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Abstract

This paper establishes the best proximity point (BPP ) theorem by using a newly developed contraction operator.
Using the results, the optimal solution to a system of fractional hybrid differential equations is then investigated. To
further illustrate the findings, an additional example is given.
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1 Introduction

Finding the points that are closest to a given point or subgroup is one of the main issues in approximation theory.
For W̆, a normed linear space (NLS), if ĕ ∩ T (ĕ) ̸= ϕ, where ĕ ∈ E and E is a non-empty subset of W̆, then the map
T : E → W̆ has a fixed point. If there isn’t a fixed point for T, then for any ĕ in E , the distance between ĕ and T (ĕ) is
positive. If there is a minimum distance between ĕ and T (ĕ), then ĕ is the best proximity point of T. As a consequence,
Ky Fan develops his best approximation theory. On the other hand, when T maps E into a distinct subset B of W̆,
there is an issue. In this case, the extension of the problem is to find a point that approximates the distance between
these two subsets. These points are known as best proximity points.

The structure of this paper will be as follows: We first review some basic terms and ideas related to best proximity
theory. We then prove the best proximity point theorem for both cyclic and noncyclic contractive operators. We next
go over their particular cases in the next section. Lastly, we use our findings to look at the best way to solve a system
of fractional hybrid differential equations.

After Kuratowski and Hausdorff’s generalization, numerous scholars investigated the concept of MNC in order to
obtain significant extensions of the theory of compact operators. The main competence is the application of measures
of noncompactness to ensure that the mappings satisfy the relevant inequalities. To help the reader understand our
problem and objective, we thus provide a brief history. We review the standard fixed point problem in a Banach space
W̆ by using certain regularity assumptions from Schauder [2].
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The authors of [10] first addressed the BPP results using MNC . After that, they used their findings to look into
the existence of optimum solutions of a system of second-order differential equations. The application of MNC to find
optimal solutions for ψ-Hilfer fractional differential equations with initial conditions was investigated by the authors
of [11]. Using the Caputo fractional derivative of order r̆ ∈ (0, 1], the authors of [5] defined both strong and mild
solutions to the fractional hybrid boundary value problems in two types and investigated the presence of at least one
mild solution for each type. Finally, they proved how crucial it is to consider the initial conditions. In [13], the authors
used Petryshyn’s fixed point theorem and MNC to investigate the solvability of functional-integral equations in Banach
algebra. Additionally, they looked into the general class of functional equations, which includes a number of integral
equations that arise in real-world and non-linear analysis situations. Using a Darbo-type fixed point theorem and
MNC , the authors of [9] investigate the existence of solutions to infinite systems of second-order differential equations
in the Banach sequence space lp. Using a method related to MNC , the authors of [12] work on existence results for
an infinite system of differential equations of order n with boundary conditions in the Banach spaces c0 and l1. In
[7], the authors used a method related to MNC and the generalized Meir–Keeler fixed point theorem to demonstrate
the existence of a solution for an infinite system of nonlinear integral equations in the Banach spaces lp, p > 1. The
authors examined if there are any solutions for nonlinear integral equations in [8]. Additionally, they presented an
iteration approach to provide very accurate solutions for the nonlinear integral equations. At last, they determined
the convergence condition and provided an upper bound of error.

Motivated by these works, in this paper we established a best proximity point theorem with the help of a newly
defined contraction operator by using MNC , and studied the existence of optimum solutions of a system of fractional
hybrid differential equations.

Theorem 1.1. [6] A continuous operator J : K → K where K is a nonempty, convex and compact subset of a Banach
space W̆, then J admits at least a fixed point.

Clearly it is the generalization of Brouwer fixed point theorem. Consider a Banach space W̆ and a closed ball
C
(
f̄ , ḡ
)
= {m̄ ∈ W̆ : ∥m̄− f̄∥ ≤ ḡ} in W̆. Suppose z, for nonempty (z) denotes the closure of z and conv (z) denotes

the closed and convex hull of the non empty set z which is the smallest convex and closed set containing z.

Also MW̆ and NW̆ represents the family of non empty bounded subsets of W̆ and subfamily of W̆ consisting all
relatively compact sets respectively; R= (−∞,∞), and R+ = [0,∞). Measure of noncompactness (MNC ) is defined
axiomatically as follows:

Definition 1.2. [1] A map Ǧ : MW̆ → R+ is a MNC (measure of noncompactness) in a Banach space W̆, if the
following conditions are holds for Ǧ:

1. ker Ǧ = {Ṽ ∈MW̆ : Ǧ
(
Ṽ
)
= 0} ≠ ϕ,

2. Ṽ ∈ ker Ǧ if and only if Ṽ is relatively compact,

3. Ṽ1 ⊆ Ṽ2 ⇒ Ǧ
(
Ṽ1

)
≤ Ǧ

(
Ṽ2

)
,

4. Ǧ
(
Ṽ
)
= Ǧ

(
Ṽ
)
,

5. Ǧ
(
conv(Ṽ)

)
= Ǧ

(
Ṽ
)
,

6. Ǧ
(
δ́Ṽ1 +

(
1− δ́

)
Ṽ2

)
≤ δ́Ǧ

(
Ṽ1

)
+
(
1− δ́

)
Ǧ
(
Ṽ2

)
, for δ́ ∈ [0, 1],

7. max {Ǧ
(
Ṽ1

)
, Ǧ
(
Ṽ2

)
} = Ǧ

(
Ṽ1 ∪ Ṽ2

)
,

8. The set Ṽ∞ = ∩∞
n=1Ṽn is compact and non empty, if

(
Ṽn

)
is a decreasing sequence of closed sets which are

non empty in MW̆ and lim
n→∞

Ǧ
(
Ṽn

)
= 0.

In particular, the space W̆ = C(I), where I is the closed and bounded interval, is the set of real valued continuous
functions on I. Then W̆ is a Banach space with the norm ∥D∥ = sup{|D(s̆)| : s̆ ∈ I},D ∈ W̆. Assume that U( ̸= ϕ) ⊆ W̆
is bounded. For D ∈ U and r > 0, the modulus of continuity of D, represented by ℶ(D, r) i.e.,

ℶ(D, r) = sup{|D(ś1)− D(ś2)| : ś1, ś2 ∈ I, |ś1 − ś2| ≤ r}.

Furthermore, we define
ℶ(U, r) = sup{ℶ(D, r) : D ∈ U};ℶ0(U) = lim

r→0
ℶ(U, r).

