
تعداد نشریات | 21 |
تعداد شمارهها | 635 |
تعداد مقالات | 9,313 |
تعداد مشاهده مقاله | 67,881,172 |
تعداد دریافت فایل اصل مقاله | 17,088,228 |
سنتز و ترکیب نانو اسپینل های SrFe2O4 بر روی CuO برای حذف فوتوکاتالیزوری: مطالعه سینتیکی | ||
شیمى کاربردى روز | ||
دوره 20، شماره 74، فروردین 1404، صفحه 265-280 اصل مقاله (813.55 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2025.35373.2310 | ||
نویسنده | ||
لیلا فتح الهی* | ||
گروه شیمی، دانشگاه پیام نور، 4697-19395، تهران، ایران | ||
تاریخ دریافت: 18 آذر 1403، تاریخ بازنگری: 31 فروردین 1404، تاریخ پذیرش: 10 خرداد 1404 | ||
چکیده | ||
نانو فوتوکاتالیست بر پایه ای از کامپوزیت SrFe2O4-CuO به روش شیمیایی آسان سنتز شد. تصویر میکروسکوپ الکترونی روبشی نشان دهنده اتصال SrFe2O4 و CuO است. طیف سنجی فرابنفش-مرئی شکاف انرژی نانوکامپوزیت SrFe2O4-CuO را محاسبه کرده است و نسبت به CuO کمتر می باشد. طیف سنجی EDS برای تایید حضور عناصر استرانسیم، آهن، مس و اکسیژن انجام شد. اندازه کریستال نانوذرات CuO و نانوکامپوزیت SrFe2O4-CuO به ترتیب 29.12 و 39.81 نانومتر است. مساحت سطح برای نمونه های نانوذرات CuO و نانوکامپوزیت SrFe2O4-CuO برابر با 15.12 mg2/gو 45.23 mg2/g می باشد. پس از سنتز موفقیت آمیز نانوکامپوزیت SrFe2O4-CuO، از آن در حذف فوتوکاتالیستی آلاینده اریوکروم بلک تی تحت تابش نور فرابنفش استفاده شد. میزان توانایی حذف SrFe2O4-CuO، نسبت به CuO افزایش یافت. نانوکامپوزیت SrFe2O4-CuO پایداری و قابلیت استفاده مجدد عالی را نشان داد. نانو ذرات مشخص شده تحت تابش نور فرابنفش بسیار فعال هستند و رادیکال های هیدروکسیل و سوپر دی اکسید سهم عمده ای در حذف رنگ نشان داد. | ||
کلیدواژهها | ||
حذف فوتوکالیستی؛ SrFe2O4-CuO؛ اریوکروم بلک تی؛ مطالعه سینتیکی | ||
عنوان مقاله [English] | ||
Synthesis and combination of SrFe2O4 nano-spinel on CuO for photocatalytic removal: a kinetic study | ||
نویسندگان [English] | ||
Leila Fatolahi | ||
Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran | ||
چکیده [English] | ||
.Nano photocatalyst based on SrFe2O4-CuO composite was synthesized by easy chemical method. The scanning electron microscope image shows the bonding of SrFe2O4 and CuO. Ultraviolet-visible spectroscopy has calculated the energy gap of SrFe2O4-CuO nanocomposite and it is lower than CuO. EDS spectroscopy was performed to confirm the presence of strontium, iron, copper and oxygen elements. The crystal size of CuO nanoparticles and SrFe2O4-CuO nanocomposite is 29.12 and 39.81 nm, respectively. The surface area for samples of CuO nanoparticles and SrFe2O4-CuO nanocomposite is equal to 15.12 mg2/g and 45.23 mg2/g. After the successful synthesis of SrFe2O4-CuO nanocomposite, it was used in the photocatalytic removal of Eriochrome Black T pollutant under ultraviolet light irradiation. The removal ability of SrFe2O4-CuO was higher than CuO nanoparticles. SrFe2O4-CuO nanocomposite showed excellent stability and reusability. The identified nanoparticles are very active under UV light irradiation, and hydroxyl radicals and super dioxide showed a major contribution to dye removal. | ||
کلیدواژهها [English] | ||
photocatalytic removal, SrFe2O4-CuO, Eriochrome Black T, kinetic study | ||
مراجع | ||
[1] Fox, M.A., & Dulay, M.T. (1993). Heterogeneous photocatalysis. Chem. Rev, 93, 341-357.
[2] Ben Hariz, S.H., Lahmar, H., Rekhila, G., Bouhala, A., Trari, M., & Benamira, M. (2022). A novel MgCr2O4/WO3 hetero-junction photocatalyst for solar photo reduction of hexavalent chromium cr (VI). J. Photochem. Photobiol. A Chem, 430, 113986.
