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Abstract

In this paper, we give necessary and sufficient conditions under which finite non-abelian metacyclic p-group (p an odd
prime) G is capable. We also, determine the non-abelian tensor square G⊗G for the groups of order pα+β for some
α, β ∈ N. Finally, we obtain some conditions on the parameters of two prime power groups Gp and Gq in which the
groups have isomorphic non-commuting graphs.
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1 Introduction

A group is metacyclic if there is a normal cyclic subgroup whose factor group is also cyclic. Meanwhile, a group
is said to be capable if it is a central factor group. The term capability was introduced by Hall and Senior [6], where
they defined a capable group as equal to its central factor group. Using the non-abelian tensor square, capability
of 2-generator p-group of nilpotency class 2, where p is odd had already been computed by Bacon and Kappe [3].
Moreover, the Capability of 2-generator non-torsion groups of nilpotency class two determined by Kappe et al. [9]. On
the other hand, Rashid et al. [12] used the Schur multiplier of a group of order 8q in determining whether a group of
this type is capable. Beuerle and Kappe also had given the capability of finite metacyclic groups using tensor square
[2].

The non-abelian tensor squares of a 2-Engel group and 2-generator 2-groups of nilpotency class two have been found
[3, 10]. It is determined the non-abelian tensor square for groups of order p2q by Jafari et al. where p, q are primes and
p < q [7]. Non-abelian tensor square of groups of order p2q, special orthogonal groups and spin group are computed by
some other researchers [13, 12]. In the recent studies, Beuerle and Kappe determined the non-abelian tensor squares
and some homological functors of only infinite metacyclic groups [2]. Moreover, the non-commuting graph △(G) which
is defined as the graph whose vertex set is G\Z(G) and edge set contains (x, y) such that xy ̸= yx have been studied
by some researchers. Abdollahi and Shahverdi [1] studied the relation between some graph theoretical properties of
△(G) and the group theory properties of G.
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In this research we deal with the capability and non-abelian tensor square of all finite non-abelian metacyclic p-
groups where p is an odd prime. Moreover, necessary and sufficient conditions under which two non-abelian metacyclic
prime power groups have isomorphic non-commuting graphs are given. To end this, the classification of finite metacyclic
p-groups given by Beuerle [4] is used.

2 Preliminary results

In the case that p is an odd prime, Beuerle’s classification [4] of non-abelian metacyclic p-group which can be given
into three types, namely Type 1, 2 and 3 as follows:

Type 1:

G ∼= ⟨a, b|ap
α

= bp
β

= 1, [a, b] = ap
α−δ

⟩,

where p is an odd prime, α, β, δ ∈ N, α ≥ 2δ and β ≥ δ ≥ 1.

Type 2:

G ∼= ⟨a, b|ap
α

= bp
β

= 1, [b, a] = ap
α−δ

⟩,

where p is an odd prime, α, β, δ ∈ N, δ ≤ α < 2δ, δ ≤ β and δ ≤ min{α− 1, β}.
Type 3:

G ∼= ⟨a, b|ap
α

= 1, bp
β

= ap
α−ϵ

, [b, a] = ap
α−δ

⟩,

where p is an odd prime, α, β, δ, ϵ ∈ N, δ + ϵ ≤ α < 2δ, δ ≤ β, α < β + ϵ and δ ≤ min{α− 1, β}.
In the following, we give some notations which are used in the next sections. For some integers m, n, r and s we

consider the notation

G(m,n, r, s) = ⟨x, y | xm = 1, y−1xy = xr, yn = xs⟩,

to show a metacyclic two generators group. From now till end, all groups are considered as finite non abelian metacyclic
p- group of Types 1, 2 or 3. For a non-negative integer m, let Cm be the cyclic group of order m and υm the set of
integers relatively prime to m. For x and y not both zero, let (x, y) = gcd(x, y). We use the notation Deg△(G) for
the set of degrees of vertices of non-commuting graph △(G). The function ⊤n in the following definition will be used
in the subsequent sections [4]. It considerably facilitates our exposition.

Definition 2.1. Let n, k be integers with n ≥ 0, k ∈ υn and y ∈ N. Then define a function ⊤n : υn × N −→ N by

⊤n(k, y) = 1 + k + · · ·+ ky−1.

The next four lemmas enable us to determine the exact prime powers dividing certain expressions. We first begin
with a definition mentioned in [4].

