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Abstract

Using volume comparison theorems and the Sobolev inequality with almost Ricci solitons, we study an important
version of the gradient estimate for the solutions of ∆u = f +Hu, for some function f , H, and we obtain an upper
bound for the gradient of u on almost Ricci solitons.
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1 Introduction

Sobolev inequality enables us to obtain many applications in differential geometry. For example, it plays the
main role in the maximal principle, gradient estimates and consequently upper and lower bounds of the heat kernel.
The Cheeger-Colding-Naber theory has been extended to integral Ricci curvature bound in the noncollapsed case
and has important results [14, 17]. In fact, Rose in [14] showed that under locally uniformly integral bounds of the
negative part of Ricci curvature, the heat kernel admits a Gaussian upper bound for small times. After that, Dai et
al. [5] extended many of the basic estimates for integral curvature to the collapsed case. Zhang and Zhu [19] followed
their arguments to prove Sobolev inequality on manifolds with considering a lower bound of the Bakry-Émery Ricci

curvature Ric+
1

2
LXg ≥ −λg, where LX is the Lie derivative along the vector field X, and Ric is the Ricci tensor, and

λ is a positive constant. Afterwards, they used volume comparison theorem, and Sobolev inequalities for elliptic and
parabolic gradient estimates (see also [9, 10] for more information). Actually, they considered the following equations

Ric+
1

2
LV g ≥ −λg, |V |(y) ≤ K

d(y,O)α
, α ∈ [0, 1);

and moreover volume noncollapsing condition vol(B(a, 1)) ≥ ρ, for some constant ρ > 0, when α ̸= 0. Here d(y,O)
represents the distance from O to y, and K ≥ 0 is constant. By these assumptions Zhang and Zhu obtained following
upper bound for the solution of ∆u = f in B(x, r):

sup

B(x,
1

2
r)

|∇u|2 ≤ C(n, λ,K, α, ρ)
[
r−2(∥u∥∗2,B(x,r))

2 + (∥f∥∗2q,B(x,r))
2
]
,
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for any q >
n

2
, and moreover

sup

B(x,
1

2
r)

u2 ≤ C(n, λ,K, α, ρ)
[
(∥u∥∗2,B(x,r))

2 + r2(∥f∥∗2q,B(x,r))
2
]
,

where

∥f∥∗q,B(x,r) =

(∮
B(x,r)

|f |qdg
)1

q
.

As well, Wang and Wei in [16] studied on the Riemannian manifolds with integral Bakry-Émery Ricci cuavature,
and extended the local isoperimetric constant estimate in [5] to integral Bakry-Émery Ricci curvature, and got some
applications for a complete smooth metric measure space Mn

f := (Mn, g, e−fdvol), the Riemannian manifold (Mn, g)

coupled with a weighted volume e−fdvol for some f ∈ C∞(M), where dvol is the usual Riemannian volume element
on M respect to the metric g. As a prominent result, they obtained a gradient estimate for solutions of ∆fu = h,
where u and h are smooth functions on Mn

f . Lately, Richard Bamler in [2] improved an important gradient bound
based on Zhang and Cao-Hamilton’s works at [4, 18].

1.1 Ricci almost soliton

Let (Mn, g), be a complete smooth Riemannian manifold equipped with a smooth vector field Y ∈ χ(M), and a
smooth function λ :Mn → R. Let (Mn, g, Y, λ) satisfies in the following equation

Ric +
1

2
LY g = λg,

then it is called an almost Ricci soliton, and if the vector field Y = ∇h, for a smooth function h, it is called a
gradient almost Ricci soliton. Actually, almost all Ricci solitons are the generalized Ricci solitons, considering the
soliton constant λ to be a smooth function introduced in [13]. An almost Ricci soliton (M, g, Y, λ) is trivial if it is
a Ricci soliton, and a Ricci soliton is trivial if the soliton vector field Y is Killing. There are some articles about
the sufficient condition for an almost Ricci soliton to be a Ricci soliton, see [7, 11, 15]. Lately, in [8], necessary and
sufficient conditions for a compact almost Ricci soliton endowed with a geodesic soliton vector field were examined to
be a trivial Ricci soliton. Also in [6], had been shown that under some certain conditions a compact gradient almost
Ricci soliton could be isometric to the unit sphere Sn, and in [3, 11] obtained some result about the condition that an
almost Ricci soliton could be an Einstein manifold.

