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 Nanofluids are used in industrial thermal applications because of their significant thermal 

characteristics. Machine learning algorithms have recently advanced to the point that they 

can properly anticipate the thermophysical properties of nanofluids. The literature study 

provides the data needed to train the models. The gathered data will be separated into groups 

for testing and training according to 20% and 80% ratios. The thermophysical characteristics 

of the water-EG base fluid at various percentages mixed with Al2O3 nanoparticles are analyzed 

in this work. The thermophysical properties were predicted using several machine-learning 

algorithms. The mean square error and coefficient of determination (R2) were used to 

compare the models' accuracy. According to the study's findings, machine learning models 

are the most accurate and quick ways to forecast thermophysical parameters. The accuracy 

of the model was found to be 99%. The MSE and R2 value of the XGBoost algorithm was found 

to be 0.0001 and 0.99 respectively. An XGBoost machine learning model was proposed in this 

study to forecast the thermophysical characteristics of the Al2O3/water_EG nanofluid. This 

work's novelty lies in the powerful, data-driven alternative that machine learning techniques 

offer, enabling real-time, high-accuracy predictions of thermal conductivity based on 

simulation or experimental datasets. This method improves the design and optimization of 

nanofluids for specific thermal applications, fills in data gaps through substitute modeling, 

and drastically lowers experimental effort and expense. 
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1. Introduction 

Machine learning (MI) is one form of artificial 
intelligence (AI) that allows computers to predict 
the future without writing any program or coding. 
In machine learning two major components are 

signal and response. The output by the 
combinations of input data can be easily predicted 
by ML. The suspension of nanoparticles in the base 
fluid like water or Ethyl Glycol (EG) is called 
nanofluids. Nanofluids enhance the heat transfer 
performance of thermal devices. The performance 
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of the nanofluids depends on volume fraction, 
temperature, types of nanoparticles, and their size. 
The prediction of the performance at different 
combinations is difficult to determine. Therefore 
either experimental methods or simulations are 
used to determine optimal performance. 
Conducting experiments or simulation methods is 
expensive and time-consuming. Therefore, 
machine learning is found to be one of the efficient 
methods to predict the thermophysical properties 
of nanofluid. Many experimental and theoretical 
studies have been done to propose the correlation 
between the input parameters like volume fraction, 
temperature, mixture percentage, and type of 
nanoparticles to predict the thermal conductivity 
and viscosity of the nanofluid. However, accurate 
correlations are not available to predict the exact 
properties of the nanofluid at various conditions. 
Palash et al. [1] developed machine-learning 
models to predict the thermal conductivity of 
titania-water nanofluid using ANN, GBR, SVR, DTR, 
and RFA algorithms. They found that GB is the best 
algorithm compared to all other algorithms in 
terms of accuracy. Ekene Onyiriuka [2] used a 
model of model approach to predict the thermal 
conductivity of the nanofluid. They compared the 
experimental results with model-predicted results 
and found good agreement between them. 
Abulhassan Ali et al. [3] used machine learning 
algorithms to predict the thermal behavior of BN-
diamond/thermal oil nanofluids using different 
algorithms and a 700 experimental data set. The 
GBR algorithm proved better than all other 
algorithms. Hamid et al. [4] experimentally 
investigated the viscosity of Al₂O₃/EG-water 
nanofluid. They found that nanofluid viscosity 
depends on concentration, temperature, and 
volume fraction. The viscosity and thermal 
conductivity of Al₂O₃/EG-water nanofluid were 
experimentally determined by Sundar et al. [5]. 
They proposed different correlations to find the 
viscosity and thermal conductivity at different 
volume fractions, temperatures, and base fluid 
concentrations. Chiam et al. [6] studied the 
viscosity and thermal conductivity of Al₂O₃/EG-
water nanofluid taking different ratios of the base 
fluid. They found that a decrease in the base fluid 
percentage mixture enhanced the viscosity of the 
nanofluid. Gallego et al. [7] experimentally 
measured the viscosity and thermal conductivity of 
Al₂O₃/EG-water nanofluid at different 
concentrations of nanoparticles. They compared 
the experimental results with theoretical models 
and found good agreement. Empirical correlations 
for viscosity and thermal conductivity of Al₂O₃/EG-
water nanofluid were developed by Sawicka et al. 
[8]. The study concluded that the results of the 
correlation and the literature properly match each 
other. The thermal conductivity of EG-water 
nanofluid with varying percentages of different 
nanoparticles was experimentally investigated by 