A Hausdorff MNC ג is given by (U)ג =
1

2
ℶ0(U), see [2]. It is widely known that the map ℶ0 is a MNC in W̆.
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2 Preliminaries

We collect some fundamental definitions and notations needed for the paper.

Definition 2.1. [6] Consider W̆ be a Banach space. Then

1. W̆ is uniformly convex Banach space if there exists a strictly increasing function D̄ : (0, 2] → [0, 1] such that,
∥ŕ0 − ā0∥ ≤ ϖ̄,

∥κ́0 − ā0∥ ≤ ϖ̄,=⇒ ∥ ŕ0 + κ́0
2

− ā0∥ ≤
(
1− D̄

( s̄1
ϖ̄

))
ϖ̄;

∥ŕ0 − κ́0∥ ≥ s̄1

for all ŕ0, κ́0, ā0 ∈ W̆, ϖ̄ > 0 and s̄1 ∈ [0, 2ϖ̄].

2. W̆ is strictly convex Banach space if for ŕ0, κ́0, ā0 ∈ W̆ and ϖ̄ > 0, the following conditions are holds:
∥ŕ0 − ā0∥ ≤ ϖ̄,

∥κ́0 − ā0∥ ≤ ϖ̄,=⇒ ∥ ŕ0 + κ́0
2

− ā0∥ < ϖ̄.

ŕ0 ̸= κ́0.

Consider a normed linear space (NLS ) W̆. For any two non empty subset N1, N2 of W̆, the pair (N1, N2) is closed
if and only if both N1, N2 are closed; (N1, N2) ⊆ (H,C) if and only if N1 ⊆ H, N2 ⊆ C. In addition, we denote,
dist (H,C) = inf {∥µ̆− ν̆∥ : (µ̆, ν̆) ∈ H× C},

H0 = {µ̆ ∈ H : there exists ν̄0 ∈ C, ∥µ̆− ν̄0∥ = dist (H,C)}

C0 = {ν̆ ∈ C : there exists µ̆1 ∈ H, ∥µ̆1 − ν̆∥ = dist (H,C)}.

Definition 2.2. [6] Consider Z be a NLS . A non empty pair (H,C) of Z is proximinal if H = H0 and C = C0.
Also for a reflexive Banach space O, if the pair (H,C) be a closed, nonempty, convex and bounded in O, then (H0,C0)
is also convex, nonempty and closed pair. Consider a function T : H ∪ C → H ∪ C. We say that T is,

1. relatively nonexpansive, if ∥T (µ̆)− T (ν̆) ∥ ≤ ∥µ̆− ν̆∥ for any (µ̆, ν̆) ∈ H× C,

2. cyclic, if T (H) ⊆ C and T (C) ⊆ H,

3. non cyclic, if T (H) ⊆ H and T (C) ⊆ C,

4. compact, if
(
T (H), T (C)

)
is compact.

Definition 2.3. [6] Consider (H,C) be a nonempty pair in a Banach space W̆ and Ē : H ∪ C → H ∪ C be a cyclic
function, then q̃ ∈ H∪C is called a BPP of Ē if ∥q̃− Ē (q̃) ∥ = dist (H,C). If Ē is non cyclic, then the pair (q̃, w̃) ∈ H×C
is best proximity pair if ∥q̃− w̃∥ = dist (H,C), for q̃ = Ē (q̃) , w̃ = Ē (w̃).

Corollary 2.4. [6] Suppose a Banach space W̆ and a nonempty, convex and compact pair (N1, N2) in W̆. Let a cyclic
and relatively nonexpansive mapping T : N1 ∪ N2 → N1 ∪ N2. Then T have a BPP .

Corollary 2.5. [6] Suppose a strictly convex Banach space W̆ and a compact, nonempty and convex pair (N1, N2) in
W̆. Let a relatively non-expansive and non-cyclic mapping T : N1 ∪ N2 → N1 ∪ N2. Then T have a best proximity pair.

Definition 2.6. [5] The left Caputo fractional derivative of order r̆ > 0 is defined by

Dr̆�̃� (τ1) =
1

γ̃ (m− r̆)

∫ τ1

a

(τ1 − ϱ̃)
m−r̆−1

Dm�̃� (ϱ̃) dϱ̃, (2.1)

where m− 1 < r̆ < m, D =
d

dϱ̃
and γ̃ (, ) denotes Euler’s gamma function.
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3 Main result

Definition 3.1. [3] Consider the function C : U ⊆ W̆ → W̆ and Φ́ :MW̆ → R+. C is said to be Φ́-admissible if,

Φ́ (κ̌) ≥ 1 =⇒ Φ́ (ConvCκ̌) ≥ 1,

where κ̌ ⊆ U and κ̌,Cκ̌ ∈MW̆ .

Definition 3.2. [3] Assume the function ϖ̌ : R+ × R+ → R+ with the following conditions:

(i) max{µ̃0, ν̃0} ≤ ϖ̌ (µ̃0, ν̃0), for all µ̃0, ν̃0 ≥ 0,
(ii) ϖ̌ is non-decreasing and continuous,

(iii) ϖ̌
(
ũ0 + b̃0, m̃0 + t̃0

)
≤ ϖ̌ (ũ0, m̃0) + ϖ̌

(
b̃0, t̃0

)
.

We use Q to represent the collection of this functions. For example, ϖ̌ (µ̄, ν̄) = µ̄+ ν̄.

Definition 3.3. [3] Assume a map ϱ̃ : R+ → R+ with a non negative sequence {ãn} such that

lim
n→∞

ϱ̃ (ãn) = 0 if lim
n→∞

ãn = 0.

We use K to represent the collection of this functions. For example, ϱ̃ (µ̄) = µ̄. Assume that a map Θ́ : R+ → R+

and ϱ̃ ∈ K with the following conditions:

(i) Θ́ is continuous with Θ́ (µ̄) = 0 if and only if µ̄ = 0.
(ii) lim

n→∞
ϱ̃ (µ̄n) < Θ́ (µ̄) if lim

n→∞
µ̄n = µ̄ > 0.

We use Sϱ̃ to represent the collection of this class of functions. H and C will be nonempty convex subsets of a

Banach space W̆ in this section.

