+ III loading”. Polym. Testing, 67: 75-83.
Aliha, M. R. M., Ziari, H., Mojaradi, B. and Sarbijan, M. J. 2020. “Heterogeneity effects on mixed‐mode I/II stress intensity factors and fracture path of laboratory asphalt mixtures in the shape of SCB specimen”. Fatigue Fract. Eng. Mater. Struct., 43(3): 586-604.
Aliha, M. R. M., Zalnezhad, M. and Haghighatpour, P. J. 2023. “Fracture toughness of colored slurry seal at low temperatures and different loading modes: Comparative study with warm and hot mix asphalt materials”. Const. Build. Mater., 409: 133786.
Ameri, M., Mansourian, A., Pirmohammad, S., Aliha, M. R. M. and Ayatollahi, M. R. 2012. “Mixed mode fracture resistance of asphalt concrete mixtures”. Eng. Fract. Mech., 93: 153-167.
Baradaran, S. and Aliha, M. R. M. 2024. “Mode I and mode II fracture assessment of green asphalt pavements containing plastic waste and RAP at low and intermediate temperature”. Results Eng., 103734.
Behbahani, H., Ziari, H. and Kamboozia, N. 2016. “Evaluation of the visco-elasto-plastic behavior of glasphalt mixtures through generalized and classic Burger’s models modification”. Constr. Build. Mater., 118: 36-42.
Bui, H. H. and Saleh, M. 2021. “Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test”. Eng. Fract. Mech., 242: 107452.
Eghbali, M. R., Tafti, M. F., Aliha, M. R. M. and Motamedi, H. 2019. “The effect of ENDB specimen geometry on mode I fracture toughness and fracture energy of HMA and SMA mixtures at low temperatures”. Eng. Fract. Mech., 216: 106496.
Fakhri, M., Amoosoltani, E. and Aliha, M. R. M. 2017. “Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber”. Eng. Fract. Mech., 180: 43-59.
Fuan, S., Ke, M., Kanghe, L., Kun, L. and Aliha, M. R. M. 2021. “Influence of specimen geometry on mode I fracture toughness of asphalt concrete”. Constr. Build. Mater., 276: 122181.
Haghighatpour, P. J. and Aliha, M. R. M. 2022. “Assessment of freezing and thawing cycle (FTC) effects on mixed mode I/III fracture toughness and work of fracture of HMA asphalt mixtures”. Theor. Appl. Fract. Mech., 118: 103261.
Haghighat Pour, P. J., Aliha, M. R. M. and Keymanesh, M. R. 2018. “Evaluating mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions”. Eng. Fract. Mech., 190: 245-258.
He, J., Liu, L., Yang, W. and Aliha, M. R. M. 2022. “Influence of testing method on mode II fracture toughness (KIIc) of hot mix asphalt mixtures”. Fatig. Fract. Eng. Mater. Struct., 45(10): 2940-2957.
Kamboozia, N., Ziari, H. and Behbahani, H. 2018. “Artificial neural networks approach to predicting rut depth of asphalt concrete by using of visco-elastic parameters”. Constr. Build. Mater., 158: 873-882.
Kamboozia, N., Mousavi Rad, S. and Saed, S. A. 2022. “Laboratory investigation of the effect of nano-ZnO on the fracture and rutting resistance of porous asphalt mixture under the aging condition and freeze–thaw cycle”. J. Mater. Civ. Eng., 34(5): 04022052.
Karimi, H. R., Bidadi, J., Aliha, M. R. M., Mousavi, A., Mohammadi, M. H. and Haghighatpour, P. J. 2023. “An experimental study and theoretical evaluation on the effect of specimen geometry and loading configuration on recorded fracture toughness of brittle construction materials”. J. Build. Eng., 75: 106759.
Khakbaz, M., Kamboozia, N., Mohammad Aliha, M. R. and Taheriyan, A. R. 2024. “A review of the application of fracture mechanics in investigating the behavior of flexible and rigid pavements”. Road, 32(121): 115-136.
Liu, Y., Su, P., Li, M., You, Z. and Zhao, M. 2020. “Review on evolution and evaluation of asphalt pavement structures and materials”. J. Traffic Transport. Eng. (English Edition), 7(5): 573-599.
Malek, M. and Keymanesh, M. 2023. “Impact of thickness, void content, temperature and loading rate on tensile fracture toughness and work of fracture of asphalt mixtures-An experimental study using the SCB test”. Eng Solid Mech., 11(2): 163-174.
