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Abstract

In this paper, we consider the existence and uniqueness of a solution for interval-valued differential functions with a
causal operator.

Keywords: uncertain parameters, interval-valued function; Hukuhara difference, gH−derivative, causal operator
2020 MSC: Primary 35A15; Secondary, 35J35, 46E35

1 Introduction

In recent years, interval algorithms have played an important role in the study of functional differential equations
and their applications, for example, in biology, physics, engineering problems, and computer-aided design. The
uncertain parameters are considered as intervals, where the upper and lower bounds of the parameters are estimated
from the historical data. The interval valued functions are a particular case of set valued functions and are the
functions involved in the interval parameters. Many scientists in many areas have studied the interval valued analysis
and interval valued differential equations [2, 5, 6] and [9]. This paper is focused on the study of differential equations
involving a causal operator and proving the existence and uniqueness of a solution for the problem (3.2) with respect
to initial values. In [1], using the Hukuhara derivative, the authors studied the existence, uniqueness and continuity
of solutions of the following problem:

DHf(t) = (Qf)(t), f(t0) = f0 ∈ KC(Rn), t0 ≥ 0. (1.1)

In Section 2, we introduce some definitions and some preliminary results about interval values that will be used
later. In Section 3, we prove the existence and uniqueness of a solution for the problem (3.2).

2 Preliminaries

LetKC be the family of all non-empty compact convex subsets of R, that is,KC = {[a−, a+] | a−, a+ ∈ R, a− ≤ a+}.
If A = [a−, a+], B = [b−, b+] are in KC , then the usual interval operations, i.e. Minkowski addition and scalar
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multiplication, are defined by

A+B =
[
a−, a+

]
+
[
b−, b+

]
:=

[
a− + b−, a+ + b+

]
(2.1)

and

λA :=


[λa−, λa+] λ > 0,

[0, 0] , λ = 0,

[λa+, λa−] λ < 0.

(2.2)

So in special case if λ = −1, scalar multiplication gives the opposite −A := (−1)A = (−1) [a−, a+] = [−a+,−a−].
In general, A+ (−A) ̸= {0}; that is, the opposite of A is not the inverse of A with respect to the Minkowski addition
(unless A = {a} is a singleton). Minkowski difference is

A−B = A+ (−1)B =
[
a− − b+, a+ − b−

]
. (2.3)

The generalized Hukuhara difference (or gH−difference) of two intervals [a−, a+], [b−, b+] in KC is defined as
follows: [

a−, a+
]
⊖gH

[
b−, b+

]
=

[
min

{
a− − b−, a+ − b+

}
,max

{
a− − b−, a+ − b+

}]
.

The width of interval A is defined and denote by WA = a+ − a− and rA =
1

2
(a+ − a−) which is the radius of

interval of A. We denote the midpoint of A by AC =
1

2
(a+ + a−). Then interval can be represented by A = [a−, a+] =

[AC − rA, AC + rA], which simply we denote by (AC ; rA). For A = [a−, a+] and B = [b−, b+], we have

A⊖gH B =

{
[a− − b−, a+ − b+] , if WA ≥ WB ,

[a+ − b+, a− − b−] , if WA < WB .

If A,B,C ∈ KC then it is easy to see that

A⊖gH B = C ⇔

{
A = B + C, if WA ≥ WB ,

B = A+ (−C), if WA < WB .

Proposition 2.1. [8] Let A = [a−, a+] = (AC , rA) and B = [b−, b+] = (BC , rB). The following hold:

(1) A+B = [min {a− +BC , b
− +AC} ,max {a+ +BC , b

+ +AC}].

(2) A.B = [min {a−.BC , b
−.AC} ,max {a+.BC , b

+.AC}].

Definition 2.2. [2] Let A = [a−, a+] be any arbitrary element ofKC .Then, the norm of the set A is denoted by ∥A∥
and is defined by

∥A∥ := max{|a−|, |a+|}.

The metric structure is given usually by the Hausdorff-Pompeiu distance by D : KC × KC → [0,∞) which is
defined by D(A,B) := max{|a− − b−|, |a+ − b+}, where A = [a−, a+] and B = [b−, b+]. Obviously, the metric D
induces a norm ∥.∥ by ∥A∥ = D(A, {0}) and it is direct to see that D(A,B) = ∥A⊖gH B∥.

Proposition 2.3. [2] Let A,B,C,E ∈ KC . The Hausdorff-Pompeiu distance has the following properties

(1) D(A+ C,B + C) = D(A,B).

(2) D(A+B,C + E) ≤ D(A,C) +D(B,E).

(3) D(αA,αB) = |α|D(A,B); α ∈ R.