Definition 3.4. Consider (H,C) be convex and nonempty pair in a Banach space W̆ with a MNC Ǧ on W̆. A mapping
T : H∪C → H∪C which is cyclic (noncyclic), is said to be a (Θ́, ϖ̌, �̌�, ϱ̃)-contractive operator such that for any convex,
nonempty, proximinal, closed, bounded and T-invariant pair (ι1, ι2) such that dist (ι1, ι2) = dist(H,C), we have,

Φ́ (κ̌) Θ́
[
ϖ̌
(
Ǧ (T (ι1) ∪ T (ι2)) , �̌�

(
Ǧ (T (ι1) ∪ T (ι2))

))]
≤ ϱ̃

[
ϖ̌
(
Ǧ (ι1 ∪ ι2) , �̌�

(
Ǧ (ι1 ∪ ι2)

))]
, (3.1)

where κ̌ is a non empty subset of Π̌ = H ∪ C, Θ́ ∈ Sϱ̃, ϖ̌ ∈ Q, ϱ̃ ∈ K and �̌� : R+ → R+ is an non decreasing and

continuous function. Also the function T is Φ́-admissible with Φ́
(
Π̌
)
≥ 1.

Theorem 3.5. Consider a relatively non expansive, cyclic and (Θ́, ϖ̌, �̌�, ϱ̃)-contractive operator T : H ∪ C → H ∪ C,
then T has a BPP , if H0 ̸= ϕ.

Proof . Since H0 ̸= ϕ, (H0,C0) ̸= ϕ. By the given conditions on T, clearly (H0,C0) is a closed, convex, proximinal
and T-invariant pair. For each p̄0 ∈ H0, there is a q̄0 ∈ C0 satisfying ∥p̄0 − q̄0∥ = dist (H,C). Since T is relatively
non expansive, we get, ∥Tp̄0 − Tq̄0∥ ≤ ∥p̄0 − q̄0∥ = dist (H,C), which implies Tp̄0 ∈ C0, that is T (H0) ⊆ C0. Similarly,
T (C0) ⊆ H0, hence we get T is cyclic on H0 ∪ C0.

Let us assume that X̃0 = H0, W0 = C0 and
{(

X̃n,Wn

)}
be a sequence of pairs with X̃n = conv

(
T
(
X̃n−1

))
and Wn = conv (T (Wn−1)), for all n ∈ N. Now our claim is, X̃n+1 ⊆ Wn and Wn ⊆ X̃n−1 for all n ∈ N. In fact
W1 = conv (T (W0)) = conv (T (C0)) ⊆ conv (H0) = H0 = X̃0. Hence we can write,

T (W1) ⊆ T
(
X̃0

)
and W2 = conv (T (W1)) ⊆ conv

(
T
(
X̃0

))
= X̃1.

With the similar argument, we get by using induction, Wn ⊆ X̃n−1. Similarly, we get X̃n+1 ⊆ Wn, for all n ∈ N.
Hence we can write X̃n+2 ⊆ Wn+1 ⊆ X̃n ⊆ Wn−1, for all n ∈ N. So in H0 × C0, the decreasing sequence of NBCC

pairs is
{(

X̃2n,W2n

)}
. Moreover,

T (W2n) ⊆ T
(
X̃2n−1

)
⊆ conv

(
T
(
X̃2n−1

))
= X̃2n, (3.2)

T
(
X̃2n

)
⊆ T (W2n−1) ⊆ conv (T (W2n−1)) = W2n. (3.3)
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Hence we get
(
X̃2n,W2n

)
is T− invariant pair, for all n ∈ N. Now, if the pair (x̆, y̆) ∈ H0 × C0 is proximinal, we

have,

dist
(
X̃2n,W2n

)
≤ ∥T2nx̆− T2ny̆∥ ≤ ∥x̆− y̆∥ = dist (H,C) .

Now we are to show that, for all n ∈ N, the pair
(
X̃n,Wn

)
is proximinal. For n=0 we have

(
X̃0,W0

)
is proximinal

pair. Let us assume that
(
X̃k,Wk

)
is proximinal and an arbitrary π̃ such that π̃ ∈ X̃k+1 = conv

(
T
(
X̃k

))
. So

π̃ =
∑ń

ḱ=1 ΨḱT
(
Jḱ
)
with Jḱ ∈ X̃k, ń ∈ [1,∞) ,Ψḱ ≥ 0 and

∑ń
ḱ=1 Ψḱ = 1. By assumption, we have

(
X̃k,Wk

)
is

proximity pair, there exists ρ̃ḱ ∈ Wk for 1 ≤ ḱ ≤ ń such that ∥Jḱ − ρ̃ḱ∥ = dist
(
X̃k,Wk

)
= dist (H,C). Consider

ρ̃ =
∑ń

ḱ=1 ΨḱT
(
ρ̃ḱ
)
. Then ρ̃ ∈ conv (T (Wk)) = Wk+1, and

∥π̃ − ρ̃∥ = ∥
ń∑

ḱ=1

ΨḱT
(
Jḱ
)
−

ń∑
ḱ=1

ΨḱT
(
ρ̃ḱ
)
∥ ≤

ń∑
ḱ=1

Ψḱ∥Jḱ − ρ̃ḱ∥ = dist (H,C) . (3.4)

Hence
(
X̃k+1,Wk+1

)
is the proximinal pair and by induction hypothesis our claim is proved.

If max
{
Ǧ
(
X̃2n0

)
, Ǧ (W2n0)

}
= 0, for some n0 ∈ [1,∞) ∪ {0}, then we have T : X̃2n0 ∪W2n0 → X̃2n0 ∪W2n0 is

compact. By Corollary 2.4, T have a BPP . Hence we consider that max
{
Ǧ
(
X̃n

)
, Ǧ (Wn)

}
> 0, for all n ∈ [1,∞).