In this paper, we consider a condition on the Ricci curvature involving vector fields, which is weaker than almost
Ricci soliton, and hence can be applied to almost Ricci soliton. We stata ed new version of the gradient estimate by
solving the following equation

L1u = f, (1.1)

here, L1u = ∆u−Hu and H : M −→ R is a smooth function under. Proving this type of gradient estimate, first we
had used Sobolev inequality on a manifold Mn that its Ricci cuavature tensor satisfies

Ric+
1

2
LV g ≥ −λg, (1.2)

where Ric is the Ricci tensor, λ is a smooth function, and V is a smooth vector field which satisfies

|V |(y) ≤ K

d(y,O)α
, (1.3)

for any y ∈ M . Here we denote the distance between two points y,O ∈ M by d(y,O), K ≥ 0, and 0 ≤ α < 1 are
constants. Here is our main result:

Theorem 1.1. Suppose that on a Riemannian manifoldMn, (1.2), (1.3) hold. Mreover, let the volume non-collapsing
condition holds

V ol(B(x, 1)) ≥ ρ.
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For q >
n

2
, if u and f be smooth functions, and |λ| ≤ N for a constant N such that (1.1) holds with |H| ≤ l1,

0 ≤ u ≤ l2, and |∇H| ≤ l3 for constants l1, l2, l3, then there exists a positive constant r0 = r0(n,N,K, α, ρ, l1, l2, l3)
such that for any x ∈M and 0 < r ≤ r0, we have

sup

B(x,
1

2
r)

|∇u|2 ≤ C(n,N,K, α, ρ, l1, l2, l3)
[
(∥f∥∗2q,B(x,r))

2 + r−2(∥u∥∗2,B(x,r))
2
]
.

2 Main Results and Proofs

We may use following isoperimetric and sobolev inequality. The proof process is just like [5], we can prove the
theorem for any r ≤ r0 = r0(n,K1,K, α, ρ).

Theorem 2.1 (Isoperimetric inequality). Let M be an almost Ricci soliton which next three conditions hold on
it.

Ric+
1

2
LXg ≥ −λg, |V |(y) ≤ K

d(y,O)α
, V ol(B(x, 1)) ≥ ρ,

for all x ∈ M and some constant ρ > 0 and K ≥ 0. (we could just have the first two equations when α = 0). In
addition suppose that function λ is bounded from above by K1, then there is a constant r0 = r0(n,K1,K, α, ρ) such
that for any r ≤ r0 and f ∈ C∞

0 (B(x, r)), we have

ID∗
n(B(x, r)) ≤ C(n)r.

Here ID∗
n(B(x, r)) is the isoperimetric constant defined by

ID∗
n(B(x, r)) = V ol(B(x, r))

1

n . sup
Ω

{
V ol(Ω)

n− 1

n

V ol(∂Ω)

}
,

where the supremum is taken over all smooth domains Ω ⊂ B(x, r) with ∂Ω ∩ ∂B(x, r) = ∅.

Theorem 2.2 (Sobolev inequality). Under the same conditions as in the above theorem, we have the following
Sobolev inequalities for any f ∈ C∞

0 (B(x, r)), and r ≤ r0:

(∮
B(x,r)

|f |
n

n− 1 dg

)n− 1

n ≤ C(n)r

∮
B(x,r)

|∇f |dg, (2.1)

and (∮
B(x,r)

|f |
2n

n− 2 dg

)n− 2

n ≤ C(n)r2
∮
B(x,r)

|∇f |2dg. (2.2)

Moreover, for the case that X = ∇f for some smooth function f , we get

(∮
B(x,r)

|f |
n

n− 1 dg

)n− 1

n ≤ C(n)r

∮
B(x,r)

|∇f |dg. (2.3)

In addition we need the volume comparison theorem which was state in [1] as follows:

Theorem 2.3. Assume that for an n-dimension almost Ricci soliton (1.2) and (1.3) hold. Moreover consider a positive
constant K1 as an upper bound for λ. Suppose in addition that the volume non-collapsing condition holds