Definition 2.2. Let p be a prime and x a non-negative integer. If x ̸= 0 then [x]p be the largest integer such that
p[x]p divides x.

The following lemma is an application of the binomial formula and is used to prove the subsequent theorem [4].

Lemma 2.3. Let x,m and n be non-negative integers and p a prime with (p, x) = 1. Then[
(pnx+ 1)p

m

− 1
]
p
= m+ n if p ̸= 2; (2.1)[

(2nx+ 1)2
m

− 1
]
2
=

{
m+ n, if n > 1 or m = 0,
[x+ 1]2 +m+ 1, if n = 1 and m > 0,

(2.2)

[
(2nx− 1)2

m

− 1
]
2
=


1, if n > 1 and m = 0,
m+ n, if n > 1 or m > 0,
[x− 1]2 +m+ 1, if n = 1 and x ̸= 0,
0, if n = 1 and x = 1.

(2.3)

The result of the next theorem is needed to prove some theorems in the next section for determining the capability
of group G.
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Theorem 2.4. Let p, c, d, e be positive integers with p a prime, c = pd + 1 or c = 2d − 1, d ≥ 2 and f a non-negative
integer. Then [

(cp
fe − 1)

]
p
≥
{

1 if c = 2d − 1 and e is odd and f = 0,
f + d otherwise,

with equality if (e, p) = 1.

Proof . Let p, c, d, e and f be as given in the assumption. Using the binomial formula we expand ce as follows:

ce =

e∑
i=0

(
e

i

)
pdi(±1)e−i =

e∑
i=1

(
e

i

)
pdi(±1)e−i + (±1)e

= pd

(
e∑

i=1

(
e

i

)
pd(i−1)(±1)e−i

)
+ (±1)e.

Thus ce = pd
′
x + (±1)e for some positive integers d′ and x such that d′ ≥ d, x ≤

∑e
i=1

(
e
i

)
pd(i−1)(±1)e−i and

(p, x) = 1.

Now, if c = pd + 1 where p is odd, we have ce = pd
′
x + 1. Using Lemma 2.3 with n replaced by d′, we get[

(cp
fe − 1)

]
p
= f + d′. In addition, assume c = pd + 1 and p = 2. So, we get ce = 2d

′
x + 1. Therefore, we obtain[

(cp
fe − 1)

]
p
= f + d′. Moreover, suppose c = 2d − 1 and e is even. Hence, we get ce = 2d

′
x + 1. Therefore, from

Lemma implies
[
(cp

fe − 1)
]
p
= f + d′. Finally, let c = 2d − 1 and e is odd. It follows that ce = 2d

′
x− 1. If f = 0, we

get
[
(cp

fe − 1)
]
p
= 1. If f > 0, we have

[
(cp

fe − 1)
]
p
= f + d′. Thus, the desired results are followed.

Now, assume that (e, p) = 1. It is observed that

e∑
i=1

(
e

i

)
pd(i−1)(±1)e−i = pd

(
e∑

i=2

(
e

i

)
pd(i−2)(±1)e−i

)
+ (±1)e−1e.

Hence,
∑e

i=1

(
e
i

)
pd(i−1)(±1)e−i is relatively prime to p and d = d′. Therefore, it is concluded that equality is

obtained for (e, p) = 1. □

The following theorem is needed to prove some results in the next section for determining the capability of p-group
G.

Theorem 2.5. Let a, p, c, d, e be positive integers with p a prime,c = pd+1 or c = 2d−1, d ≥ 2 and f a non-negative
integer. Then

[
⊤pa(ce, pf )

]
p
≥

 f, if c = pd + 1 or e an even,
0, if c = 2d − 1 and e an odd and f = 0,
f + d− 1, if c = 2d − 1 and e an odd and f > 0.

with equality if (e, p) = 1.