Yashawantha and Vinod [9]. The prediction was 
done by ANN modeling and found to be in good 
agreement with the proposed correlations. The 
cooling performance of Al₂O₃/EG-water nanofluid 
in hot press applications was investigated by Lim 
et al. [10]. The results show that the life of the die 
is enhanced by using nanofluid as a coolant. Esfe et 
al. [11] developed correlations to predict the 
thermal conductivity of Mg(OH)₂–EG nanofluid 
using experimental results. The results were 
compared with ANN model predictions and it was 
found that ANN models can perfectly predict the 
properties of the nanofluid. An ANN model was 
developed by Sadeghzadeh et al. [12] to predict 
TiO₂–Al₂O₃/water nanofluid thermophysical 
properties. The model accuracy was around 0.98, 
which was within the acceptable limit. Different 
machine learning algorithms were compared to 
predict the viscosity of nanofluids by Shateri et al. 
[13]. The analysis shows that DT models predict 
more accurately compared to other models. 
Bakthavatchalam et al. [14] used AI to predict the 
thermal properties of MWCNT nanofluids. They 
found that the modeling method reduces the cost 
and time of experimentation. Sayantan Mukherjee 
et al. [15] explored nanofluid thermal conductivity, 
noting that kinetic theory and Brownian motion 
both contribute to its increase with temperature. 
Experimental results supported this, showing that 
thermal conductivity is also affected by surfactants, 
stability, and volume fraction. Ali et al. [16] 
examined the effects of nanoparticle size and 
volume fraction concentration on thermal 
conductivity using a transient hot-wire laser 
displacement method. Their findings indicated that 
increasing volume fraction concentration 
optimizes thermal conductivity. This trend was 
also observed in a study of the volume fraction 
effects of Al and Al₂O₃ nanoparticles suspended in 
distilled water, ethylene glycol, and ethanol, with 
results showing that thermal conductivities and 
diffusivities of these nanofluids increase as particle 
volume fraction rises. Ali et al. [17] noted similar 
results, while Mohammed Hemmat Esfe et al. [18] 
conducted studies at volume fractions of 0.2% to 
0.5% and temperatures from 24°C to 50°C, 
demonstrating a marked enhancement in thermal 
conductivity as concentration and temperature 
rose. Azmi et al. [19] experimented with different 
Al₂O₃ (0.2% to 1.0%) nanofluid volume 
concentrations in various EG-water ratios (60:40, 
50:50, and 40:60), finding that both thermal 
conductivity and viscosity of the nanofluids were 
consistently higher than those of the base fluid. 
Pravin Kumar et al. [20] conducted experiments on 
water-based fly ash-Cu hybrid nanofluid to 
determine heat transfer coefficient, friction factor, 
and pressure drop at various Reynolds number 
flow rates. The study found that pressure drops in 
the fly ash nanofluid and hybrid nanofluid 
increased with higher Reynolds numbers. Kazem et 
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al. [21] compared and evaluated the performance 
of ANN models with experimental results. Al-Waeli 
et al. [22] presented an ANN and mathematical 
model for nano-PCM cooling. They found that 
linear models predict accurate results. GA and ANN 
models used by Topal et al. [23] predict the 
viscosity of nanofluids accurately. Erdogan et al. 
[24] used the ANN method to measure the viscosity 
of water-based nanofluids with different 
nanoparticles. Mukherjee et al. [25] used MLP 
modeling and experimental methods to find the 
heat transfer ability of silica-ethylene glycol 
nanofluid. Goncalves et al. [26] performed a review 
on the challenges and controversies of thermal 
conductivity prediction models. They concluded 
their work by stating that nanofluids have wide 
applications in nanomedicine and renewable 
energies. Moolya et al. [27] performed a numerical 
analysis to predict the MHD and aspect ratio effect 
on double diffusive mixed convection using an LR 
model. From the literature, it is found that various 
researchers have developed correlations to predict 
the thermophysical properties of nanofluids using 
some experimental data. The experimental setup 
required to get the required results is very 
expensive and time-consuming. The developed 
correlations work only for specific conditions. 
Much work has been done to develop machine 
learning models to predict the properties of 
nanofluids containing nanoparticles with water as 
the base fluid. In this work, an attempt is made to 
develop an accurate model to predict the thermal 
conductivity of a hybrid nanofluid. Different ML 
algorithms were used to develop models for 
prediction, and their accuracy was compared. 
Statistical methods were used to compare the 
accuracy of the models. Several machine-learning 
methods were used to predict the thermophysical 
properties of nanofluids. This work attempts to 
develop a machine-learning model that can 
accurately predict the hybrid nanofluid's thermal 
conductivity using a range of ML methods. The 
objective of this work is to cut down on 
experimentation time and expense; this effort aims 
to identify a substitute technique for predicting the 
thermophysical characteristics of nanofluids. 

