Int. J. Nonlinear Anal. Appl. In Press, 1–5

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2024.33551.5004

Weakly unit regular clean rings

Fatemeh Rashedi

Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran

(Communicated by Seyyed Mohammad Reza Hashemi)

Abstract

A ring R is called clean if every member of R is the sum of a self-resolved member and an invertible member. Also, we call the ring R weakly clean if every member of R can be written as the sum or difference of an invertible member and an autoregressive member. The $a \in R$ member is called unit regular whenever $u \in U(R)$ exists such a = aua. A ring R is called a clean unit if every member of R is the sum of an autonomial member and a unitary member. We call a ring R a weakly clean unit if every member of R can be written as the sum or difference of a unit regular and a self-power term. In this paper, weakly unit regular clean rings are introduced and discussed. In particular, we show that if $\{R_i\}_{i\in I}$ is a family of commutative rings, then $R = \prod_{i\in I} R_i$ is weakly unit regular clean if and only if every R_i is weakly clean regular unit and at most one R_i 's are not clean and regular units.

Keywords: clean rings, weakly clean rings, unit clean rings, weakly clean regular rings

2020 MSC: 16U99, 16S70

1 Introduction

In this paper, R is a monojoint participating ring but not necessarily commutative. The set of all invertible members of R is represented by U(R). The member $u \in R$ is called idempotent, whenever $e^2 = e$. The set of all idempotents of R is represented by Id(R). A ring R is called clean if every member of R is the sum of a self-resolved member and an invertible member. You can refer to [2, 3, 5, 8, 13, 16] references to more information in this field. Also, a ring R is called weakly clean if every member of R can be written as the sum or difference of an invertible member and an autoregressive member. These rings were first introduced in [1]. For more information on this topic, see [6, 10]. It is clear that every clean ring is a weakly clean ring, but the converse is not necessarily true. For example, the ring $\mathbb{Z}_{(3)} \cap \mathbb{Z}_{(5)}$ is weakly clean but not clean. A member $a \in R$ is called unit regular whenever $u \in U(R)$ exists such that a = aua. It is clear that every invertible member is a regular member of the unit. The set of all unit regular members of R is denoted by $U_r(R)$. A ring R is called a clean unit regular ring if every member of R is the sum of a self-regular member and a unit regular member [15]. A ring R is called a weakly clean l unit if every member of R can be written as the sum or difference of a unitary regularity and a self-power term. It is clear that every clean unit regular ring is a weakly unit regular clean ring. In this paper, weakly clean regular rings are discussed. In particular, in Theorem 3.13, we show that if $\{R_i\}_{i \in I}$ is a family of commutative rings, then $R = \prod_{i \in I} R_i$ is weakly unit regular clean if and only if every R_i is weakly clean regular is unit and at most one of R_i is not clean unit regular.

Email address: frashedi@tvu.ac.ir (Fatemeh Rashedi)

 $Received: \ {\tt March\ 2024} \quad \ Accepted: \ {\tt May\ 2024}$

2 Rashedi

2 Every regular collective ring is a Marot ring

Here we have to express a historical fact. The beginning of the study on regular collective rings goes back to the results of Marot in [11], but this naming was done by Gilmer and Huckaba in [7]. In fact, Matsuda gave a negative answer to a question from Portelli and Spangher [14] that if a regular hybrid ring is produced by a set of regular elements, then the ring does not necessarily have the UF property.

3 Weakly unit regular clean rings

Definition 3.1. Let R be a ring. In this case, we call R weakly unit regular clean ring if every member of R can be written as the sum or difference of a unitary regularity and an arbitrary term.

Example 3.2. Any unit regular clean ring or any weakly clean ring is a weakly unit regular clean ring.

The following example shows that every weakly unit regular clean ring is not necessarily a clean regular unit or weakly clean ring.

Example 3.3. The ring \mathbb{Z}_{12} is a weakly unit regular clean ring. But not a unit regular clean ring nor a weakly unit regular clean ring, because:

$$Id(\mathbb{Z}_{12}) = \{0.1.4\}$$

$$U_r(\mathbb{Z}_{12}) = \{1.3.5.7.9.11\}$$

$$U(\mathbb{Z}_{12}) = \{1.5.7.11\}$$

Lemma 3.4. Let R be a ring. Then $x \in R$ is weakly unit regular clean if and only if 1 - x or 1 + x is clean unit regular.

