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ARTICLE INFO ABSTRACT

Nanofluids are used in industrial thermal applications because of their significant thermal
characteristics. Machine learning algorithms have recently advanced to the point that they
can properly anticipate the thermophysical properties of nanofluids. The literature study
provides the data needed to train the models. The gathered data will be separated into groups
for testing and training according to 20% and 80% ratios. The thermophysical characteristics
of the water-EG base fluid at various percentages mixed with Al;03 nanoparticles are analyzed
in this work. The thermophysical properties were predicted using several machine-learning
algorithms. The mean square error and coefficient of determination (R%) were used to
compare the models' accuracy. According to the study's findings, machine learning models
are the most accurate and quick ways to forecast thermophysical parameters. The accuracy
of the model was found to be 99%. The MSE and R? value of the XGBoost algorithm was found
to be 0.0001 and 0.99 respectively. An XGBoost machine learning model was proposed in this
study to forecast the thermophysical characteristics of the Al;03/water_EG nanofluid. This
work's novelty lies in the powerful, data-driven alternative that machine learning techniques
offer, enabling real-time, high-accuracy predictions of thermal conductivity based on
simulation or experimental datasets. This method improves the design and optimization of
nanofluids for specific thermal applications, fills in data gaps through substitute modeling,
and drastically lowers experimental effort and expense.
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signal and response. The output by the

1. Introduction combinations of input data can be easily predicted

Machine learning (MI) is one form of artificial
intelligence (AI) that allows computers to predict
the future without writing any program or coding.
In machine learning two major components are

* Corresponding author.

E-mail address: shivananda@utas.edu.om

Cite this article as:

by ML. The suspension of nanoparticles in the base
fluid like water or Ethyl Glycol (EG) is called
nanofluids. Nanofluids enhance the heat transfer
performance of thermal devices. The performance
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of the nanofluids depends on volume fraction,
temperature, types of nanoparticles, and their size.
The prediction of the performance at different
combinations is difficult to determine. Therefore
either experimental methods or simulations are
used to determine optimal performance.
Conducting experiments or simulation methods is
expensive and time-consuming. Therefore,
machine learning is found to be one of the efficient
methods to predict the thermophysical properties
of nanofluid. Many experimental and theoretical
studies have been done to propose the correlation
between the input parameters like volume fraction,
temperature, mixture percentage, and type of
nanoparticles to predict the thermal conductivity
and viscosity of the nanofluid. However, accurate
correlations are not available to predict the exact
properties of the nanofluid at various conditions.
Palash et al. [1] developed machine-learning
models to predict the thermal conductivity of
titania-water nanofluid using ANN, GBR, SVR, DTR,
and RFA algorithms. They found that GB is the best
algorithm compared to all other algorithms in
terms of accuracy. Ekene Onyiriuka [2] used a
model of model approach to predict the thermal
conductivity of the nanofluid. They compared the
experimental results with model-predicted results
and found good agreement between them.
Abulhassan Ali et al. [3] used machine learning
algorithms to predict the thermal behavior of BN-
diamond/thermal oil nanofluids using different
algorithms and a 700 experimental data set. The
GBR algorithm proved better than all other
algorithms. Hamid et al. [4] experimentally
investigated the viscosity of Al,03/EG-water
nanofluid. They found that nanofluid viscosity
depends on concentration, temperature, and
volume fraction. The viscosity and thermal
conductivity of Al,03/EG-water nanofluid were
experimentally determined by Sundar et al. [5].
They proposed different correlations to find the
viscosity and thermal conductivity at different
volume fractions, temperatures, and base fluid
concentrations. Chiam et al. [6] studied the
viscosity and thermal conductivity of Al,0;/EG-
water nanofluid taking different ratios of the base
fluid. They found that a decrease in the base fluid
percentage mixture enhanced the viscosity of the
nanofluid. Gallego et al. [7] experimentally
measured the viscosity and thermal conductivity of
Al,03/EG-water nanofluid at different
concentrations of nanoparticles. They compared
the experimental results with theoretical models
and found good agreement. Empirical correlations
for viscosity and thermal conductivity of Al,053/EG-
water nanofluid were developed by Sawicka et al.
[8]. The study concluded that the results of the
correlation and the literature properly match each
other. The thermal conductivity of EG-water
nanofluid with varying percentages of different
nanoparticles was experimentally investigated by
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Yashawantha and Vinod [9]. The prediction was
done by ANN modeling and found to be in good
agreement with the proposed correlations. The
cooling performance of Al,03;/EG-water nanofluid
in hot press applications was investigated by Lim
et al. [10]. The results show that the life of the die
is enhanced by using nanofluid as a coolant. Esfe et
al. [11] developed correlations to predict the
thermal conductivity of Mg(OH),-EG nanofluid
using experimental results. The results were
compared with ANN model predictions and it was
found that ANN models can perfectly predict the
properties of the nanofluid. An ANN model was
developed by Sadeghzadeh et al. [12] to predict
TiO,-Al,03/water  nanofluid thermophysical
properties. The model accuracy was around 0.98,
which was within the acceptable limit. Different
machine learning algorithms were compared to
predict the viscosity of nanofluids by Shateri et al.
[13]. The analysis shows that DT models predict
more accurately compared to other models.
Bakthavatchalam et al. [14] used Al to predict the
thermal properties of MWCNT nanofluids. They
found that the modeling method reduces the cost
and time of experimentation. Sayantan Mukherjee
et al. [15] explored nanofluid thermal conductivity,
noting that kinetic theory and Brownian motion
both contribute to its increase with temperature.
Experimental results supported this, showing that
thermal conductivity is also affected by surfactants,
stability, and volume fraction. Ali et al. [16]
examined the effects of nanoparticle size and
volume fraction concentration on thermal
conductivity using a transient hot-wire laser
displacement method. Their findings indicated that
increasing  volume  fraction concentration
optimizes thermal conductivity. This trend was
also observed in a study of the volume fraction
effects of Al and Al,03 nanoparticles suspended in
distilled water, ethylene glycol, and ethanol, with
results showing that thermal conductivities and
diffusivities of these nanofluids increase as particle
volume fraction rises. Ali et al. [17] noted similar
results, while Mohammed Hemmat Esfe et al. [18]
conducted studies at volume fractions of 0.2% to
0.5% and temperatures from 24°C to 50°C,
demonstrating a marked enhancement in thermal
conductivity as concentration and temperature
rose. Azmi et al. [19] experimented with different
Al,O3 (02% to 1.0%) nanofluid volume
concentrations in various EG-water ratios (60:40,
50:50, and 40:60), finding that both thermal
conductivity and viscosity of the nanofluids were
consistently higher than those of the base fluid.
Pravin Kumar et al. [20] conducted experiments on
water-based fly ash-Cu hybrid nanofluid to
determine heat transfer coefficient, friction factor,
and pressure drop at various Reynolds number
flow rates. The study found that pressure drops in
the fly ash nanofluid and hybrid nanofluid
increased with higher Reynolds numbers. Kazem et
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al. [21] compared and evaluated the performance
of ANN models with experimental results. Al-Waeli
et al. [22] presented an ANN and mathematical
model for nano-PCM cooling. They found that
linear models predict accurate results. GA and ANN
models used by Topal et al. [23] predict the
viscosity of nanofluids accurately. Erdogan et al.
[24] used the ANN method to measure the viscosity
of water-based nanofluids with different
nanoparticles. Mukherjee et al. [25] used MLP
modeling and experimental methods to find the
heat transfer ability of silica-ethylene glycol
nanofluid. Goncalves et al. [26] performed a review
on the challenges and controversies of thermal
conductivity prediction models. They concluded
their work by stating that nanofluids have wide
applications in nanomedicine and renewable
energies. Moolya et al. [27] performed a numerical
analysis to predict the MHD and aspect ratio effect
on double diffusive mixed convection using an LR
model. From the literature, it is found that various
researchers have developed correlations to predict
the thermophysical properties of nanofluids using
some experimental data. The experimental setup
required to get the required results is very
expensive and time-consuming. The developed
correlations work only for specific conditions.
Much work has been done to develop machine
learning models to predict the properties of
nanofluids containing nanoparticles with water as
the base fluid. In this work, an attempt is made to
develop an accurate model to predict the thermal
conductivity of a hybrid nanofluid. Different ML
algorithms were used to develop models for
prediction, and their accuracy was compared.
Statistical methods were used to compare the
accuracy of the models. Several machine-learning
methods were used to predict the thermophysical
properties of nanofluids. This work attempts to
develop a machine-learning model that can
accurately predict the hybrid nanofluid's thermal
conductivity using a range of ML methods. The
objective of this work is to cut down on
experimentation time and expense; this effort aims
to identify a substitute technique for predicting the
thermophysical characteristics of nanofluids.