2. Methodology  

In this work, the thermophysical properties of 
the Al₂O₃/EG-water nanofluid are predicted using 
machine learning algorithms. The selected 
properties are viscosity and thermal conductivity 
at various temperatures, volume fractions, and EG-
water mixing percentages. The required data for 
testing and training the models have been collected 
from the literature. These data are from 

experiments, simulations, and correlations. The 
data are stored in a data bank in Excel CSV format. 
The collected data were then split into testing data 
and training data. 80% of the data collected is used 
for training the model and 20% is used for testing 
the model. After segregating the data into training 
and testing, the next step is the selection of models. 
In this work, Linear Regression (LR), Decision Tree 
(DT), Random Forest (RF), and Gradient Boosting 
(GB) models were used for prediction modeling. All 
the models were trained and tested for prediction 
using 865 different data points for all the selected 
combinations. The models were evaluated using R² 
values. The accuracy of the models was compared 
using mean absolute error, mean squared error, 
and root mean squared error.  

3. Description of Data Stream and 
Models 

The data required to train the machine learning 
models were collected from eight articles. In this 
work, machine learning models were developed to 
predict the dependent variable, thermal 
conductivity, using three independent variables: 
EG-water ratio, temperature, and volume fraction. 
LR, DT, RF, and GB models were trained and tested 
to predict thermal conductivity. Table 1 shows the 
data collected for Al₂O₃/EG-water nanofluid to 
train and test the model.  

3.1.  Linear Regression 

This algorithm shows the best performance 
when the relationship between the variables is 
linear. Linear regression is a fundamental and 
widely used supervised learning algorithm in 
machine learning. It is mainly used in this study to 
predict the thermal conductivity of Al₂O₃/EG-
water nanofluid at different volume fraction ratios, 
temperatures, and base fluid concentrations. This 
works on the following representation, as shown in 
Eq. (1). 

𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 +⋯+ 𝑤𝑛𝑥𝑛 + 𝑏 + 𝜖 (1) 

where: 

𝑤𝑛 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

𝑏 = 𝑏𝑖𝑎𝑠 

𝜖 = 𝑒𝑟𝑟𝑜𝑟 

The main objective of this method is to 
determine a best-fit line to minimize the prediction 
error. This algorithm is simple and efficient for 
using medium-sized data points. Figure 1 shows 
the flow diagram of the linear regression process. 



Kulal et al. / Journal of Heat and Mass Transfer Research 12 (2025) 335-344 

338 

 
Fig. 1. Linear Regression flow diagram 

3.2. Decision Tree 

For classification and regression-type projects, 
decision trees are a powerful supervised learning 
algorithm. A tree-like structure is modeled, as 
shown in Fig. 2, on decisions and their possible 
effects, making it easy to learn and interpret. The 
root node, internal node, and leaf node are 
structured in the form of a tree. The growth of the 
tree continues until the maximum depth is reached, 
the minimum samples per leaf are satisfied, and no 
further improvement in predictions is possible. 
This algorithm is easy to understand and handles 
problems with nonlinear relationships between 
the dependent and independent variables. 

3.3. Linear Gradient Boosting 

This is a powerful supervised learning 
algorithm used for regression and classification-
type problems. It prepares a set of weak learners in 
a consecutive way, as shown in Fig. 3, where each 
new learner corrects the errors of its predecessor. 
The predictive accuracy of this algorithm is very 
high. It also handles complex patterns of data. 
Gradient boosting algorithms are mainly used in 
research and development due to their accurate 
and robust model development capacity. 

 
Fig. 2. Decision Tree flow diagram 

 
Fig. 3. Linear gradient boosting flow diagram 
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Fig. 4. Pair plot 

Table 1. Data source for model training and testing 

Nanoparticle Base Fluid Data points Source Nanoparticle Base Fluid Data points Source 

Al2O3 EG_Water 172 [4] Al2O3 EG_Water 33 [8] 

Al2O3 EG_Water 266 [28] Al2O3 EG_Water 15 [29] 

Al2O3 EG_Water 75 [9] Al2O3 EG_Water 64 [6] 

Al2O3 EG_Water 150 [10] Al2O3 EG_Water 90 [5] 

 

3.4. Support Vector Regression Algorithms 

These algorithms are derived from support 
vector machines (SVM) and are supervised 
learning algorithms used for regression tasks. The 
function was derived and used to estimate the 
target values within an indicated perimeter of 
tolerance. It does not aim to minimize error but 
seeks to fit the data within a margin around the 
true value. Loss functions are used to penalize the 
data points which fall outside the margin. The main 
aim is to keep the prediction error within the 
tolerance margin. It works well with both linear 
and nonlinear regression problems using kernels. 
It balances underfitting and overfitting with 
appropriate hyperparameter tuning.  