It is well known that (KC , D) is a complete metric space.
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Definition 2.4. [5] f : [a, b] → KC . The function f is said to be continuous at x0 ∈ [a, b] if for all ε > 0, there exists
δ > 0 such that D(f(x), f(x0)) < ε for x ∈ [a, b] with |x− x0| < δ. Moreover, f is said to be continuous on [a, b] if f
is continuous at each point in [a, b].

Proposition 2.5. [8] Let f : [a, b] → KC be such that f(x) = [f−(x), f+(x)] and let x0 ∈ (a, b), then

lim
x→x0

f(x) =

[
lim

x→x0

f−(x), lim
x→x0

f+(x)

]
and

lim
x→x0

f(x) = f(x0) ⇔ lim
x→x0

(f(x)⊖gH f(x0)) = {0},

where the limits are in the metric D for intervals.

Definition 2.6. [7] Let x0 ∈ (a, b). The gH−derivative of a function f : [a, b] → KC at x0 is defined as

DHf(x0)) = lim
h→0+

1

h
[f(x0 + h)⊖gH f(x0)] ,

or

DHf(x0)) = lim
h→0+

1

h
[f(x0)⊖gH f(x0 − h)] .

Lemma 2.7. [7] Let f : [a, b] → KC be an interval-valued function such that f(x) = [f−(x), f+(x)]. If f is
gH−differentiable at x0 ∈ (a, b), then f is continuous at x0 and f− and f+ are differentiable at x0 and

DHf(x0)) =
[
min

{
DHf−(x0), DHf+(x0)

}
,max

{
DHf−(x0), DHf+(x0)

}]
.

Definition 2.8. [6] Given f : Rn → KC as an interval-valued function defined byf(x) = [f−(x), f+(x)], ∀ x ∈ Rn,
it is said to be an interval-valued linear function if it satisfied the following properties:

(1) f(x+ y) = f(x) + f(y), for all x, y ∈ Rn.

(2) f(αx) = α.f(x), for all x ∈ Rn and α ∈ R.

Proposition 2.9. [7] Under the assumptions of Lemma 2.7, the gH−derivative is a homogeneous and sub-additive
operator, i.e., for gH−differentiable functions f, g : [a, b] → KC with differentiable f−, g−, f+ and g+

(1) DH(f + g) ⊆ DHf +DHg.

(2) DH(αf) = αDHf , for α ∈ R.

Definition 2.10. [2] The integral of f : [a, b] → KC , where f(x) = [f−(x), f+(x)], is defined by∫ b

a

f(t)dt :=

[∫ b

a

f−(t)dt,

∫ b

a

f+(t)dt

]
.

Proposition 2.11. [1] If f, g : [a0, b] → KC(Rn), a0 ≤ a1 ≤ a2 ≤ b, are integrable, then we have:

(1)
∫ a2

a0
f(t)dt :=

∫ a1

a0
f(t)dt+

∫ a2

a1
f(t)dt.

(2)
∫ b

a0
λf(t)dt := λ

∫ b

a0
f(t)dt λ ∈ R+.

(3) D [f(.), g(.)] : [a0, b] → R is integrable and

D

[∫ t

a0

f(s)ds,

∫ t

a0

g(s)ds

]
≤

∫ t

a0

D [f(s), g(s)] ds. (2.4)
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Lemma 2.12. Let f, g : [a, b] → KC be interval-valued functions, where f(x) = [f−(x), f+(x)] and g(x) = [g−(x), g+(x)].
Then ∫ b

a

(f(t) + g(t))dt =

∫ b

a

f(t)dt+

∫ b

a

g(t)dt.

Proof . By Definition 2.9 and (2.1) it is direct, infact

f(x) + g(x) =
[
f−(x) + g−(x), f+(x) + g+(x)

]
.

So ∫ b

a

(f(x) + g(x))dt =

[∫ b

a

(f−(x) + g−(x))dt,

∫ b

a

(f+(x) + g+(x))dt

]

=

[∫ b

a

f−(x)dt,

∫ b

a

f+(x)dt

]
+

[∫ b

a

g−(x)dt,

∫ b

a

g+(x)dt

]

=

∫ b

a

f(x)dt+

∫ b

a

g(x)dt.

□

3 Main results

Definition 3.1. [1] Suppose that Q ∈ C [E,E], then Q is said to be a causal map or a nonanticipative map if
f(s) = g(s), t0 ≤ s ≤ t ≤ T , where U,W ∈ E, then (Qf)(s) = (Qg)(s), t0 ≤ s ≤ t.

We study the following problem:

DHf(t) = l(t)(Qf)(t) + h(t), f(t0) = f0 ∈ KC(Rn), t0 ≥ 0. (3.1)

where h ∈ C [R+,KC(Rn)] and there exists α ∈ R such that 0 < l(t) < α. The mapping f(t) ∈ C1 [J,KC(Rn)], where
J = [t0, t0 + a] is called a solution for (3.1) on J if it satisfies in (3.1) on J .