Proof . Let a, p, c, d, e and f be as given in the assumption. By direct computation, we get cp
fe−1 = (ce−1)⊤pa(ce, pf )

and thus [⊤pa(ce, pf )]p = [cp
fe − 1]p − [ce − 1]p. First, let d′ and x be as stated in the proof of Lemma 2.4. Now,

suppose that c = pd + 1 and p is odd. It follows that ce = pd
′
x+ 1. Hence, [⊤pa(ce, pf )]p = f + d′ − d′ = f. However,

if c = pd +1 and p = 2, we get ce = 2d
′
x+1. Therefore, we obtain [⊤pa(ce, pf )]p = f + d′ − d′ = f. Moreover, suppose

c = 2d − 1 and e is even. It follows that ce = 2d
′
x+ 1. Hence, we have [⊤pa(ce, pf )]p = f + d′ − d′ = f. Finally, when

c = 2d − 1 and e is odd, we have ce = 2d
′
x − 1. If f = 0, we get [⊤pa(ce, pf )]p = 0 = f. If f > 0, then we obtain

[⊤pa(ce, pf )]p = f + d′ − 1. Now the claim follows. The equality for (e, p) = 1 is obtained from the equality in Lemma
2.4. □

Finite metacyclic groups which presented by Beyl et al. are given as follows [5]:
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Lemma 2.6. Every finite group G having a cyclic normal subgroup of order m with cyclic factor group of order n
has a presentation

G(m,n, r, s) = ⟨x, y | xm = 1, y−1xy = xr, yn = xs⟩,

where r and s are positive integers satisfying rn ≡ 1 (mod m) and (m, 1 + r + r2 + · · ·+ rn−1) ≡ 0 (mod s).

Next proposition computes the epicenter Z∗(G) for the finite metacyclic group G.

Proposition 2.7. [5] LetG = G(m,n, r, s) and k be the smallest positive divisor of n satisfying 1+r+r2+···+rk−1 ≡ 0
(mod s). Then Z∗(G) for the group G(m,n, r, s) is the cyclic group of order mn/ks generated by yk.

Using Proposition 2.7, Beyl et al. [5] established necessary and sufficient conditions for every finite metacyclic
group to be capable.

Theorem 2.8. [5] The group G(m,n, r, s) is capable if and only if s = m and n is the smallest positive integer
satisfying 1 + r + r2 + · · ·+ rn−1 ≡ 0 (mod m).

The following criterion now characterizes the capability of the groups.

Theorem 2.9. [5] A group G is capable if and only if Z∗(G) = 1.

Definition 2.10. For a group G the non-abelian tensor square, G⊗G, is the group generated by the symbols g⊗ h
where g, h ∈ G, subject to the relations;

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h), (2.4)

g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′), (2.5)

for all g, g′, h, h′ ∈ G, where hg = hgh−1 denotes the conjugate of g by h.

3 Main results

In this section we determine all capable groups of finite non-abelian metacyclic p-groups where p is an odd prime.

Theorem 3.1. Let G be a finite non-abelian metacyclic p-group, where p is an odd prime. Then G is capable if and
only if G is of Type (1) or Type (2) with β = α.

Proof . Suppose that G is a finite non-abelian metacyclic p-group of Type (1). We represent G so that the presentation
matches the one for all finite metacyclic groups given in Lemma 2.6. The presentation of G can be rewritten as follows:

G ∼= ⟨a, b|ap
α

= 1, aba−1b−1 = ap
α−δ

, bp
β

= ap
α

⟩,
where α, β, δ ∈ N, α ≥ 2δ and β ≥ δ ≥ 1.

From the group presentation, it is easy to see that b−1ab = ap
α−δ+1. Thus,

G(pα, pβ , pα−δ + 1, pα) ∼= ⟨a, b|ap
α

= 1, b−1ab = ap
α−δ+1, bp

β

= ap
α

⟩,

where m = pα, n = pβ , r = pα−δ + 1 and s = pα. From the considerations above and using Theorem 2.4, we have[
(pα−δ + 1)p

β − 1
]
p
= β + α − δ. So, pβ+α−δ divides (pα−δ + 1)p

β − 1. Since pα divides pβ+α−δ for all α, β and δ

satisfying the conditions of Type (1), pα divides (pα−δ + 1)p
β − 1. Thus, (pα−δ + 1)p

β ≡ 1 (mod pα) for all α, β and δ
satisfying the conditions of Type (1). Using Definition 2.1, we have

1 + (pα−δ + 1) + (pα−δ + 1)2 + · · ·+ (pα−δ + 1)p
β−1 = ⊤pα(pα−δ + 1, pβ).

By Theorem 2.5,
[
⊤pα(pα−δ + 1, pβ)

]
p
= β. So, β is the greatest integer such that pβ divides ⊤pα(pα−δ + 1, pβ).