Since X̃2n+1 ⊆ T
(
X̃2n

)
and W2n+1 ⊆ T (W2n), we have,

Θ́
[
ϖ̌
(
Ǧ
(
X̃2n+1 ∪W2n+1

)
, �̌�
(
Ǧ
(
X̃2n+1 ∪W2n+1

)))]
=Θ́

[
ϖ̌
(
max

{
Ǧ
(
X̃2n+1

)
, Ǧ (W2n+1)

}
, �̌�
(
max

{
Ǧ
(
X̃2n+1

)
, Ǧ (W2n+1)

}))]
=Θ́

[
ϖ̌

(
max

{
Ǧ
(
conv

(
T
(
X̃2n

)))
, Ǧ
(
conv

(
T (W2n)

))}
, �̌�

(
max

{
Ǧ
(
conv

(
T
(
X̃2n

)))
, Ǧ
(
conv (T (W2n))

)}))]

=Θ́

[
ϖ̌

(
max

{
Ǧ
(
T
(
X̃2n

))
, Ǧ (T (W2n))

}
, �̌�
(
max

{
Ǧ
(
T
(
X̃2n

))
, Ǧ (T (W2n))

}))]
=Θ́

[
ϖ̌
(
Ǧ
(
T
(
X̃2n

)
∪ T (W2n)

)
, �̌�
(
Ǧ
(
T
(
X̃2n

)
∪ T (W2n)

)))]
≤Φ́ (κ̌) Θ́

[
ϖ̌
(
Ǧ
(
T
(
X̃2n

)
∪ T (W2n)

)
, �̌�
(
Ǧ
(
T
(
X̃2n

)
∪ T (W2n)

)))]
≤ϱ̃
[
ϖ̌
(
Ǧ
(
X̃2n ∪W2n

)
, �̌�
(
Ǧ
(
X̃2n ∪W2n

)))]
.

Clearly,

{
Ǧ
(
X̃2n ∪W2n

)}∞

n=1

is a decreasing and non-negative sequence. Thus, there exists V ≥ 0 such that

lim
n→∞

Ǧ
(
X̃2n ∪W2n

)
= V. If possible, consider V > 0. Then we have as n→ ∞

Θ́ [ϖ̌ (V, �̌� (V))] ≤ ϱ̃ [ϖ̌ (V, �̌� (V))]
< Θ́ [ϖ̌ (V, �̌� (V))] ,

a contradiction. Thus V=0, that is lim
n→∞

Ǧ
(
X̃2n ∪W2n

)
= 0. Thus

lim
n→∞

Ǧ
(
X̃2n ∪W2n

)
= max

{
lim

n→∞
Ǧ
(
X̃2n

)
, lim
n→∞

Ǧ (W2n)
}
= 0.

If X̃∞ = ∩∞
n=0X̃2n and W∞ = ∩∞

n=0W2n, We get the non empty, compact, convex pair
(
X̃∞,W∞

)
which is

T-invariant with dist
(
X̃∞,W∞

)
= dist(H,C). Thus T has a BPP . □
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Theorem 3.6. Consider a relatively nonexpansive, noncyclic and (Θ́, ϖ̌, �̌�, ϱ̃)-contractive operator T : H∪C → H∪C
on a strictly convex Banach space W̆, then T has a best proximity pair, if H0 ̸= ϕ.

Proof . Following the proof of the Theorem 3.5, define a pair
(
X̃n,Wn

)
as X̃n = conv

(
T
(
X̃n−1

))
and Wn =

conv (T (Wn−1)), n ∈ N with X̃0 = H0 and W0 = C0. We get a NBCC and decreasing sequence of pair
{(

X̃n,Wn

)}
in H0 × C0. Also,

T
(
X̃n

)
⊆ T

(
X̃n−1

)
⊆ conv

(
T
(
X̃n−1

))
= X̃n, (3.5)

T (Wn) ⊆ T (Wn−1) ⊆ conv (T (Wn−1)) = Wn. (3.6)

Thus, the pair
(
X̃n,Wn

)
is T-invariant for all n ≥ 1. Following the proof of the Theorem 3.5, we obtain a proximinal

pair
(
X̃n,Wn

)
, for all non negative integer n such that dist

(
X̃n,Wn

)
= dist(H,C). Now if max

{
Ǧ
(
X̃n0

)
, Ǧ (Wn0)

}
=

0, for some positive integer n0, then T : X̃n0
∪Wn0

→ X̃n0
∪Wn0

is compact. Hence from Corollary 2.5, we get the

desired result. Thus we consider that, max
{
Ǧ
(
X̃n

)
, Ǧ (Wn)

}
> 0. Since X̃n+1 ⊆ T

(
X̃n

)
and Wn+1 ⊆ T (Wn), we

have,

Θ́
[
ϖ̌
(
Ǧ
(
X̃n+1 ∪Wn+1

)
, �̌�
(
Ǧ
(
X̃n+1 ∪Wn+1

)))]
=Θ́

[
ϖ̌
(
max

{
Ǧ
(
X̃n+1

)
, Ǧ (Wn+1)

}
, �̌�
(
max

{
Ǧ
(
X̃n+1

)
, Ǧ (Wn+1)

}))]
=Θ́

[
ϖ̌

(
max

{
Ǧ
(
conv

(
T
(
X̃n

)))
, Ǧ
(
conv

(
T (Wn)

))}
, �̌�

(
max

{
Ǧ
(
conv

(
T
(
X̃n

)))
, Ǧ
(
conv (T (Wn))

)}))]

=Θ́

[
ϖ̌

(
max

{
Ǧ
(
T
(
X̃n

))
, Ǧ (T (Wn))

}
, �̌�
(
max

{
Ǧ
(
T
(
X̃n

))
, Ǧ (T (Wn))

}))]
=Θ́

[
ϖ̌
(
Ǧ
(
T
(
X̃n

)
∪ T (Wn)

)
, �̌�
(
Ǧ
(
T
(
X̃n

)
∪ T (Wn)

)))]
≤Φ́ (κ̌) Θ́

[
ϖ̌
(
Ǧ
(
T
(
X̃n

)
∪ T (Wn)

)
, �̌�
(
Ǧ
(
T
(
X̃n

)
∪ T (Wn)

)))]
≤ϱ̃
[
ϖ̌
(
Ǧ
(
X̃n ∪Wn

)
, �̌�
(
Ǧ
(
X̃n ∪Wn

)))]
.

Clearly,

{
Ǧ
(
X̃n ∪Wn

)}∞

n=1

is a decreasing and non-negative sequence. Thus, there exists V ≥ 0 such that

lim
n→∞

Ǧ
(
X̃n ∪Wn

)
= V. If possible, consider V > 0. Then we have

Θ́ [ϖ̌ (V, �̌� (V))] ≤ ϱ̃ [ϖ̌ (V, �̌� (V))] ; as n→ ∞
< Θ́ [ϖ̌ (V, �̌� (V))] ,

a contradiction. Thus V = 0, that is lim
n→∞

Ǧ
(
X̃n ∪Wn

)
= 0. Thus

lim
n→∞

Ǧ
(
X̃n ∪Wn

)
= max

{
lim

n→∞
Ǧ
(
X̃n

)
, lim
n→∞

Ǧ (Wn)
}
= 0.