4. Results and Discussion 

The thermal conductivity of Al₂O₃/EG-water 
nanofluid was predicted using different machine 

learning algorithms. Three input parameters—EG-
water concentration, temperature, and volume 
fraction of the nanoparticle—were used as the 
major input parameters to predict thermal 
conductivity. The models used to predict the 
thermophysical properties were trained and tested 
using a sufficient number of data points to obtain 
accurate and valid results.  

4.1. Data Set Analysis 

In the pair plot shown in Fig. 4, the diagonal 
histogram shows that thermal conductivity has a 
skewed distribution, while a more uniform 
distribution is observed for volume fraction. A 
positive correlation was observed between volume 
fraction, temperature, and thermal conductivity, 
but no relationship was observed between the EG-
water ratio and thermal conductivity. A total of 865 
data points were used for the analysis. The values 
of skewness and kurtosis are in the acceptable 
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range, showing the quality of data selected to 
design prediction models. The statistical 
parameters chosen for the study are shown in 
Table 2. 

4.2. Linear Regression (LR) 

The linear regression model was first used to 
predict the result by fitting the best-fit line. Fig. 5 
shows the scatter plot and the best-fit line for the 
developed model's predicted values. The factors 
used to determine the accuracy of the model are R², 

RMSE, MSE, and MAE. The R² value for the 
developed model using the linear regression 
algorithm is 0.64, the RMSE value is 0.0316, the 
MSE is 0.003, and the MAE is 0.04. In this algorithm, 
accuracy was found to be 64%.  

Because the scatter plot shown in Fig. 4 does not 
show a strong linear relationship between thermal 
conductivity and the selected variables, it was 
decided to use a decision tree algorithm for further 
analysis. Fig. 5 shows the regression line and 
predicted thermal conductivity for the test data 
using the LR algorithm. 

Table 2. Statistics of the data used to develop prediction models 

Variables Total data Mean Std. Deviation Skewness Kurtosis 

Volume Fraction 865 0.729 0.433 0.607 -0.024 

Temperature 865 45.06 14.267 -0.401 -1.040 

EG_Water ratio 865 0.838 0.432 0.496 -1.05 

Thermal Conductivity 865 0.463 0.089 0.285 -0.453 

 

 
Fig. 5. Predicted value by Linear Regression 

 
Fig. 6. Predicted value by DT 

4.3.  Decision Tree (DT) 

A decision tree is a powerful supervised machine 
learning method. Decision trees are helpful for 
making predictions about unconditional outputs. 
From the analysis, it was found that the accuracy 
of this algorithm is slightly better than that of the 
linear regression algorithm. The R² value for the 
model developed using DT is 0.87, the RMSE value 
is 0.034, the MSE is 0.001, and the MAE is 0.018. 
The prediction accuracy for this algorithm was 
found to be 87%, and it was decided to use an RF 
algorithm for further analysis. Fig. 6 shows the 
regression line and predicted thermal 
conductivity for the test data using the DT 
algorithm. A total of 23% improvement in 
prediction accuracy was obtained with the DT 
model.  

4.4.  Random Forest (RF) 

This algorithm is similar to DT, in which several 
decision trees are constructed to obtain accurate 
predictions during the training stage. This 
approach essentially combines many distinct 
models to make a final decision. Each model 
makes a valuable contribution to the prediction. 
Therefore, this algorithm is more accurate than 
DT. The R² value for the model developed using 
RF is 0.88, the RMSE value is 0.032, the MSE is 
0.001, and the MAE is 0.019. With this algorithm, 
accuracy increased by 1%, and it was found that 
the RF algorithm is comparatively better for the 
selected problem. Figure 7 shows the regression 
line and predicted thermal conductivity for the 
test data using the RF algorithm.  
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Fig. 7. Predicted value by RF 

4.5.  Gradient Boosting (GB) and XGBoost 
Algorithms 

Gradient boosting algorithms are powerful 
algorithms for predictive-type problems. In this 
method, the loss function is optimized by using 
weak learners that focus on the error residuals 
from the preceding models to produce accurate 
estimations. The R² value for the model 
developed using GB is 0.92, the RMSE value is 
0.0276, the MSE is 0.0007, and the MAE is 0.017. 
With this algorithm, accuracy increased by 4%, 
and it was found that the GB algorithm is 
comparatively better for the selected problem.  