2. Methodology

In this work, the thermophysical properties of
the Al,03/EG-water nanofluid are predicted using
machine learning algorithms. The selected
properties are viscosity and thermal conductivity
at various temperatures, volume fractions, and EG-
water mixing percentages. The required data for
testing and training the models have been collected
from the literature. These data are from
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experiments, simulations, and correlations. The
data are stored in a data bank in Excel CSV format.
The collected data were then split into testing data
and training data. 80% of the data collected is used
for training the model and 20% is used for testing
the model. After segregating the data into training
and testing, the next step is the selection of models.
In this work, Linear Regression (LR), Decision Tree
(DT), Random Forest (RF), and Gradient Boosting
(GB) models were used for prediction modeling. All
the models were trained and tested for prediction
using 865 different data points for all the selected
combinations. The models were evaluated using R?
values. The accuracy of the models was compared
using mean absolute error, mean squared error,
and root mean squared error.

3. Description of Data Stream and
Models

The data required to train the machine learning
models were collected from eight articles. In this
work, machine learning models were developed to
predict the dependent variable, thermal
conductivity, using three independent variables:
EG-water ratio, temperature, and volume fraction.
LR, DT, RF, and GB models were trained and tested
to predict thermal conductivity. Table 1 shows the
data collected for Al,03/EG-water nanofluid to
train and test the model.

3.1. Linear Regression

This algorithm shows the best performance
when the relationship between the variables is
linear. Linear regression is a fundamental and
widely used supervised learning algorithm in
machine learning. It is mainly used in this study to
predict the thermal conductivity of Al,03/EG-
water nanofluid at different volume fraction ratios,
temperatures, and base fluid concentrations. This
works on the following representation, as shown in

Eq. (1).
Y = WiXy + WyXy +Waxs + -+ wpx, +b+e (1)

where:
w,, = weights
b = bias
€ = error

The main objective of this method is to
determine a best-fit line to minimize the prediction
error. This algorithm is simple and efficient for
using medium-sized data points. Figure 1 shows
the flow diagram of the linear regression process.
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3.2.Decision Tree

START
' For classification and regression-type projects,
decision trees are a powerful supervised learning
VALLE IMITIALISATION algorithm. A tree-like structure is modeled, as

shown in Fig. 2, on decisions and their possible
effects, making it easy to learn and interpret. The
root node, internal node, and leaf node are
structured in the form of a tree. The growth of the
tree continues until the maximum depth is reached,
the minimum samples per leaf are satisfied, and no
further improvement in predictions is possible.
This algorithm is easy to understand and handles
problems with nonlinear relationships between
the dependent and independent variables.

PREDICTION FUINCTIONS ~——

PARAMETER UPDATE |
3.3.Linear Gradient Boosting

This is a powerful supervised learning
algorithm used for regression and classification-
E— MO type problgms. It prepares a s<'et of'weak learners in
OF PARAMETER — a consecutive way, as shown in Fig. 3, where each
new learner corrects the errors of its predecessor.
YES The predictive accuracy of this algorithm is very
high. It also handles complex patterns of data.
ETOP Gradient boosting algorithms are mainly used in
research and development due to their accurate

Fig. 1. Linear Regression flow diagram and robust model development capacity.
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Fig. 2. Decision Tree flow diagram

TRAINING SAMPLE :
SAMPLE
WEAK LEARNER STRONG LEARNER
SAMPLE
WEAK LEARNER

Fig. 3. Linear gradient boosting flow diagram
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Fig. 4. Pair plot
Table 1. Data source for model training and testing
Nanoparticle  Base Fluid Data points Source Nanoparticle Base Fluid Data points ~ Source
Al203 EG_Water 172 [4] Al203 EG_Water 33 [8]
Al;03 EG_Water 266 [28] Al203 EG_Water 15 [29]
Al203 EG_Water 75 [9] Al203 EG_Water 64 [6]
Al203 EG_Water 150 [10] Al203 EG_Water 90 [5]

3.4.Support Vector Regression Algorithms

These algorithms are derived from support
vector machines (SVM) and are supervised
learning algorithms used for regression tasks. The
function was derived and used to estimate the
target values within an indicated perimeter of
tolerance. It does not aim to minimize error but
seeks to fit the data within a margin around the
true value. Loss functions are used to penalize the
data points which fall outside the margin. The main
aim is to keep the prediction error within the
tolerance margin. It works well with both linear
and nonlinear regression problems using kernels.
It balances underfitting and overfitting with
appropriate hyperparameter tuning.