[3] Laouici, R., Douafer, S., Lahmar, H., Rekhila, G., Trari, M., & Benamira, M. (2021). Elaboration and studies of physical and photo-electrochemical properties of La2NiO4 and its use with SnO2 in photo-evolution of hydrogen under visible light irradiation. Optik (stuttg), 236.
[4] Lahmar, H., Benamira, M., Douafer, S., Messaadia, L., Boudjerda, A., & Trari, M. (2020). Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ ZnO under solar light. Chem. Phys. Lett, 742,137132.
[5] Gherbi, R., Nasrallah, N., Amrane, A., Maachi, R., & Trari, M. (2011). Photocatalytic reduction of cr (VI) on the new hetero-system CuAl2O4/TiO2. J. Hazard. Mater, 186 ,1124-1130.
[6] Cong, Z., Zhou, L., Zheng, N., & Sesay, T. (2023). Synthesis and visible-light photocatalytic property of spinel CuAl2O4 for vehicle emissions. Environ. Sci. Pollut. Res, 30, 64123-64136.
[7] Ponmudi, S., Sivakumar, R., Sanjeeviraja, C., Gopalakrishnan, C., & Jeyadheepan, K. (2019). Facile fabrication of spinel structured n-type CuAl2O4 thin film with nano-grass like morphology by sputtering technique. Appl. Surf. Sci, 483, 601-615.
[8] Kaci, M.M., Nasrallah, N., Djaballah, A.M., Akkari, I., Belabed, C., Soukeur, A., Atmani, F., & Trari, M. (2022). Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure. Opt. Mater. (amst), 126, 112198.
[9] Kiamouche, S., Messaadia, L., Lahmar, H., Rekhila, G., & Trari, M. (2022). Enhanced photocatalytic degradation of ponceau S red dye on the novel hetero-system Fe2O3/WO3 under solar light irradiation React. Kinet. Mech. Catal., 1-16.
[10] Lourghi, M., Lahmar, H., Rekhila, G., Bouatam, I., Trari, M., & Benamira, M. (2024). Fabrication of the new p-Co3O4/n-AgI hetero-junction and its solar photo-degradation of the fast green FCF, J. Photochem. A Chem., 447, 115195.
[11] Li, Da., Huang, Linlin. Liu, Tongtong., Jia, Liu., & Feng, Yujie. (2019). Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres. Chemos, 23, 124527.
[12] Sughra Jamila, G., Sajjad, S., Ahmed Khan Leghari, S., & Mahmood, T., (2020). Role of nitrogen doped carbon quantum dots on CuO nano-leaves as solar induced photo catalyst. J. Phys. Chem. Solid, 138, 109233.
[13] Gazi, M., Panda, S., & Bordoloi, A., (2024). Synthesis of surface-engineered SrFe2O4 for efficient catalytic partial oxidation of methane. Sustainable Chemistry for Climate Action, 5, 100045.
[14] S, H., Jayakumar, O. D., & Sambhudevan, S., (2024). Temperature-controlled morphology and enhanced functionalities of hydrothermally synthesized SrFe2O4 nanostructures for multifaceted applications, 48, 104252.
[15] Eltaweil, S.A., Mohamed, H., & El-Subruiti, M., (2024). Designing of SrFe2O4-decorated sulfur-MXene for super-fast adsorption of mercury. Journal of Molecular Liquids, 408, 125275.
[16] Karim, S., Chakraborty, A., & Das, D., (2022). Devising SrFe2O4 spinel nanoflowers as highly efficient catalyst for enhanced electrochemical water oxidation in different basic concentration. Journal of Electroanalytical Chemistry, 919, 116465.
[17] Zhang, D., & Zhang, L., (2016). Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst. Journal of the Taiwan Institute of Chemical Engineers. 69, 156-162.
[18] Bo, L., Hu, Y., & Tong, J., (2019). Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g=C3N4 composite under visible light. Polyhedron, 168, 94-100.
[19] Douafer, S., Lahmar, H., Laouici, R., Akika, F.Z., Trari, M., Avramova, I., & Benamira, M. (2023). Synthesis and characterization of CdFe2O4 nanoparticles: application for the removal of methyl green under solar irradiation, Mater. Today Commun. 105630.
[20] Boulahbel, H., Benamira, M., Bouremmad, F., Nada, A., Kiamouche, S., Lahmar,H., Souici, A., & Trari, M. (2023). Enhanced photodegradation of Congo red dye under sunlight irradiation by pn NiFe2O4/TiO2 heterostructure. Inorg. Chem. Commun, 110921.
[21] Ahmia, N., Benamira, M., Messaadia, L., Colmont, M., Boulahbel, H., Lahmar, H., Souici, A., & Trari, M. (2024). Photocatalytic activity of ZnMn2O4/TiO2 heterostructure under solar light irradiation: Experimental and theoretical study. J. Mol. Struct, 1306, 137834.