If X̃∞ = ∩∞
n=0X̃n and W∞ = ∩∞

n=0Wn, We get the non empty, compact, convex pair
(
X̃∞,W∞

)
which is T-

invariant with dist
(
X̃∞,W∞

)
= dist(H,C). Thus T has a best proximity pair. □

The next results are special cases of Theorem 3.5. The noncyclic version of the following corollaries are satisfied
in strictly convex Banach spaces.

Corollary 3.7. Consider a cyclic relatively nonexpansive mapping T : H ∪ C → H ∪ C such that for any nonempty,
bounded, closed, convex, proximinal and T-invariant pair (ι1, ι2) with dist (ι1, ι2) = dist(H,C),

2ẁΘ́
[
ϖ̌
(
Ǧ (T (ι1) ∪ T (ι2)) , �̌�

(
Ǧ (T (ι1) ∪ T (ι2))

))]
≤ ϱ̃

[
ϖ̌
(
Ǧ (ι1 ∪ ι2) , �̌�

(
Ǧ (ι1 ∪ ι2)

))]
, (3.7)

for ẁ ≥ 0. Then T has a BPP if H0 ̸= ∅.
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Proof . Putting Φ́ (ẁ) = 2ẁ, ẁ ≥ 0 in equation (3.1) of Definition 3.4 and using Theorem 3.5, the result follows. □

Corollary 3.8. Consider a cyclic relatively nonexpansive mapping T : H ∪ C → H ∪ C such that for any nonempty,
bounded, closed, convex, proximinal and T-invariant pair (ι1, ι2) with dist (ι1, ι2) = dist(H,C),

2ẁΘ́
[
Ǧ (T (ι1) ∪ T (ι2)) + �̌�

(
Ǧ (T (ι1) ∪ T (ι2))

)]
≤ ϱ̃

[
Ǧ (ι1 ∪ ι2) + �̌�

(
Ǧ (ι1 ∪ ι2)

)]
. (3.8)

Then T has a BPP if H0 ̸= ∅.

Proof . Putting ϖ̌ (µ̄, ν̄) = µ̄+ ν̄ in equation (3.7) of Corollary 3.7 and using Theorem 3.5, the result follows. □

Corollary 3.9. Consider a cyclic relatively nonexpansive mapping T : H ∪ C → H ∪ C such that for any nonempty,
bounded, closed, convex, proximinal and T-invariant pair (ι1, ι2) with dist (ι1, ι2) = dist(H,C),

2ẁΘ́
[
Ǧ (T (ι1) ∪ T (ι2)) + �̌�

(
Ǧ (T (ι1) ∪ T (ι2))

)]
≤ Ǧ (ι1 ∪ ι2) + �̌�

(
Ǧ (ι1 ∪ ι2)

)
. (3.9)

Then T has a BPP if H0 ̸= ∅.

Proof . Putting ϱ̃ (µ̄) = µ̄ in equation (3.8) of Corollary 3.8 and using Theorem 3.5, the result follows. □

Corollary 3.10. Consider a cyclic relatively nonexpansive mapping T : H ∪ C → H ∪ C such that for any nonempty,
bounded, closed, convex, proximinal and T-invariant pair (ι1, ι2) with dist (ι1, ι2) = dist(H,C),

2ẁ
[
Ǧ (T (ι1) ∪ T (ι2)) + �̌�

(
Ǧ (T (ι1) ∪ T (ι2))

)]
≤ Ǧ (ι1 ∪ ι2) + �̌�

(
Ǧ (ι1 ∪ ι2)

)
. (3.10)

Then T has a BPP if H0 ̸= ∅.

Proof . Putting Θ́ (µ̄) = µ̄ in equation (3.9) of Corollary 3.9 and using Theorem 3.5, the result follows. □

Corollary 3.11. Consider a cyclic relatively nonexpansive mapping T : H ∪ C → H ∪ C such that for any nonempty,
bounded, closed, convex, proximinal and T-invariant pair (ι1, ι2) with dist (ι1, ι2) = dist(H,C),

Ǧ (T (ι1) ∪ T (ι2)) ≤ Ǧ (ι1 ∪ ι2) . (3.11)

Then T has a BPP if H0 ̸= ∅.

Proof . Putting �̌� (µ̄) = 0 in equation (3.10) of Corollary 3.10, we get

Ǧ (T (ι1) ∪ T (ι2)) ≤ 2ẁ
[
Ǧ (T (ι1) ∪ T (ι2))

]
≤ Ǧ (ι1 ∪ ι2) ,

and using Theorem 3.5, the result follows. □

4 Applications

We use our conclusions to look into the optimum solution to a system of fractional hybrid differential equation.
Consider the following system of fractional hybrid differential equations:

Dr̆
[
ε̃ (τ1)− �̃� (τ1, ε̃ (τ1))

]
= H (ϱ̃, ε̃ (ϱ̃)) , (4.1)

Dr̆
[
κ̃ (τ1)− �̃� (τ1, κ̃ (τ1))

]
= Z (ϱ̃, κ̃ (ϱ̃)) . (4.2)

with ε̃ (0) = π̃0, κ̃ (0) = β̃0, π̃0, β̃0 ∈ R, r̆ ∈ (0, 1], τ1 ∈ [0, 1] = I and H,Z, �̃� are continuous functions with
∥H (ϱ̃, ε̃ (ϱ̃)) ∥ ≤ I1, ∥Z (ϱ̃, κ̃ (ϱ̃)) ∥ ≤ I2. Now, we consider the following system of integral equations equivalent to
equations (4.1) and (4.2):



8 Sarmah, Das, Sarma


ε̃ (τ1) = π̃0 − �̃� (0, π̃0) + �̃� (τ1, ε̃ (τ1)) +

∫ τ1
0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
H (ϱ̃, ε̃ (ϱ̃)) dϱ̃,

κ̃ (τ1) = β̃0 − �̃�
(
0, β̃0

)
+ �̃� (τ1, κ̃ (τ1)) +

∫ τ1
0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, κ̃ (ϱ̃)) dϱ̃,

(4.3)

for τ1 ∈ [0, 1] = I. Also, assume that (R, ∥.∥) is a Banach space and two closed ball P̃1 = E1

(
π̃0, b̃

)
, P̃2 = E2

(
β̃0, b̃

)
in

R, with b̃ ∈ [0,∞). Consider a standard Banach space N = C (F, R) of continuous function with supremum norm for
F ⊆ I. Let

N1 = C
(
F, P̃1

)
= {ε̃ : F → P̃1 : ε̃ ∈ N}, and N2 = C

(
F, P̃2

)
= {κ̃ : F → P̃2 : κ̃ ∈ N}.