4. Results and Discussion

The thermal conductivity of Al,03/EG-water
nanofluid was predicted using different machine
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learning algorithms. Three input parameters—EG-
water concentration, temperature, and volume
fraction of the nanoparticle—were used as the
major input parameters to predict thermal
conductivity. The models used to predict the
thermophysical properties were trained and tested
using a sufficient number of data points to obtain
accurate and valid results.

4.1. Data Set Analysis

In the pair plot shown in Fig. 4, the diagonal
histogram shows that thermal conductivity has a
skewed distribution, while a more uniform
distribution is observed for volume fraction. A
positive correlation was observed between volume
fraction, temperature, and thermal conductivity,
but no relationship was observed between the EG-
water ratio and thermal conductivity. A total of 865
data points were used for the analysis. The values
of skewness and kurtosis are in the acceptable
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range, showing the quality of data selected to
design prediction models. The statistical
parameters chosen for the study are shown in
Table 2.

4.2.Linear Regression (LR)

The linear regression model was first used to
predict the result by fitting the best-fit line. Fig. 5
shows the scatter plot and the best-fit line for the
developed model's predicted values. The factors
used to determine the accuracy of the model are R?,

RMSE, MSE, and MAE. The R? value for the
developed model using the linear regression
algorithm is 0.64, the RMSE value is 0.0316, the
MSE is 0.003, and the MAE is 0.04. In this algorithm,
accuracy was found to be 64%.

Because the scatter plot shown in Fig. 4 does not
show a strong linear relationship between thermal
conductivity and the selected variables, it was
decided to use a decision tree algorithm for further
analysis. Fig. 5 shows the regression line and
predicted thermal conductivity for the test data
using the LR algorithm.

Table 2. Statistics of the data used to develop prediction models

Variables Total data Mean

Std. Deviation Skewness Kurtosis

Volume Fraction 865 0.729

Temperature 865 45.06

EG_Water ratio 865 0.838

Thermal Conductivity 865 0.463

0.433 0.607 -0.024

14.267 -0.401 -1.040

0.432 0.496 -1.05

0.089 0.285 -0.453
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Fig. 5. Predicted value by Linear Regression
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Fig. 6. Predicted value by DT
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4.3. Decision Tree (DT)

A decision tree is a powerful supervised machine
learning method. Decision trees are helpful for
making predictions about unconditional outputs.
From the analysis, it was found that the accuracy
of this algorithm is slightly better than that of the
linear regression algorithm. The R? value for the
model developed using DT is 0.87, the RMSE value
is 0.034, the MSE is 0.001, and the MAE is 0.018.
The prediction accuracy for this algorithm was
found to be 87%, and it was decided to use an RF
algorithm for further analysis. Fig. 6 shows the
regression line and predicted thermal
conductivity for the test data using the DT
algorithm. A total of 23% improvement in
prediction accuracy was obtained with the DT
model.

4.4. Random Forest (RF)

This algorithm is similar to DT, in which several
decision trees are constructed to obtain accurate
predictions during the training stage. This
approach essentially combines many distinct
models to make a final decision. Each model
makes a valuable contribution to the prediction.
Therefore, this algorithm is more accurate than
DT. The R? value for the model developed using
RF is 0.88, the RMSE value is 0.032, the MSE is
0.001, and the MAE is 0.019. With this algorithm,
accuracy increased by 1%, and it was found that
the RF algorithm is comparatively better for the
selected problem. Figure 7 shows the regression
line and predicted thermal conductivity for the
test data using the RF algorithm.
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TC/predictions vs TC/test

0.70 4| = Best-fit Line .

0.65

030 035 040 045 050 055 060 065 070
TC/test

Fig. 7. Predicted value by RF

4.5. Gradient Boosting (GB) and XGBoost
Algorithms

Gradient boosting algorithms are powerful
algorithms for predictive-type problems. In this
method, the loss function is optimized by using
weak learners that focus on the error residuals
from the preceding models to produce accurate
estimations. The R? value for the model
developed using GB is 0.92, the RMSE value is
0.0276, the MSE is 0.0007, and the MAE is 0.017.
With this algorithm, accuracy increased by 4%,
and it was found that the GB algorithm is
comparatively better for the selected problem.

Figure 8 shows the regression line and
predicted thermal conductivity for the test data
using the GB algorithm.