[22] Cai, Yuan., Yang, Fuxing., Wu, Lili., Shu, Yuxian., Qu, Guangmiao., Fakhri, Ali., & Kumar Gupta, Vinod.(2021). Hydrothermal-ultrasonic synthesis of CuO nanorods and CuWO4 nanoparticles for catalytic reduction, photocatalysis activity, and antibacterial properties. Materials Chemistry and Physics, 258, 123919.
[23] Boughelout, A., Macaluso, R., Kechouane, M., & Trari, M. (2020). Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films. React. Kinet.Mech.Catal, 129, 1115-1130.
[24] Boumaza, S., Kaouah, F., Hamane, D., Trari, M., Omeiri, S., Bendjama, Z. (2014). Visible light assisted decolorization of azo dyes: direct red 16 and direct blue 71 in aqueous solution on the p-CuFeO2/n-ZnO system. J. Mol. Catal. A Chem. 393, 156–165.
[25] Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. Sol. Energy, 76, 577-589.
[26] Almorox, J., Voyant, C., Bailek, N., Kuriqi, A., & Arnaldo, J.A. (2021). Total solar irradiance’s effect on the performance of empirical models for estimating global solar radiation: an empirical-based review. Energy, 236, 121486.
[27] Nicolet, M. (1989). Solar spectral irradiances with their diversity between 120 and 900 nm, Planet. Space Sci. 37, 1249-1289.
[28] Gueymard, C.A. (2004). The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy. 76, 423–453.
[29] Myrick, M.L., Simcock, M.N., Baranowski, M., Brooke, H., Morgan, S.L., & McCutcheon, J. N. (2011). The kubelka-munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 46, 140-165.
[30] Gelderman, K., Lee, L., & Donne, S.W. (2007). Flat-band potential of a semiconductor: using the Mott-schottky equation. J. Chem. Educ. 84, 685.
[31] Xie, J. X., Bakker, E., (2015). Solvatochromic dyes as pH-independent indicators for ionophore nanosphere-based complexometric titrations. Anal. Chem. 87, 12318-12323.
[32] Akika, F.Z., Benamira, M., Lahmar, H., Trari, M., Avramova, I., & Suzer, S, (2020). Structural and optical properties of cu-doped ZnAl2O4 and its application as photocatalyst for Cr (VI) reduction under sunlight. Surfaces and Interfaces, 18, 100406.
[33] Turchi, C.S., & Ollis, D.F, (1990). Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192.
[34] Lahmar, H., Douafer, S., Laouici, R., Hamdi, M., Souici, A., Trari, M, & Benamira, M.(2024). Synthesis and characterization of CuAl2O4 nanoparticles: Application for the removal of Eriochrome Black T under solar light irradiation. Inorganic Chemistry Communications, 163,112316
[35] Kazeminezhad, Iraj., & Sadollahkhani, Azar. (2014). Photocatalytic degradation of Eriochrome black-Tdye using ZnO nanoparticles. Materials Letters, 120, 267-270.
[36] Nosaka,Y.,& Nosaka. A. (2016). Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Lett. 1, 356–359.
[37] Barker, D.J., Mannucchi, G.A., Salvi, S.M.L. & Stuckey, D.C. (1999). Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Res, 33, 2499-2510.
[38] Renathung C, Ngullie., Saleh O, Alaswad., Kandasamy Bhuvaneswari., Paramasivam Shanmugam., Thangavelu Pazhanivel., & Prabhakarn Arunachalam. (2020). Synthesis and Characterization of Efficient ZnO/g-C3N4 Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue. Coatings, 10(5), 500.
[39] Vijayakumar, T.P., Benoy, M.D., Duraimurugan, J., Suresh Kumar, G., Mohd. Shkir., Maadeswaran, P., Senthil Kumar, A., & Ramesh Kumar, K.A. (2022). Hydrothermal synthesis of CuO/g-C3N4 nanosheets for visible-light driven photodegradation of methylene blue. Diamond and Related Materials, 121, 108735.
[40] Golmohammadi, M., Nabipoor Hassankiadeh, M., & Zhang, L. (2021). Facile biosynthesis of SnO2/ZnO nanocomposite using Acroptilon repens flower extract and evaluation of their photocatalytic activity. Ceramics International, 47, 29303-29308.
[41] Mihieka Asai, M., & Tapadia, K. (2025). Biofabricated magnetic CuO@Fe3O4 nanocomposites: Synthesis, characterization and Brilliant Green dye removal from aqueous media and its kinetics study. Journal of the Indian Chemical Society, 102 (5) , 101668. | ||
آمار تعداد مشاهده مقاله: 32 تعداد دریافت فایل اصل مقاله: 5 |