Thus,
(
pα,⊤pα(pα−δ + 1, pβ)

)
≡ 0 (mod pα) for β ≥ α. Now, Theorem 2.8, Proposition 2.7 and Theorem 2.9 are
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applied to determine the capability. It is obvious that s = m = pα. For the second condition, three cases need to be
considered:

Case 1: if β > α then n = pβ satisfying ⊤pα(pα−δ + 1, pβ) ≡ 0 (modpα). But there exists a positive integer,
n′ = pβ−1 < pβ = n satisfying ⊤pα(pα−δ + 1, pβ−1) ≡ 0 (mod pα). Therefore, G is not capable.

Case 2: if β < α then ⊤pα(pα−δ + 1, pβ) ̸≡ 0 (mod pα). Thus, G is not capable in this case as well.

Case 3: if β = α then n = pβ satisfies ⊤pα(pα−δ + 1, pβ) ≡ 0 (modpα). Now, let pi, 0 ≤ i < β be a divisor of
n = pβ . Thus,

[
⊤pα(pα−δ + 1, pi)

]
p
= i. Since β = α and i < β, pα ∤ pi. So, ⊤pα(pα−δ + 1, pi) ̸≡ 0 (mod pα). Hence,

the smallest positive divisor of n = pβ satisfying ⊤pα(pα−δ + 1, pβ) ≡ 0 (mod pα) is n itself. Proposition 2.7, shows
that G has a trivial Z∗(G), so using Theorem 2.9, the group G is capable.

Now, if G is the group of Type (2), using Lemma 2.2 the presentation of G can be rewritten as follows:

G(pα, pβ , pα−δ + 1, pα) ∼= ⟨x, y|xpα

= 1, y−1xy = xpα−δ+1, yp
β

= xpα

⟩,

where m = pα, n = pβ , r = pα−δ +1 and s = pα. Similar as for Type (1), we get that G is capable if and only if β = α.
□

Theorem 3.2. Let G be a p-group of Type (3). Then G is not capable for all α, β, δ and ϵ.

Proof . Suppose that G is a group of Type (3), the presentation of G can be rewritten as follows:

G(pα, pβ , pα−δ + 1, pα−ϵ) ∼= ⟨x, y|xpα

= 1, y−1xy = xpα−δ+1, yp
β

= xpα−ϵ

⟩,

where m = pα, n = pβ , r = pα−δ + 1 and s = pα−ϵ. Using Theorem 2.4, we have (pα−δ + 1)p
β ≡ 1 (mod pα) for all

α, β and δ satisfying the conditions of the group G. Since α < β + ϵ, we conclude that
(
pα,⊤pα(pα−δ + 1, pβ)

)
≡ 0

(mod pα−ϵ) for all α, β, δ and ϵ satisfying the conditions of the group. Since s ̸= m, by Theorem 2.8, we get that G
is not capable for all α, β, δ and ϵ. □

Now, we compute the non-abelian tensor square of the groups of Types 1, 2 and 3 . We start by computing the
non-abelian tensor square of Type (1). It is shown that G⊗G is a direct product of cyclic groups.

Theorem 3.3. Let G be a finite non-abelian metacyclic p-group of Type (1). Then

G⊗G ∼=


Cpα−δ × C3

pβ , if β ≤ α− δ,

Cpα−δ × Cpβ × Cpα−δ × Cpβ , if α− δ ≤ β ≤ α,
Cpα−δ × Cpα × Cpα−δ × Cpβ , if α ≤ β.

and is generated by a⊗ a, b⊗ a, (b⊗ a)(a⊗ b), b⊗ b of orders pα−δ, pmin{α,β}, pmin{α−δ,β} and pβ respectively.

Proof . Let G be a metacyclic group of Type (1) with p an odd prime. From the presentation of G, we consider
m = pα, n = pβ and r = pα−δ + 1. Thus from [8], G ⊗ G can be written as a direct product of four cyclic groups
with generators a ⊗ a, b ⊗ a, (b ⊗ a)(a ⊗ b) and b ⊗ b of orders (m, r − 1), (m,⊤m(r, n)), (m, r − 1,⊤m(r, n)) and n
respectively.

All that remains to be done is to calculate the orders of the factors explicitly. The order of the first factor is
(m, r − 1) =

(
pα, pα−δ

)
= pα−δ. The order of the second factor is (m,⊤m(r, n)) =

(
pα,⊤pα

(
pα−δ + 1, pβ

))
. The

order of the third factor is (m, r − 1,⊤m (r, n)) =
(
pα, pα−δ,⊤pα

(
pα−δ + 1, pβ

))
. The order of the fourth factor is pβ .