V ol(B(x, 1)) ≥ ρ, (2.4)

for positive constants ρ > 0, K ≥ 0 and 0 ≤ α < 1, then for any 0 < r1 < r2 ≤ 1, we have the volume ratio bound as
follows

V ol(B(x, r2))

rn2
≤ eC(n,K1,K,α,ρ)[K1(r

2
2−r21)+K(r2−r1)

1−α].
V ol(B(x, r1))

rn1
. (2.5)

In particular, this result are true by considering the gradient soliton vector field V = ∇f .
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Proof . Take v = |∇u|2 + ∥f2∥∗q,B(x,r). Due to the Bochner formula, we have

1

2
∆|∇u|2 = |∇2u|2+ < ∇u,∆∇u > +Ric(∇u,∇u), (2.6)

then
∆v = 2|∇2u|2 + 2 < ∇u,∇∆u > +2Ric(∇u,∇u). (2.7)

Since ∆u = f +Hu, we infer

∆v ≥ −2 < ∇(Hu),∇u > +2 < ∇u,∇f > +2Ric(∇u,∇u). (2.8)

Applying conditions that stated in theorem, we obtain

∆v ≥ 2uifi − 2λv − (LV g)ijuiuj − 2l1v − 2uHiui. (2.9)

For any positive p, we get

∆vp = pvp−1∆v + p(p− 1)vp−2|∇v|2

≥ 2pvp−1uifi − 2λpvp − pvp−1(LV g)ijuiuj − 2pvp−1uHiui − 2l1pv
p +

p− 1

p
v−p|∇vp|2. (2.10)

Let B = B(x, r), then by (2.10) for any η ∈ C∞
0 (Bx(1)), and p ≥ 1, we have∫

B

|∇(ηvp)|2 =

∫
B

|η∇vp + vp∇η|2

=

∫
B

v2p|∇η|2 − η2vp∆vp

≤
∫
B

v2p|∇η|2 − 2pη2v2p−1uifi + 2λpη2v2p + pη2v2p−1(LV g)ijuiuj + 2pη2v2p−1uHiui + 2l1pη
2v2p.

(2.11)

Since (LV g)ij = ∇iVj +∇jVi, we get

1

2

∫
B

η2v2p−1(LV g)ijuiuj = −
∫
B

2ηv2p−1ηjViuiuj + (2p− 1)η2v2p−2vjViuiuj + η2v2p−1Viuijuj + η2v2p−1Viuiujj .

(2.12)

As we know vj = 2ujjuj , so (2.12) becomes

1

2

∫
B

η2v2p−1(LV g)ijuiuj ≤
∫
B

v2p|∇η|2 + η2v2p−2|V |2|∇u|4 − 2p− 1

p
ηvp−1Viuiuj [(ηv

p)j − vpηj ]

−1

2
η2v2p−1Vivi +

1

2
η2v2p−2f2|∇u|2 + 1

2
η2v2p|V |2 − η2v2p−1ViuiHu. (2.13)

By the definition of v, we know that |∇u|4 ≤ v2, so

1

2

∫
B

η2v2p−1(LV g)ijuiuj ≤
∫
B

v2p|∇η|2 + 3

2
η2v2p|V |2 − 2p− 1

p
ηvp−1Viuiuj [(ηv

p)j − vpηj ]

− 1

2p
ηvpVi[(ηv

p)i − vpηi] +
1

2
η2v2p−2f2|∇u|2 − η2v2p−1ViuiHu. (2.14)

Since |λ| ≤ N , |H| ≤ l1, and |u| ≤ l2, (2.14) changes as follows∫
B

η2v2p−1(LV g)ijuiuj ≤
∫
B

8p− 1

4p
v2p|∇η|2 + 2(2p− 1)2 + 5p

2p
η2v2p|V |2 + 1

2p
|∇(ηvp)|2

+
1

2
η2v2p−1f2 +

1

2
l1l2η

2v2p|V |2 + 1

2
l1l2η

2v2p−2|∇u|2

≤
∫
B

8p− 1

4p
v2p|∇η|2 + 2(2p− 1)2 + 5p+ pl1l2

2p
η2v2p|V |2

+
1

2p
|∇(ηvp)|2 + 1

2
η2v2p−1f2 +

1

2
l1l2η

2v2p−1. (2.15)
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By the same argument of [19], we have