Then (N1, N2) is NBCC pair in N. Now for every ε̃ ∈ N1, κ̃ ∈ N2,

∥ε̃− κ̃∥ = sup
τ1∈I

∥ε̃ (τ1)− κ̃ (τ1) ∥ ≥ ∥π̃0 − β̃0∥.

Thus dist(N1, N2) = ∥π̃0 − β̃0∥. Now, we define T : N1 ∪ N2 → N such that,

T (ε̃ (τ1)) =


β̃0 − �̃�

(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

∫ τ1
0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃, ε̃ ∈ N1,

π̃0 − �̃� (0, π̃0) + �̃� (τ1, ε̃ (τ1)) +
∫ τ1
0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
H (ϱ̃, ε̃ (ϱ̃)) dϱ̃, ε̃ ∈ N2.

Clearly, T is cyclic, and if ∥r̃0 − T (r̃0) ∥ = dist (N1, N2), for r̃0 ∈ N1 ∪ N2, then r̃0 is the optimum solution of the
system (4.3). Thus r̃0 is the BPP for the operator T.

Theorem 4.1. [4] Consider Ú ∈ C
[
ϑ̀1, ϑ̀2

]
with ϑ̀1 < ϑ̀2. Let V́ is Lebesgue integrable on

[
ϑ̀1, ϑ̀2

]
and V́ does not

change its sign in
[
ϑ̀1, ϑ̀2

]
with ă ∈

(
ϑ̀1, ϑ̀2

)
. Then the generalized mean value theorem of integral calculus gives,

∫ ϑ̀2

ϑ̀1

Ú (ῑ) V́ (ῑ) dῑ = Ú (ă)

∫ ϑ̀2

ϑ̀1

V́ (ῑ) dῑ.

Theorem 4.2. Consider Ú ∈ C
[
ϑ̀1, ϑ̀2

]
with ϑ̀1 < ϑ̀2 and r̆ > 0. Let V́ is Lebesgue integrable on

[
ϑ̀1, ϑ̀2

]
and V́ does

not change its sign in
[
ϑ̀1, ϑ̀2

]
. Then there exists ă ∈

(
ϑ̀1, ε̃

)
⊂
(
ϑ̀1, ϑ̀2

)
such that I r̆

ϑ̀1

(
ÚV́
)
(ε̃) = Ú (ă) I r̆

ϑ̀1
V́ (ε̃), for

almost every ε̃ ∈
(
ϑ̀1, ϑ̀2

]
. For r̆ ≥ 1 or V́ ∈ C

[
ϑ̀1, ϑ̀2

]
, the above result holds for every ε̃ ∈

(
ϑ̀1, ϑ̀2

]
.

Proof . Here

I r̆
ϑ̀1

(
ÚV́
)
(ε̃) =

1

γ̃ (r̆)

∫ τ1

ϑ̀1

(τ1 − ϱ̃)
r̆−1

Ú (ϱ̃, ε̃ (ϱ̃)) V́ (ϱ̃, ε̃ (ϱ̃)) dϱ̃.

Consider ˜́V (ε̃) = (τ1−ϱ̃)r̆−1

γ̃(r̆) V́ (ϱ̃, ε̃ (ϱ̃)) . Now we have,

I r̆
ϑ̀1

(
ÚV́
)
(ε̃) =

∫ τ1

ϑ̀1

Ú (ϱ̃, ε̃ (ϱ̃)) ˜́V (ϱ̃, ε̃ (ϱ̃)) dϱ̃

= Ú (ă)

∫ τ1

ϑ̀1

˜́V (ϱ̃, ε̃ (ϱ̃)) dϱ̃

= Ú (ă)

∫ τ1

ϑ̀1

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
V́ (ϱ̃, ε̃ (ϱ̃)) dϱ̃

= Ú (ă) I r̆
ϑ̀1
V́ (ε̃) .

□
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Theorem 4.3. Assume that ℶ0 is a MNC on N with 0 < r̆ ≤ 1, �̃� (µ̌, ν̌) = µ̌ν̌, µ̌, ν̌ ∈ R, |τ1ε̃ (τ1)−τ2ε̃ (τ2) | ≤ |τ2−τ1|,{
|ε̃ (τ1) |+

1

γ̃(r̆ + 1)
I2τ

r̆
1

}
≤ L, for L > 0. Then an optimal solution exists for the system of equations (4.3) if:

For all ε̃ ∈ N1, κ̃ ∈ N2, τ1 ∈ F there exists l ≥ 0 and š ≥ 0 such that,

(i) |ε̃ (τ1)− κ̃ (τ1) | ≤ l ,

(ii) |β̃0 − π̃0| ≤ š,

(iii) |Z (ϱ̃, ε̃ (ϱ̃))−H (ϱ̃, κ̃ (ϱ̃)) | ≤ γ̃ (r̆ + 1)

{
|ε̃− κ̃| − š− l

}
.

Proof . First, we show that the operator T is cyclic. For ε̃ ∈ N1,

∥T (ε̃ (τ1))− β̃0∥ =

∥∥∥∥β̃0 − �̃�
(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃− β̃0

∥∥∥∥
=

∥∥∥∥�̃� (τ1, ε̃ (τ1))− �̃�
(
0, β̃0

)
+

∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∥∥∥∥
≤
∣∣∣∣�̃� (τ1, ε̃ (τ1))

∣∣∣∣+ ∣∣∣∣�̃�(0, β̃0) ∣∣∣∣+ ∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤ |τ1ε̃ (τ1) |+ I2

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
dϱ̃

∣∣∣∣
≤ τ1|ε̃ (τ1) |+

1

γ̃(r̆)
I2

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)
r̆−1

dϱ̃

∣∣∣∣
≤ |ε̃ (τ1) |+

1

γ̃(r̆)
I2

∣∣∣∣[− (τ1 − ϱ̃)
r̆

r̆

]τ1
0

∣∣∣∣
≤ |ε̃ (τ1) |+

1

γ̃(r̆ + 1)
I2τ

r̆
1

≤ L.