Proof. Suppose that $x \in R$ is weakly unit regular clean. In this case, exist $a \in U_r(R)$ and $e \in Id(R)$ so that x = a + e or x = a - e. Therefore, 1 - x = -a + (1 - e) or 1 + x = a + (1 - e) so that $-a.a \in U_r(R)$ and $1 - e \in Id(R)$. As a result, 1 - x or 1 + x is a clean regular unit.

On the contrary, suppose that 1-x or 1+x is a clean unit regular. In this case, there exist $a \in U_r(R)$ and $e \in Id(R)$ so that 1-x=a+e or 1+x=a+e. So x=-a+(1-e) or x=a-(1-e) so that $-a.a \in U_r$ and $1-e \in Id(R)$. as a result x is weakly unit regular clean. \square

Remark 3.5. Suppose R is a ring and I is an ideal of R. Then the following example shows that if R/I is a weakly unit regular clean ring, then it is not necessary that R is a weakly unit regular clean ring.

Example 3.6. Let p be a prime number. Then $\mathbb{Z}/\langle p \rangle \cong \mathbb{Z}_p$ is a weakly unit regular clean ring, but \mathbb{Z} is not a weakly unit regular clean ring.

Definition 3.7. Suppose that R is a ring and I is an ideal of R. In this case, we say that the eigenvalues are raised to measure I, if for each $a \in R$ with the condition $a - a^2 \in I$, there is an eigenvalue member $e \in R$ such that $e - a \in I$ [12].

Definition 3.8. Suppose that R is a ring. In this case, the union of all maximal right (left) ideals of R is called the Jacobson radical of R. We denote the Jacobson radical R by the symbol J(R).

Lemma 3.9. Suppose that R is a ring and $I \subseteq J(R)$ is an ideal of R. In this case, R is weakly unit regular clean if and only if R/I is a ring weakly unit regular clean and the eigenpowers are raised to measure I.

Proof. Suppose that R is a weakly unit regular clean ring and $x + I \in R/I$, In this case, $x \in R$ and x = a + e or x = a - e so that $a \in U_r(R)$ and $e \in Id(R)$.

$$x + I = a + e + I = (a + I) + (e + I)$$

or

$$x + I = a - e + I = (a + I) - (e + I).$$

It is clear that $e + I \in Id(R/I)$ and:

$$a + I = aua + I = (a + I)(u + I)(a + I).$$

So $a + I \in U_r(R/I)$. As result, R/I is a weakly unit regular clean ring and the eigenvalues are raised to the scale of I.

On the contrary, suppose that R/I is a weakly unit regular clean ring and the eigenpowers are raised to measure I and I $x \in R$. In this case, x + I = a + e + I or

$$x + I = a - e + I$$

so that $a+I \in U_r(R/I)$ and $e+I \in Id(R/I)$. Because eigenvalues are raised to scale $I, e \in Id(R)$. on the other hand:

$$x - e + I = a + I \in U_r(R/I)$$

or

$$x + e + I = a + I \in U_r(R/I).$$

So $x - e \in U_r(R/I)$ or $x + e \in U_r(R/I)$. As a result, x = (x - e) + e or x = (x + e) - e, that is, R is a weakly unit regular clean ring. \square

A ring R is called Abelian, if every self-sufficient member of R is central, that is, for every $e \in Id(R)$ and every $x \in R$, xe = ex.

Proposition 3.10. Suppose that R is an Abelian is a weakly unit regular clean ring. In this case, for each $x \in R$, there is an independent member $\in Id(R)$ such that $ex \in Id(R)$ or $-ex \in Id(R)$.

Proof. Suppose that $x \in R$ in this case $a \in U_r(R)$ and $e_1 \in Id(R)$ exist such that $x = a + e_1$ or $x = a - e_1$. Because $a \in U_r(R)$, according to [4, Theorem 1], there exist $e \in Id(R)$ and $u \in U(R)$ such that a = e + u and $aR \cap eR = \{0\}$. Because $ae = ea \in aR \cap eR$, ae = ea = 0. So

$$ex = ea + ee_1$$

or

$$ex = ea - ee_1$$
.

So $ex = ee_1$ or $-ex = ee_1$. Because e and e_1 are central eigenvalues, $ee_1 \in Id(R)$. as a result $ex \in Id(R)$ or $-ex \in Id(R)$. \square

Theorem 3.11. Suppose that R is a weakly unit regular clean Abelian ring and $e \in Id(R)$. In this case eRe is a weakly unit regular clean ring.