−
∫
B

η2v2p−1uifi ≤
∫
B

4(2p− 1)2 + 1

2p
η2v2p−1f2 +

1

2p
v2p|∇η|2 + 1

8p
|∇(ηvp)|2. (2.16)

Substituting (2.15), and (2.16) in (2.11), it follows that

2

∫
B

|∇(ηvp)|2 ≤
∫
B

2pv2p|∇η|2 + (8(2p− 1)2 + 2)η2v2p−1f2 + 2v2p|∇η|2 + 1

2
|∇(ηvp)|2

+
8p− 1

2
v2p|∇η|2 + (2(2p− 1)2 + 5p+ pl1l2)η

2v2p|V |2 + |∇(ηvp)|2

+pη2v2p−1f2 + pl1l2η
2v2p−1 + 4Npη2v2p + 4pη2v2p−1uHiui + 4pl1η

2v2p,

so ∫
B

|∇(ηvp)|2 ≤
∫
B

16pv2p|∇η|2 + 70p2η2v2p−1f2 + 30p2η2v2p|V |2

+8p(N + l1)η
2v2p + 2pl1l2η

2v2p|V |2 + 2pl1l2η
2v2p−1 + 8pη2v2p−1uHiui. (2.17)

Now by the fact that |Hi| ≤ l3, we get∫
B

8pη2v2p−1uHiui ≤ 8p

∫
B

η2v2p−1l2l3|ui|

≤ 4p

∫
B

η2v2p(l2l3)
2 + 4p

∫
B

η2v2p−2|ui|2

≤ 4p(l2l3)
2

∫
B

η2v2p + 4p

∫
B

η2v2p−1. (2.18)

Hence, we can rewrite (2.17) as∫
B

|∇(ηvp)|2 ≤
∫
B

16pv2p|∇η|2 + 70p2η2v2p−1f2 + 30p2η2v2p|V |2

+8p(N + l1)η
2v2p + 2pl1l2η

2v2p|V |2 + 2pl1l2η
2v2p−1 + 4p(l2l3)

2η2v2p + 4pη2v2p−1. (2.19)

Constructing a cut-off function ψi(s) such that for ri = (
1

2
,

1

2i+2
), i = 0, 1, 2, ..., ψi(t) ≡ 1 for t ∈ [0, ri+1],

suppψi ⊆ [0, ri], and −52i

r
≤ ψ

′

i ≤ 0. Then define ηi(y) = ψi(s). Thus, (2.19) becomes

∫
B(x,ri)

|∇(ηiv
p)|2 ≤

∫
B(x,ri)

16pv2p|∇ηi|2 + 70p2η2i v
2p−1f2 + 30p2η2i v

2p|V |2 + 8p(N + l1)η
2
i v

2p

+2pl1l2η
2
i v

2p|V |2 + 2pl1l2η
2
i v

2p−1 + 4p(l2l3)
2η2i v

2p + 4pη2i v
2p−1. (2.20)

Using volume comparison Theorem 2.3 for
r

2
≤ ri ≤

3r

4
, we can conclude next inequalities by the use of Young’s

inequality.

70p2
∮
B(x,ri)

η2i v
2p−1f2 ≤ 70p2

∥f2∥∗q,B(x,r)

∮
B(x,ri)

η2i v
2pf2

≤C(n,N,K, α, ρ)p2
(∮

B(x,ri)

(ηiv
p)

2q

q − 1
)q − 1

q
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≤C(n,N,K, α, ρ)p2
(∮

B(x,ri)

(ηiv
p)

a.
2q

q − 1
.b
)q − 1

qb ×
(∮

B(x,ri)

(ηiv
p)

(1−a).
2q

q − 1
.

b

b− 1
) (q − 1)(b− 1)

qb

≤ϵ

(∮
B(x,ri)

(ηiv
p)

a.
2q

q − 1
.b
)q − 1

qba + ϵ
−

a

1− aC

1

1− a p

2

1− a
(∮

B(x,ri)

(ηiv
p)

(1−a).
2q

q − 1
.

b

b− 1
) (q − 1)(b− 1)

qb(1−a)
. (2.21)

By the same argument for q ∈ (
n

2
,
n

2α
), we conclude that

30p2
∮
B(x,ri)

η2
i v

2p|V |2 ≤ 30p2
(∮

B(x,ri)

(ηiv
p)

2q

q − 1
)q − 1

q .