Hence, T (ε̃ (τ1)) ∈ N2. By using a similar method, we can show that T (ε̃ (τ1)) ∈ N1 for ε̃ ∈ N2. Thus, T is cyclic.
We now show that T (N1) is an equicontinuous and bounded subset of N2. Consider ε̃ ∈ N1 and τ1 ∈ F with 0 < r̆ ≤ 1.
We have,

∥T (ε̃ (τ1)) ∥ =

∥∥∥∥β̃0 − �̃�
(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∥∥∥∥
≤
∣∣∣∣β̃0 − �̃�

(
0, β̃0

) ∣∣∣∣+ ∣∣∣∣�̃� (τ1, ε̃ (τ1))

∣∣∣∣+ ∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤ |β̃0|+ |τ1ε̃ (τ1) |+ I2

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)
r̆−1

γ̃ (r̆)
dϱ̃

∣∣∣∣
≤ |β̃0|+ τ1|ε̃ (τ1) |+

1

γ̃(r̆)
I2

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)
r̆−1

dϱ̃

∣∣∣∣
≤ |β̃0|+ |ε̃ (τ1) |+

1

γ̃(r̆)
I2

∣∣∣∣[− (τ1 − ϱ̃)
r̆

r̆

]τ1
0

∣∣∣∣
≤ |β̃0|+ |ε̃ (τ1) |+

1

γ̃(r̆ + 1)
I2|τ r̆1 |

≤ |β̃0|+ L.
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Therefore T (N1) is bounded. Suppose τ1, τ2 ∈ F, τ1 > τ2 and ε̃ ∈ N1. Then

∥T (ε̃ (τ1))− T (ε̃ (τ2)) ∥

=

∥∥∥∥β̃0 − �̃�
(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃− β̃0 + �̃�

(
0, β̃0

)
− �̃� (τ2, ε̃ (τ2))

−
∫ τ2

0

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∥∥∥∥
≤
∣∣∣∣�̃� (τ1, ε̃ (τ1))− �̃� (τ2, ε̃ (τ2))

∣∣∣∣+ ∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃−

∫ τ2

0

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤|τ1ε̃ (τ1)− τ2ε̃ (τ2) |+

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃−

∫ τ1

0

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃+

+

∫ τ1

0

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃−

∫ τ2

0

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤|τ1ε̃ (τ1)− τ2ε̃ (τ2) |+

∣∣∣∣ ∫ τ1

0

{(τ1 − ϱ̃)r̆−1 − (τ2 − ϱ̃)r̆−1}
γ̃ (r̆)

Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃+

∫ τ1

τ2

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤|τ1ε̃ (τ1)− τ2ε̃ (τ2) |+

∣∣∣∣ ∫ τ1

0

{(τ1 − ϱ̃)r̆−1 − (τ2 − ϱ̃)r̆−1}
γ̃ (r̆)

Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣+ ∣∣∣∣ ∫ τ1

τ2

(τ2 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤|τ1ε̃ (τ1)− τ2ε̃ (τ2) |+

1

γ̃ (r̆)
I2

∣∣∣∣ ∫ τ1

0

{(τ1 − ϱ̃)r̆−1 − (τ2 − ϱ̃)r̆−1} dϱ̃
∣∣∣∣+ 1

γ̃ (r̆)
I2

∣∣∣∣ ∫ τ1

τ2

(τ2 − ϱ̃)r̆−1 dϱ̃

∣∣∣∣
≤|τ2 − τ1|+

1

γ̃ (r̆)
I2

∣∣∣∣{− (τ1 − ϱ̃)r̆

r̆
+

(τ2 − ϱ̃)r̆

r̆

}τ1

0

∣∣∣∣+ 1

γ̃ (r̆)
I2

∣∣∣∣{− (τ2 − ϱ̃)r̆

r̆

}τ1

τ2

∣∣∣∣
≤|τ2 − τ1|+

1

γ̃ (r̆ + 1)
I2

∣∣∣∣{−(τ1 − ϱ̃)r̆ + (τ2 − ϱ̃)r̆
}τ1

0

∣∣∣∣+ 1

γ̃ (r̆ + 1)
I2

∣∣∣∣{− (τ2 − ϱ̃)r̆
}τ1

τ2

∣∣∣∣
=|τ2 − τ1|+

1

γ̃ (r̆ + 1)
I2

{∣∣∣∣{(τ2 − τ1)
r̆ + (τ1)

r̆ − (τ2)
r̆

}
− (τ2 − τ1)

r̆

∣∣∣∣}
=|τ2 − τ1|+

1

γ̃ (r̆ + 1)
I2

{∣∣∣∣ (τ1)r̆ − (τ2)
r̆

∣∣∣∣}.
As τ2 → τ1, ∥T (ε̃ (τ1))− T (ε̃ (τ2)) ∥ → 0. That is T (N1) is equicontinuous. We can show that T (N2) is equicontinuious and

bounded in N1 with the similar manner. Thus by Arzela-Ascoli theorem, we conclude that (N1, N2) is a relatively compact pair.
Now for each (ε̃, κ̃) ∈ N1 × N2,

∥T (ε̃ (τ1))− T (κ̃ (τ1)) ∥

=

∥∥∥∥β̃0 − �̃�
(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃− π̃0 + �̃� (0, π̃0)− �̃� (τ1, κ̃ (τ1))

−
∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
H (ϱ̃, κ̃ (ϱ̃)) dϱ̃

∥∥∥∥
≤
∣∣∣∣β̃0 − π̃0

∣∣∣∣+ ∣∣∣∣�̃� (τ1, ε̃ (τ1))− �̃� (τ1, κ̃ (τ1))

∣∣∣∣+ ∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃−

∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
H (ϱ̃, κ̃ (ϱ̃)) dϱ̃

∣∣∣∣
≤š+

∣∣∣∣τ1ε̃ (τ1)− τ1κ̃ (τ1)

∣∣∣∣+ 1

γ̃ (r̆)

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)r̆−1

{
Z (ϱ̃, ε̃ (ϱ̃))−H (ϱ̃, κ̃ (ϱ̃))

}
dϱ̃

∣∣∣∣
≤š+

∣∣∣∣ε̃ (τ1)− κ̃ (τ1)

∣∣∣∣+ 1

γ̃ (r̆)
γ̃ (r̆ + 1)

∣∣∣∣ ∫ τ1

0

(τ1 − ϱ̃)r̆−1

{
|ε̃− κ̃| − š− l

}
dϱ̃

∣∣∣∣
≤š+

∣∣∣∣ε̃ (τ1)− κ̃ (τ1)

∣∣∣∣+ 1

γ̃ (r̆)
γ̃ (r̆ + 1)

{
|ε̃− κ̃| − š− l

}∣∣∣∣{− (τ1 − ϱ̃)r̆

r̆

}τ1

0

∣∣∣∣
≤š+ l +

1

γ̃ (r̆ + 1)
γ̃ (r̆ + 1)

{
|ε̃− κ̃| − š− l

}
|(τ1)r̆|

≤š+ l +
1

γ̃ (r̆ + 1)
γ̃ (r̆ + 1)

{
|ε̃− κ̃| − š− l

}
=|ε̃− κ̃|
≤∥ε̃− κ̃∥.