Proof. Suppose that $x \in eRe \subseteq R$. In this case, there exist $a \in U_r(R)$ and $e_1 \in Id(R)$ such that $x = a + e_1$ or $x = a - e_1$. Because $x \in eRe$:

$$x = eae + ee_1e$$

or

$$x = eae - ee_1e.$$

Since R is an Abelian ring

$$x = ea + e_1e$$

or

$$x = ae - e_1e$$

on the other hand:

$$(ae)(eue)(ae) = (ae)(eue)(ea) = (ae)u(ea) = (ea)u(ea) = e(aua)e = eae \in eRe.$$

So $ae \in U_r(eRe)$. As result, eRe is a unitary weakly clean ring. \square

The ring R is directly called finite, if for each $x.y \in R$, xy = 1 results in yx = 1 [9].

4 Rashedi

Proposition 3.12. Suppose that R is a directly finite and weakly unit regular clean ring such that $Id(R) = \{0.1\}$. Then R is a weakly clean regular ring.

Proof. Suppose that $x \in R$. In this case, there exist $a \in U_r(R)$ and $e \in Id(R)$ so that x = a + e or x = a - e. If a = 0, then x = e or x = -e. So:

$$x = e = (2e - 1) + (1 - e)$$

or

$$x = -e = -(2e - 1) - (1 - e)$$

As result, R is a weakly clean ring. If $a \neq 0$, then there exists $u \in U(R)$ such that a = aua. So $au \in Id(R) = \{0.1\}$. If au = 0, then a = aua = 0, which is a contradiction. So au = 1. Since R is a directly finite ring, ua = 1. So $a \in U(R)$. Consequently, R is a weakly clean ring. \square

Theorem 3.13. Suppose that $\{R_i\}_{i\in I}$ is a family of commutative rings. In this case $R = \prod_{i\in I} R_i$ is weakly clean regular unit if and only if every R_i is weakly unit regular clean and at most one of R_i is not clean unit regular.

Proof. Suppose $R = \prod_{i \in I} R_i$ is weakly unit regular clean. In this case, since every R_i is a homogenous image of R, according to Lemma 3.9, every R_i is weakly clean regular. Now suppose that $i_1 \neq i_2$, R_{i_1} and R_{i_2} are not clean unit regular. In this case, there exists $x_{i_1} \in R_{i_1}$ such $x_{i_1} = a_{i_1} + e_{i_1}$ where $a_{i_1} \in U_r(R_{i_1})$ and $e_{i_1} \in Id(R_{i_1})$, But $x_{i_1} \neq a - e$ so that $a \in U_r(R_{i_1})$ and $e \in Id(R_{i_1})$. There is also $x_{i_2} \in R_{i_2}$ such $x_{i_2} = a_{i_2} - e_{i_2}$ where a $a_{i_2} \in U_r(R_{i_2})e_{i_2} \in Id(R_{i_2})$. But $x_{i_1} \neq a + e$ so that $a \in U_r(R_{i_2})$ and $e \in Id(R_{i_2})$. Now consider $x = (x_i)$ which is defined as follows:

$$x_i = \begin{cases} x_{i_j} & i \in \{i_1, i_2\} \\ 0 & i \notin \{i_1, i_2\} \end{cases}$$

In this case $\neq a \pm e$ where a $a \in U_r(R)$ and $\in Id(R)$ which is a contradiction. As result, the verdict is upheld.

Conversely, suppose that every R_i is weakly unit regular clean. Also suppose that R_{i_0} is weakly unit regular clean and not unit and the rest of R_i are clean unit regular, we consider $x=(x_i)\in R$. In this case $x_{i_0}=a_{i_0}+e_{i_0}$ or $x_{i_0}=a_{i_0}-e_{i_0}$, where $a_{i_0}\in U_r(R_{i_0})$ and $e_{i_0}\in Id(R_{i_0})$. If $x_{i_0}=a_{i_0}+e_{i_0}$, then for each $i\neq i_0$ we assume $x_i=a_i-e_i$ where $a_i\in U_r(R_i)$ and $e_i\in Id(R_i)$. If $x_{i_0}=a_{i_0}-e_{i_0}$, then for each $i\neq i_0$ suppose that $x_i=a_i+e_i$ where $a_i\in U_r(R_i)$ and $e_i\in Id(R_i)$. So x=a+e or x=a-e where $a\in U_r(R)$ and $e\in Id(R)$, as result, R is a weakly unit regular clean ring. \square

Let C be a subring of D. In this case, the set:

$$R[D.C] = \{(d_1.\dots.d_n.c.c.\dots); d_i \in D.c \in C.n \ge 1\}$$

It is a circle with component addition and multiplication.