Figure 8 shows the regression line and 
predicted thermal conductivity for the test data 
using the GB algorithm.  

Table 3 compares the accuracy of the models 
based on MAE, MSE, RMSE, and R² values. The GB 
algorithm is a comparatively more accurate 
algorithm than the previously discussed 
algorithms for the prediction of Al₂O₃/EG-water 
nanofluid thermal conductivity. A further 
increase in accuracy was achieved using the 
XGBoost algorithm.  

Figure 9 shows the cluster of data points 
around the best-fit line. This shows that the 
XGBoost model has comparatively high accuracy 
in predicting the thermal conductivity. The R² 
value of this model is 0.9841, which is within the 
acceptable limit. Therefore, it is concluded from 
this analysis that the XGBoost algorithm can be 
used to predict the thermal conductivity of 
Al₂O₃/EG-water nanofluid at any given 
temperature, volume fraction, and EG-water 
mixing ratio.  

 
Fig. 8. Predicted value by GB 

 
Fig. 9. Predicted value by XGB 

Table 3. Summary of the accuracy of algorithms. 

Models MSE RMSE R2 

LR 0.0031 0.056 0.65 

DT 0.0011 0.034 0.87 

RF 0.0010 0.032 0.89 

GB 0.0007 0.002 0.92 

XGBoost 0.0001 0.011 0.99 

4.6.  Validation of results 

The accuracy of the model is determined by 
the residuals in statistical analysis. The difference 
between the actual value and the predicted value 
is the residual. In the regression analysis, some 
residuals were found to be positive and some 
were found to be negative, which indicates 
whether the predicted value is greater than or 
less than the actual value.  
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Figures 10 (a), 10 (b), 10 (c), and 10 (d) show 
the histograms of residuals and the probability 
plots for the LR, DT, RF, and GB models. All 
residuals are within the acceptable limit.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Histograms of residuals (a) LR. (b) DT,  
(c) RF, and (d) XGB 

Figure 11 compares the experimental results 
of [5] with the thermal conductivity predicted 
using the models. The predicted results show 
excellent agreement with the experimental data, 
demonstrating the model's high accuracy and 
reliability. The close match validates the model's 
ability to capture the complex nonlinear 
relationships between temperature, nanoparticle 
concentration, and thermal conductivity. 
Additionally, statistical performance metrics 
such as R², RMSE, and MSE confirm the strength 
and generalization capability of the models. The 
strong correlation highlights the potential of the 
proposed ML model as a reliable tool to predict 
thermal conductivity. This model can also serve 
as an alternative to experimental studies. 

 
Fig. 11. Comparison of Predicted thermal conductivity  

with the Experimental result [5] 

5. Conclusions 

In this study, an attempt is made to predict the 
thermal conductivity of Al₂O₃/EG-water 
nanofluid using machine learning algorithms. 
Different machine learning algorithms (LR, DT, 
RF, and GB) are compared for their accuracy in 
predicting the thermal conductivity of Al₂O₃/EG-
water nanofluid. The input parameters used are 
the volume fraction of nanoparticles, 
temperature, and the EG-water mixing ratio to 
predict thermal conductivity. Different statistical 
metrics such as MAE, MSE, RMSE, and R² are used 
for the comparison of the developed models. 

• From the analysis, it is found that the 
XGBoost algorithm is the best for predicting 
the thermal conductivity of the nanofluid in 
terms of its accuracy. 

• The predicted results accurately match the 
experimental results. This model can be used 
for the prediction of the thermal conductivity 
of Al₂O₃/EG-water nanofluids. 

• The residuals of the predicted values are 
found to be within the acceptable limit. 
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• The MSE and R² values of the XGBoost 
algorithm are 0.0001 and 0.99, which are 
within the acceptable limit. 

• The accuracy of the predicted result using 
XGBoost is 99%. 

• These models can be used for the design of 
thermal devices. 

• The cost and time of experiments can be 
reduced by using machine learning models. 

Future research might concentrate on 
broadening the model's applicability by including 
other thermophysical characteristics, such as 
density, specific heat, and viscosity, using 
similarly varied datasets. Future research can 
investigate validation against recently published 
experimental data to further confirm the model's 
generalizability, even though the current study 
uses 865 data points from various literature 
sources and shows strong predictive accuracy 
through validation with one representative 
study. Other kinds of hybrid nanofluids with 
various base fluids or nanoparticle combinations 
can also be included in the model. Lastly, practical 
adoption in industrial and research applications 
would be facilitated by the creation of an intuitive 
software tool or interface based on the trained 
model. 
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