(∮
B(x,ri)

|V |2q
)1

q

≤ p2C(n,N, k, α, ρ)r−2α
i

(∮
B(x,ri)

(ηiv
p)

2q

q − 1
)q − 1

q

≤ ϵr−2α
i

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n + ϵ
−

a

1− a p

2

1− aC

1

1− a r−2α
i

∮
B(x,ri)

η2
i v

2p. (2.22)

Therefore,

2pl1l2

∮
B(x,ri)

η2
i v

2p|V |2 ≤
[
ϵr−2α

i

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n + ϵ
−

a

1− a P

1

1− aC

1

1− a r−2α
i

∮
B(x,ri)

η2
i v

2p

]
. (2.23)

So substituting (2.21), (2.22) and (2.23) in (2.20), we have

ointB(x,ri)|∇(ηiv
p)|2 ≤

∮
B(x,ri)

8p(N + l1)η
2
i v

2p + 16pv2p|∇ηi|2 + 2pl1l2η
2
i v

2p−1 + 4p(l2l3)
2η2

i v
2p + 4pη2

i v
2p−1

+ ϵ

(∮
B(x,ri)

(ηiv
p)

a.
2q

q − 1
.b
)q − 1

qba

+ ϵ
−

a

1− aC

1

1− a p

2

1− a
(∮

B(x,ri)

(ηiv
p)

(1−a).
2q

q − 1
.

b

b− 1
) (q − 1)(b− 1)

qb(1−a)

+ 2ϵr−2α
i

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n + (p

1

1− a + p

2

1− a )ϵ
−

a

1− aC

1

1− a r−2α
i

∮
B(x,ri)

η2
i v

2p. (2.24)

Now using Sobolev inequality (2.1) and (2.24), if we take a =
n

2q
and b =

2q − 2

n− 2
, we get

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n ≤C(n)r2i

∮
B(x,ri)

|∇(ηiv
p)|2

≤C(n)r2i

[ ∮
B(x,ri)

8p(N + l1)η
2
i v

2p + 16pv2p|∇ηi|2 + 2pl1l2η
2
i v

2p−1 + 4p(l2l3)
2η2

i v
2p + 4pη2

i v
2p−1

]

+ C(n)ϵr2−2α
i

(∮
B

(ηvp)

2n

n− 2
)n− 2

n + C(n)ϵ
−

a

1− aC

2q

2q − n p

4q

2q − n r2−2α
i

∮
B(x,ri)

η2
i v

2p

+ C(n)r2i ϵ

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n + C(n)r2i ϵ
−

a

1− a
(
p

4q

2q − n + p

2q

2q − n
) ∮

B(x,ri)

η2
i v

2p.

We choose ϵ small so that due to ri ≤ r ≤ 1, and α < 1, we obtain

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n ≤ C(n,N,K, α, ρ, l1, l2, l3)r
2
i

∮
B(x,ri)

pv2p|∇ηi|2 + pη2
i v

2p + pη2
i v

2p−1. (2.25)
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Using volume comparison theorem for r2 = ri+1 and r1 = ri, we infer

(∮
B(x,ri+1)

(vp)

2n

n− 2
)n− 2

n ≤ C(n,N,K, α, ρ)

(∮
B(x,ri)

(ηiv
p)

2n

n− 2
)n− 2

n

≤ C(n,N,K, α, ρ, l1, l2, l3)

∮
B(x,ri)

22ipv2p + 2pv2p.