Table 3 compares the accuracy of the models
based on MAE, MSE, RMSE, and R? values. The GB
algorithm is a comparatively more accurate
algorithm than the previously discussed
algorithms for the prediction of Al,03/EG-water
nanofluid thermal conductivity. A further
increase in accuracy was achieved using the
XGBoost algorithm.

Figure 9 shows the cluster of data points
around the best-fit line. This shows that the
XGBoost model has comparatively high accuracy
in predicting the thermal conductivity. The R?
value of this model is 0.9841, which is within the
acceptable limit. Therefore, it is concluded from
this analysis that the XGBoost algorithm can be
used to predict the thermal conductivity of
Al,03/EG-water nanofluid at any given
temperature, volume fraction, and EG-water
mixing ratio.
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Fig. 9. Predicted value by XGB
Table 3. Summary of the accuracy of algorithms.
Models MSE RMSE R2
LR 0.0031 0.056 0.65
DT 0.0011 0.034 0.87
RF 0.0010 0.032 0.89
GB 0.0007 0.002 0.92
XGBoost 0.0001 0.011 0.99

4.6. Validation of results

The accuracy of the model is determined by
the residuals in statistical analysis. The difference
between the actual value and the predicted value
is the residual. In the regression analysis, some
residuals were found to be positive and some
were found to be negative, which indicates
whether the predicted value is greater than or
less than the actual value.
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Figures 10 (a), 10 (b), 10 (c), and 10 (d) show
the histograms of residuals and the probability
plots for the LR, DT, RF, and GB models. All
residuals are within the acceptable limit.
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Fig. 10. Histograms of residuals (a) LR. (b) DT,
(c) RF, and (d) XGB
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Figure 11 compares the experimental results
of [5] with the thermal conductivity predicted
using the models. The predicted results show
excellent agreement with the experimental data,
demonstrating the model's high accuracy and
reliability. The close match validates the model's
ability to capture the complex nonlinear
relationships between temperature, nanoparticle
concentration, and thermal conductivity.
Additionally, statistical performance metrics
such as R%, RMSE, and MSE confirm the strength
and generalization capability of the models. The
strong correlation highlights the potential of the
proposed ML model as a reliable tool to predict
thermal conductivity. This model can also serve
as an alternative to experimental studies.

VALIDATION OF MODEL PREDICTION

EG/Water Ratio 20:80
0.72

0.70 }
~0.68 |
£o.66 |
>o0.64 |
-,Eo.sz L
3060 |
5

So.s8 |
S 0.56 |
© 0.54 p
Fos2 |
0.50 }

® ¢=0.6
® $=1.0
Predict

0.48

15 20 25 30 50 55 60 65

35 40 43
Temperature®C
Fig. 11. Comparison of Predicted thermal conductivity

with the Experimental result [5]

5. Conclusions

In this study, an attempt is made to predict the
thermal conductivity of Al,03/EG-water
nanofluid using machine learning algorithms.
Different machine learning algorithms (LR, DT,
RF, and GB) are compared for their accuracy in
predicting the thermal conductivity of Al,03/EG-
water nanofluid. The input parameters used are
the volume fraction of nanoparticles,
temperature, and the EG-water mixing ratio to
predict thermal conductivity. Different statistical
metrics such as MAE, MSE, RMSE, and R? are used
for the comparison of the developed models.

e From the analysis, it is found that the
XGBoost algorithm is the best for predicting
the thermal conductivity of the nanofluid in
terms of its accuracy.

e The predicted results accurately match the
experimental results. This model can be used
for the prediction of the thermal conductivity
of Al,05/EG-water nanofluids.

e The residuals of the predicted values are
found to be within the acceptable limit.
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e The MSE and R? values of the XGBoost
algorithm are 0.0001 and 0.99, which are
within the acceptable limit.

e The accuracy of the predicted result using
XGBoost is 99%.

e These models can be used for the design of
thermal devices.

e The cost and time of experiments can be
reduced by using machine learning models.

Future research might concentrate on
broadening the model's applicability by including
other thermophysical characteristics, such as
density, specific heat, and viscosity, using
similarly varied datasets. Future research can
investigate validation against recently published
experimental data to further confirm the model's
generalizability, even though the current study
uses 865 data points from various literature
sources and shows strong predictive accuracy
through validation with one representative
study. Other kinds of hybrid nanofluids with
various base fluids or nanoparticle combinations
canalso be included in the model. Lastly, practical
adoption in industrial and research applications
would be facilitated by the creation of an intuitive
software tool or interface based on the trained
model.
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