Corollary 3.2. [1, 5] The interval valued differential equation (3.1) is equivalent to the following integral equations:

f(t) = f0 +

∫ t

t0

DHf(s)ds, t ∈ J. (3.2)

So by Lemma 2.11 and (3.1),

f(t) = f0 +

∫ t

t0

l(s)(Qf)(s)ds+

∫ t

t0

h(s)ds, t ∈ J. (3.3)

Let E = C [[t0, T ] ,KC(Rn)] with norm

D0 [f, θ] = sup
t0≤t≤T

D [f(t), θ] . (3.4)

Theorem 3.3. [1] Assume that m ∈ C [J,R+], F ∈ C [J × R+,R+] and for t ∈ J = [t0, T ],

D−m(t) ≤ F (t, |m|0(t)), (3.5)

where |m|0(t) = supt0≤s≤t |m(s)|. Suppose that r(t) = r(t, t0, w0) is the maximal solution of the scalar differential
equation

w′ = F (t, w), w(t0) = w0 ≥ 0, (3.6)

existing on J . Then m(t0) ≤ w0 implies m(t) ≤ r(t), t ∈ J .
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Theorem 3.4. [1] Let Q ∈ C [E,E] be a causal map such that for t ∈ J ,

D [(Qf)(t), (Qg)(t)] ≤ F (t,D0 [f, g] (t)), (3.7)

where F ∈ C [J × R+,R+]. Suppose further that the maximal solution r(t, t0, w0) of the differential equation (3.6)
exists on J . Then if f(t), g(t) are any two solutions of (3.6) through f(t0) = f0, g(t0) = g0, f0, g0 ∈ KC(Rn) on J ,
respectively, then

D [(f)(t), (g)(t)] ≤ r(t, t0, w0), t ∈ J, (3.8)

Provided that D [f0, g0] ≤ wo.

Theorem 3.5. Assume that

(1) Q ∈ C [B,E] is a causal map, where B = B(f0, b) = {f ∈ E : D0 [f, f0] ≤ b} and D0 [(Qf), θ] (t) ≤ M1, on B,

(2) F ∈ C [J × [0, 2b] ,R+], F (t, w) ≤ M2 on J × [0, 2b], F (t, 0) ≡ 0, F (t, w) is nondecreasing in w for each t ∈ J and
w(t) = 0 is the only solution of

w′ = F (t, w), w(t0) = 0 on J, (3.9)

(3) D [(Qf)(t), (Qg)(t)] ≤ F (t,D0 [f, g] (t)) on B,

(4) D0 [h, θ] (t) ≤ µ; µ+M1 < b.

Then, the successive approximations defined by

fn+1(t) = f0 +

∫ t

t0

l(s)(Qfn)(s)ds+

∫ t

t0

h(s)ds, n = 0, 1, 2, ..., (3.10)

exist on J0 = [t0, t0 + η], where η = min

[
T − t0,

b

M

]
, M = max(α(µ +M1),M2) such that 0 < l(t) < α, α < 1 and

converge uniformly to the unique solution f(t) of (3.1).

Proof . For t ∈ J0, by using Proposition 2.3 and (2.4),

D [fn+1(t), f0] = D

[
f0 +

∫ t

t0

l(s)(Qfn)(s)ds+

∫ t

t0

h(s)ds, f0

]
≤ D

[∫ t

t0

l(s)(Qfn)(s)ds+

∫ t

t0

h(s)ds, θ

]
≤

∫ t

t0

D [l(s)(Qfn)(s), θ] ds+

∫ t

t0

D [h(s), θ] ds

≤ α

∫ t

t0

D [(Qfn)(s), θ] ds+

∫ t

t0

D [h(s), θ] ds

≤ α

∫ t

t0

D0 [(Qfn), θ] (s)ds+

∫ t

t0

D0 [h, θ] (s)ds

≤ α(M1 + µ)(t− t0)

≤ M(t− t0)

≤ b,

which shows the successive approximations are well defined on J0. Next, we define successive approximations for the
problem (3.9) as follows:

w0(t) = M(t− t0),

wn+1(t) =

∫ t

t0

F (s, wn(s))ds, t ∈ J0, n = 0, 1, 2, . . . .

Then

w1(t) =

∫ t

t0

F (s, w0(s))ds ≤ M2(t− t0) ≤ M(t− t0) = w0(t).
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Assume, for some k > 1, t ∈ J0, that
wk(t) ≤ wk−1(t).

Then, using the monotonicity of F , we get

wk+1(t) =

∫ t

t0

F (s, wk(s))ds ≤
∫ t

t0

F (s, wk−1(s))ds ≤ wk(t).