Then

(∮
B(x,ri+1)

vµ
i+1

)n− 2

n =

(∮
B(x,ri+1)

(vp)

2n

n− 2
)n− 2

n

≤ C(n,N,K, α, ρ, l1, l2, l3)(2
2i−1µi + µi)

∮
B(x,ri)

vµ
i

≤ C(n,N,K, α, ρ, l1, l2, l3)(2
2i−1 + 1)22i

∮
B(x,ri)

vµ
i

,

as µ =
n

n− 2
and p =

µi

2
for i = 0, 1, 2, . . ., this means that

∥V ∥∗µi+1,B(x,ri+1)
≤ Cµ−i

(24i−1 + 22i)µ
−i

∥v∥∗µi,B(x,ri)
. (2.26)

So,

sup

B(x,
1

2
r)

v ≤ CΣµ−i

(24i−1 + 22i)Σµ−i

∥v∥∗
1,B(x,

3

4
r)

≤ C(n,N,K, α, ρ, l1, l2, l3)∥v∥∗
1,B(x,

3

4
r)

. (2.27)

On the other hand, we have∫
B(x,r)

η2|∇u|2 =

∫
B(x,r)

−η2u(f −Hu)− 2ηu∇iu∇iη

≤
∫
B(x,r)

1

2
u2η2 +

1

2
f2η2 + η2l1l2 +

1

2
η2|∇u|2 + 2u2|∇η|2.

Due to the definition of η, we have∮
B(x,r)

η2|∇u|2 ≤ 4

∮
B(x,r)

u2η2 + f2η2 + η2l1l2 + u2|∇η|2

≤ 100r−2(∥u|∗2,B(x,r))
2 + 4∥f2∥∗q,B(x,r) + l1l2.

Accordingly, we achieve

∥v∥∗
1,B(x,

3

4
r)

≤ V ol(B(x, r))

V ol(B(x,
3

4
r))

∮
B(x,r)

η2(|∇u|2 + ∥f2∥∗q,B(x,r))

≤ C(n,N,K, α, ρ, l1, l2)
[
r−2(∥u∥∗2,B(x,r))

2 + (∥f∥∗2q,B(x,r))
2].

Thus,
sup

B(x,
1

2
r)

|∇u|2 ≤ ∥v∥
∞,B(x,

1

2
r)

≤ C(n,N,K, α, ρ, l1, l2, l3)
[
r−2(∥u∥∗2,B(x,r))

2 + (∥f∥∗2q,B(x,r))
2].

This completes the proof. □

Remark 2.4. Note that the same results hold without noncollapsing condition when α = 0.

According to the previous theorem, it could be easy to conclude:
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Corollary 2.5. Suppose that the following condition holds for a gradient Ricci almost soliton

Ric +Hessh ≥ −λg,

and more over we had two condition for potential function h as follows

|h(y)− h(z)| ≤ K1d(y, z)
α, and sup

x∈M,0≤r≤1

(
rβ∥∇h∥∗q,B(x,r)

)
≤ K2.

Then there is a constant r0 = r0(n,N,K1,K2, α, β, l1, l2, l3), such that by the same conditions as last theorem, the
solution of (1.1) satisfies

sup

B(x,
r

2
)

|∇u|2 ≤ C(n,N,K1,K2, α, β, l1, l2, l3)
[
r−2(∥u∥∗2,B(x,r))

2 + (∥h∥∗2q,B(x,r))
2
]
,

for any q >
n

2
.

Remark 2.6. Note that if in (1.1), H = 0, and λ be a constant then we obtain similar results as [19], and if only
H = 0, then we have the same result for λ ≤ N with constant C = C(n,N,K, α, ρ). Also, for the case that λ be a
constant, for example λ = b, then just C changes as C = C(n, b,K, α, ρ, l1, l2, l3). Moreover, when λ = 0, then we
have C = C(n,K, α, ρ, l1, l2, l3) such that

sup

B(x,
1

2
r)

|∇u|2 ≤ C(n,K, α, ρ, l1, l2, l3)
[
(∥f∥∗2q,B(x,r))

2 + r−2(∥u∥∗2,B(x,r))
2
]
.

By this fact coefficient C for the Corollary 2.5 changes as follows:

(i) if H = 0, then C = C(n,N,K1,K2, α, β),

(ii) if λ = b, b is a constant, then C = C(n, b,K1,K2, α, β, l1, l2, l3),

(iii) if λ = 0, then C = C(n,K1,K2, α, β, l1, l2, l3).
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