Motamedi, H., Fazaeli, H., Aliha, M. R. M. and Amiri, H. R. 2020. “Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using edge notched disc bend (ENDB) specimen”. Constr. Build. Mater., 234, 117365.
Motamedi, H., Amiri, H. R., Fazaeli, H. and Mohammad Aliha, M. R. 2021. “Providing a prediction model for stress intensity factor of fiber-reinforced asphalt mixtures under pure mode III loading using the edge notched disc beam (ENDB)”. Civ. Eng. Infrastruct. J., 54(1): 43-58.
Mousavi Rad, S., Kamboozia, N., Anupam, K. and Saed, S. A. 2022. “Experimental evaluation of the fatigue performance and self-healing behavior of nanomodified porous asphalt mixtures containing RAP materials under the aging condition and freeze–thaw cycle”. J. Mater. Civ. Eng., 34(12): 04022323.
Mubaraki, M. and Sallam, H. E. M. 2020. “Reliability study on fracture and fatigue behavior of pavement materials using SCB specimen”. Int. J. Pavement Eng., 21(13): 1563-1575.
Pirmohammad, S. and Ayatollahi, M. R. 2020. “Fracture behavior of asphalt materials”. Springer International Publishing.
Pirmohammad, S., Momeni, R. and Khanghahi, S. H. 2024. “Effect of SCB specimen size on mode I fracture parameters of asphalt concrete at low and intermediate temperatures”. Theor. Appl. Fract. Mech., 130: 104314.
Radeef, H. R., Hassan, N. A., Mahmud, M. Z. H., Abidin, A. R. Z., Ismail, C. R., Abbas, H. F. and Al-Saffar, Z. H. 2021. “Characterisation of cracking resistance in modified hot mix asphalt under repeated loading using digital image analysis”. Theor. Appl. Fract. Mech., 116: 103130.
Saed, S. A., Kamboozia, N., Ziari, H. and Hofko, B. 2021. “Experimental assessment and modeling of fracture and fatigue resistance of aged stone matrix asphalt (SMA) mixtures containing RAP materials and warm-mix additive using ANFIS method”. Mater. Struct., 54: 1-19.
Shaker, H., Ameri, M., Aliha, M. R. M. and Rooholamini, H. 2023. “Evaluating low-temperature fracture toughness of steel slag aggregate-included asphalt mixture using response surface method”. Constr. Build. Mater., 370: 130647.
Shen, J. 2004. “Collection of foreign asphalt pavement design method”. China Communications Publishing & Media Management Co., Ltd., Beijing.
Vaseghi, Z., Pirmohammad, S. and Momeni, R. 2024. “Impact of SCB specimen size, temperature, loading rate, and loading mode on fracture behavior of asphalt mixture using response surface method”. Fatig. Fract. Eng. Mater. Struct., 48(1): 382-403.
Wei, M. D., Dai, F., Xu, N. W., Liu, Y. and Zhao, T. 2018. “A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks”. Eng. Fract. Mech., 190: 1-15.
Yang, Q. and Zhao, W. 2022. “Research on the crack resistance of semi-flexible pavement based on bonding and rheological properties of asphalt”. Constr. Build. Mater., 356: 129093.
Yang, D., Karimi, H. R. and Aliha, M. R. M. 2021. “Comparison of testing method effects on cracking resistance of asphalt concrete mixtures”. Appl. Sci., 11(11): 5094.
Yao, Y., Yang, J., Gao, J., Xu, J., Zhang, Y. and Yu, S. 2025. “Effect of design parameters on low-temperature cracking resistance of recycled hot-mix asphalt mixtures”. Mater. Struct., 58(1): 24.
Zarei, M., Kordani, A. A., Zahedi, M., Akbarinia, F. and Khanjari, M. 2021. “Evaluation of low and intermediate temperatures fracture indices for modified warm mix asphalt (WMA) using edge notched disc bend (ENDB) specimen”. Theor. Appl. Fract. Mech., 116: 103137.
Zarei, M., Abdi Kordani, A. and Zahedi, M. 2022. “Evaluating the fracture behaviour of modified asphalt concrete composites (ACC) at low and intermediate temperatures using edge notched disc bend (ENDB) specimen”. Road Mater. Pavement Design, 23(8): 1917-1941.
Ziari, H., Aliha, M. R. M., Moniri, A. and Saghafi, Y. 2020. “Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber”. Constr. Build. Mater., 230: 117015. | ||
|
آمار تعداد مشاهده مقاله: 10,731 تعداد دریافت فایل اصل مقاله: 347 |
||