Theorem 3.14. The ring R[D.C] is weakly unit regular clean if and only if D is a clean unit regular ring and C is a weakly unit regular clean ring.

Proof. Suppose that S = R[D.C] is a weakly unit regular clean ring. Then, since $D \bigoplus D$ is a summation of S, $D \bigoplus D$ is a weakly unit regular clean ring. Therefore, according to Theorem 3.13, D is a unit regular clean ring. Since C is a homogenous image of S, according to Lemma 3.9, C is a weakly unit regular clean ring.

Conversely, suppose that $x=(d_1,\cdots,d_n,c.c.\cdots)\in S$. In this case, since C is a unitary weakly unit regular clean ring, c=a+ec=a-e where $a\in U_r(C)$ and $e\in Id(C)$. If c=a+e, then for every $1\leq i\leq n$ we set $d_i=a_i+e_i$ where $a_i\in U_r(D)$ and $e_i\in Id(D)$. So:

$$x = (d_1 \cdot \cdots \cdot d_n \cdot c \cdot c \cdot \cdots) = (a_1 \cdot \cdots \cdot a_n \cdot a \cdot a \cdot \cdots) + (e_1 \cdot \cdots \cdot e_n \cdot e \cdot e \cdot \cdots)$$

which in $(a_1 \cdot \dots \cdot a_n \cdot a \cdot a \cdot a \cdot a \cdot e) \in U_r(S)$ and $(e_1 \cdot \dots \cdot e_n \cdot e \cdot e \cdot e) \in Id(S)$. If c = a - e, then for every $1 \le i \le n$, we set $d_i = a_i - e_i$, where $a_i \in U_r(D)$ and $e_i \in Id(D)$. So

$$x = (d_1 \cdot \dots \cdot d_n \cdot c \cdot c \cdot \dots) = (a_1 \cdot \dots \cdot a_n \cdot a \cdot a \cdot \dots) - (e_1 \cdot \dots \cdot e_n \cdot e \cdot e \cdot \dots)$$

which in $(a_1, \dots, a_n, a.a. \dots) \in U_r(S)$ and $(e_1, \dots, e_n, e.e. \dots) \in Id(S)$. As a result, [D.C] is a weakly unit regular clean ring. \square

References

- [1] M.S. Ahn and D.D. Anderson, Weakly clean rings and almost clean rings, Rocky Mount. J. Math. **36** (2006), 783–798.
- [2] D.D. Anderson and V.P. Camillo, Commutative rings whose elements are a sum of a unit and idempotent, Commun. Algebra, **30** (2002), no. 7, 3327–3336.
- [3] W.D. Burgess and R. Raphael, On embedding rings in clean rings, Commun. Algebra, 41 (2013), no. 2, 552–564.
- [4] V.P. Camillo and D. Khuran, A characterization of unit regular rings, Commun. Algebra, 29 (2001), no. 5, 2293–2295.
- [5] J. Chen and X. Yang, and Y. Zhou, On strongly clean matrix and triangular matrix rings, Commun. Algebra, 34 (2006), no. 10, 3659–3674.
- [6] A.Y.M. Chin and K.T. Qua, A note on weakly clean rings, Acta Math. Hungar. 132 (2011), no. 1–2, 113–116.
- [7] R. Gilmer and J. Huckaba, Δ -Rings, J. Algebra, 28 (1974), 414–432.
- [8] J. Han and W.K. Nicholson, Extensions of clean rings, Commun. Algebra, 29 (2001), 2589–2595.
- [9] H. Kambara, On directly finite regular rings, Osaka J. Math. 27 (1990), 629-654.
- [10] T. Kosan and S. Sahinkaya and Y. Zhou, On weakly clean rings, Comm. Algebra, 45 (2017), 8, 1–6.
- [11] J. Marot, Extension de la notion d'anneau valuation, Dept. Math. Faculte des Sci. Brest, 46 (1968), 39.
- [12] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278.
- [13] W.K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J. **46** (2004), 227–236.
- [14] D. Portelli and W. Spangher, Krull rings with zero divisors, Comm. Algebra, 11 (1983), 1817–1851.
- [15] I.T. Younis and N.H. Shuker, *Unit regular clean rings*, J. Phys.: Conf. Ser. **1591** (2020), no. 1, 012049.
- [16] Y. Zhou and M. Ziembowski, On clean Laurent series rings, J. Aust. Math. Soc. 95 (2013), no. 3, 421–427.