Thus T is relatively nonexpansive. Now, we assume that the pair (ι1, ι2) ⊆ (N1, N2) is a NBCC , T-invariant, proximinal pair
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and dist (ι1, ι2) = dist (N1, N2) . Using theorem 4.2, we get,

ℶ0 (T (ι1) ∪ T (ι2)) =max

{
ℶ0 (T (ι1)) ,ℶ0 (T (ι2))

}
≤max

{
sup
τ1∈I

{
ℶ0 ({Tε̃ (τ1) : ε̃ ∈ ι1})

}
, sup
τ1∈I

{
ℶ0 ({Tκ̃ (τ1) : κ̃ ∈ ι2})

}}

=max

{
sup
τ1∈I

{
ℶ0

({
β̃0 − �̃�

(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
Z (ϱ̃, ε̃ (ϱ̃)) dϱ̃

})}
,

sup
τ1∈I

{
ℶ0

({
π̃0 − �̃� (0, π̃0) + �̃� (τ1, κ̃ (τ1)) +

∫ τ1

0

(τ1 − ϱ̃)r̆−1

γ̃ (r̆)
H (ϱ̃, κ̃ (ϱ̃)) dϱ̃

})}}

=max

{
sup
τ1∈I

{
ℶ0

({
β̃0 − �̃�

(
0, β̃0

)
+ �̃� (τ1, ε̃ (τ1)) +

1

γ̃ (r̆ + 1)
Z
(̃
i, ε̃
(̃
i
))

(τ1)
r̆ : ĩ ∈ (0, τ1)

})}
,

sup
τ1∈I

{
ℶ0

({
π̃0 − �̃� (0, π̃0) + �̃� (τ1, κ̃ (τ1)) +

1

γ̃ (r̆ + 1)
H
(̃
i, κ̃

(̃
i
))

(τ1)
r̆ : ĩ ∈ (0, τ1)

})}}

≤max

{
sup
τ1∈I

{
ℶ0

({
τ1ε̃ (τ1) +

1

γ̃ (r̆ + 1)
Z
(̃
i, ε̃
(̃
i
))

(τ1)
r̆ : ĩ ∈ (0, τ1)

})}
,

sup
τ1∈I

{
ℶ0

({
τ1κ̃ (τ1) +

1

γ̃ (r̆ + 1)
H
(̃
i, κ̃

(̃
i
))

(τ1)
r̆ : ĩ ∈ (0, τ1)

})}}

≤max

{
ℶ0

({
ι1 + Z

(̃
i, ε̃
(̃
i
))})

,ℶ0

({
ι2 +H

(̃
i, κ̃

(̃
i
))})}

≤ ℶ0 (ι1 ∪ ι2) .

Thus by using Corollary 3.11, T has a BPP . Hence, the system (4.3) has s ∈ N1 ∪ N2 as an optimal solution. □

Example 4.4. Assume the following system of equations with ∥Z (ϱ̃, ε̃ (ϱ̃)) ∥ ≤ 1, ∥H (ϱ̃, κ̃ (ϱ̃)) ∥ ≤ 1, 1 = 1, š = 1,

r̆ = 1,
1

2
∥ε̃− κ̃∥ ≤ ∥ε̃− κ̃∥ − 2 and τ̃1 ∈ F = [0, 1] as

ε̃ (τ1) =�̃� (τ1, ε̃ (τ1))− �̃� (0, 0) +

∫ τ1

0

1

γ̃ (1)
sin

(
ε̃

2

)
dϱ̃,

κ̃ (τ1) =1− �̃� (0, 1) + �̃� (τ1, κ̃ (τ1)) +

∫ τ1

0

1

γ̃ (1)
sin

(
κ̃
2

)
dϱ̃.

Consider N1 = {τ1} and N2 = {τ1 + 1} on F = [0, 1] . Define an operator T : N1 ∪ N2 → N such that,

T (ε̃ (τ1)) =


1− �̃� (0, 1) + �̃� (τ1, ε̃ (τ1)) +

∫ τ1
0

1

γ̃ (1)
sin

(
ε̃

2

)
dϱ̃, ε̃ ∈ N1,

�̃� (τ1, ε̃ (τ1))− �̃� (0, 0) +
∫ τ1
0

1

γ̃ (1)
sin

(
ε̃

2

)
dϱ̃, ε̃ ∈ N2.

Here H : F× ι2 −→ ι2, and Z : F× ι1 −→ ι1 with ι1 = {τ1}, ι2 = {τ1 + 1} on F = [0, 1]. Now for ε̃ ∈ N1, κ̃ ∈ N2,
we have,

∥Z (ϱ̃, ε̃ (ϱ̃))−H (ϱ̃, κ̃ (ϱ̃)) ∥ =
∥∥∥ sin( ε̃

2

)
− sin

(
κ̃
2

)∥∥∥
≤

∥∥∥∥∥2 cos
 ε̃

2
+

κ̃
2

2

 sin

 ε̃

2
− κ̃

2
2

∥∥∥∥∥
≤ 2

∥∥∥∥∥ cos
 ε̃

2
+

κ̃
2

2

 ∥∥ sin

 ε̃

2
− κ̃

2
2

∥∥∥∥∥
≤ 2

∥∥∥∥∥
ε̃

2
− κ̃

2
2

∥∥∥∥∥ ≤ 1

2
∥ε̃− κ̃∥

≤ ∥ε̃− κ̃∥ − 2.
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Since the above system of equations satisfies all the conditions of theorem (4.3). Therefore r ∈ {0, 1} = N1∪N2 is the optimal
solution for the above system of equations at τ1 = 0 as ∥r − T (r) ∥ = 1 = dist (N1, N2).

5 Conclusion

This paper established a best proximity point theorem with the help of newly defined contraction operator by using MNC ,
and we used it to determine the existence of optimum solutions of the system of fractional hybrid differential equations. The
approach used in this article can therefore be used to obtain the existence of optimum solution of other fractional differential
equations.
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