Hence, the sequence {wk(t)} is monotone decreasing.
Since w′

k(t) = F (t, wk−1(t)) ≤ M2, t ∈ J0, by Ascoli-Arzela theorem and the monotonicity of the sequence {wk(t)},
we have

lim
n→∞

wn(t) = w(t),

uniformly on J0 for a suitable function w(t). Since w(t) satisfies (3.9), so from condition (b), w(t) ≡ 0 on J0. Observing
that for each t ∈ J0, J0 ≤ s ≤ t,

D [f1(s), f0] = D

[
f0 +

∫ s

t0

l(ϱ)(Qf0)(ϱ)dϱ+

∫ s

t0

h(ϱ)dϱ, f0

]
= D

[∫ s

t0

l(ϱ)(Qf0)(ϱ)dϱ+

∫ s

t0

h(ϱ)dϱ, θ

]
≤

∫ s

t0

D [l(ϱ)(Qf0)(ϱ), θ] dϱ+

∫ s

t0

D [h(ϱ), θ] dϱ

≤ α

∫ s

t0

D [(Qf0)(ϱ), θ] dϱ+

∫ s

t0

D [h(ϱ), θ] dϱ

≤ α

∫ s

t0

D0 [(Qf0), θ] (ϱ)dϱ+

∫ s

t0

D0 [h, θ] (ϱ)dϱ

≤ α(M1 + µ)(s− t0)

≤ α(M1 + µ)(t− t0)

≤ M(t− t0) = w0(t),

which implies that D0 [f1, f0] (t) ≤ w0(t). We assume, for some k > 1,

D0 [fk, fk−1] (t) ≤ wk−1(t) t ∈ J0. (3.11)

By condition (c) and (3.11), for any t ∈ J0, J0 ≤ s ≤ t,

D [fk+1(s), fk(s)] ≤
∫ s

t0

D [l(ϱ)(Qfk)(ϱ), l(ϱ)(Qfk−1)(ϱ)] dϱ

≤ α

∫ s

t0

D [(Qfk)(ϱ), Qfk−1)(ϱ)] dϱ

≤
∫ s

t0

F (ϱ,D0 [fk, fk−1] (ϱ))dϱ

≤
∫ s

t0

F (ϱ, wk−1(ϱ))dϱ

≤
∫ t

t0

F (ϱ, wk−1(ϱ))dϱ

= wk(t),

which further gives
D0 [fk+1, fk] (t) ≤ wk(t) t ∈ J0. (3.12)

Thus, we have
D0 [fn+1, fn] (t) ≤ wn(t), (3.13)
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for t ∈ J0 and for all n = 0, 1, 2, . . .. We claim that {fn(t)} is a Cauchy sequence. To show this, let n ≤ m. Setting
u(t) = D [fn(t), fm(t)] and using (3.10), we have

D+u(t) ≤D [DHfn(t), DHfm(t)] (t)

=D [l(t)(Qfn−1)(t), l(t)(Qfm−1)(t)]

≤D [l(t)(Qfn−1)(t), l(t)(Qfn)(t)] +D [l(t)(Qfn)(t), l(t)(Qfm)(t)] +D [l(t)(Qfm)(t), l(t)(Qfm−1)(t)]

≤αF (t,D0 [fn−1, fn] (t)) + αF (t,D0 [fn, fm] (t)) + αF (t,D0 [fm−1, fm] (t))

≤F (t,D0 [fn−1, fn] (t)) + F (t,D0 [fn, fm] (t)) + F (t,D0 [fm−1, fm] (t))

≤F (t, wn(t)) + F (t, |u|0(t)) + F (t, wn(t))

=F (t, |u|0(t)) + 2F (t, wn(t)).

These inequalities together with Theorem 3.3, imply the estimate

u(t) ≤ rn(t), t ∈ J0,

where rn(t) is the maximal solution of

r′n = F (t, rn) + 2F (t, wn−1(t)), rn(t0) = 0,

for each n. Since as n → ∞, 2F (t, wn−1(t)) → 0 uniformly on J0. It follows by [8, Lemma 1.3.1] that rn(t) → 0, as
n → ∞ uniformly on J0. Then from (3.13) that fn(t) converges uniformly to f(t) on J0 and clearly f(t) is a solution
of (3.1).

To prove uniqueness, let g(t) be another solution of (3.1) on J0. Set m(t) = D [f(t), g(t)]. Then, m(t0) = 0 and

D+m(t) ≤ F (t, |m|0(t)), t ∈ J0. (3.14)

Since m(t0) = 0, it follows from Theorem 3.3 that

m(t) ≤ r(t, t0, 0), t ∈ J0, (3.15)

where r(t, t0, 0) is the maximal solution of (3.9). The assumption (b) now shows that f(t) = g(t), t ∈ J0, proving
uniqueness. □

4 Conclusion

In this article, we proved the existence and uniqueness of solutions for interval valued differential problem (3.1),
involving causal operators.
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