Lemma 2.5 leads to
(
pα,⊤pα

(
pα−δ + 1, pβ

))
= pmin{α,β} and

(
pα, pα−δ,⊤pα

(
pα−δ + 1, pβ

))
= pmin{α−δ,β}. Thus, we

conclude that if β ≤ α − δ then G ⊗ G ∼= Cpα−δ × C3
pβ , if α − δ ≤ β ≤ α then G ⊗ G ∼= Cpα−δ × Cpβ × Cpα−δ × Cpβ

and if α ≤ β then G⊗G ∼= Cpα−δ × Cpα × Cpα−δ × Cpβ , the desired result. □

Using a similar method and observing the condition α−δ < β on the parameters of Type (2), the following theorem
for computing the non-abelian tensor square of groups of Type (2) can be proved.

Theorem 3.4. Let G be a finite non-abelian metacyclic p-group of Type (2). Then

G⊗G ∼=
{

Cpα−δ × Cpβ × Cpα−δ × Cpβ , if β ≤ α,
Cpα−δ × Cpα × Cpα−δ × Cpβ , if α ≤ β.

generated by a⊗ a, b⊗ a, (b⊗ a)(a⊗ b), b⊗ b of orders pα−δ, pmin{α,β}, pα−δ and pβ respectively.
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The non-abelian tensor square of groups of Type (3) is given in the following theorem.

Theorem 3.5. Let G be a finite non-abelian metacyclic p-group of Type (3). Then

G⊗G ∼= Cpα−δ × Cpα−ϵ × Cpα−δ × Cpβ .

Proof . Suppose that G is a p-group of Type (3) and p is an odd prime

G ∼= ⟨a, b|ap
α

= 1, bp
β

= ap
α−ϵ

, [b, a] = ap
α−δ

⟩.

Observe that [b, a] = ap
α−δ

= bab−1 = ap
α−δ+1 and we consider r = pα−δ +1, then G is of type Gp(α, β, ϵ, δ,+). From

[4] and observing the conditions on the parameters of groups of Type (3) that α − ϵ < β and α − δ < β, the result
now follows. □

We now investigate the non- commuting graphs of the groups of types 1, 2 and 3. These groups can be fallen in
the following presentation:

G ∼= ⟨a, b|ap
α

= 1, bp
β

= ap
α−ϵ

, ab = ap
α−δ+1⟩, (3.1)

for some α, β ∈ N and δ, ϵ ≥ 0 are integers, where β ≥ γ ≥ 1 and p is an odd prime. In what follows, Deg(∆(G))
stands for the set of all degrees of vertices of graph △(G). Also, we call ccz(G) for the set of all conjugacy class sizes
of group G.

The following theorems gives necessary and sufficient conditions under which two non-abelian prime power groups
Gp and Gq of G type, have isomorphic non-commuting graphs.

Theorem 3.6. Consider p-group Gp = G(α1, β1, δ1, ϵ1) and q-group Gq = Gq(α2, β2, δ2, ϵ2) in the G group Type.
Then △(Gp) ≃ △(Gq) if and only if α1 + β1 = α2 + β2 and δ1 = δ2.

Proof . Let f : △(Gp) −→ △(Gq) be an isomorphism from △(Gp) to △(Gq). Suppose that x1, x2 ∈ Gp\Z(Gp), such
that deg(x1) and deg(x2) are two minimum elements of the set Deg△(Gp) such that deg(x1)≤ deg (x2). Moreover, if
yi = f(xi) for i = 1, 2, then deg(y1) is the minimum of Deg△(Gq) and deg(y2) = min Deg△(Gq) − {deg(y1)}. Since
deg(x1)=deg(yi), it follows by Theorem 3.1 [11] that:

pα1+β1 − pα1+β1−1 = qα2+β2 − qα2+β2−1

pα1+β1 − pα1+β1−2 = qα2+β2 − qα2+β2−2.

By dividing the first sides of the above equations by their second sides, we obtain p/p + 1 = q/q + 1. It follows
that p = q. Hence, α1 + β1 = α2 + β2. Form which it follows that |Gp| = |Gq|, as well as |Z(Gp)| = |Z(Gq)|. Thus,
clearly we arrive at δ1 = δ2. Conversely, suppose that α1 + β1 = α2 + β2 and δ1 = δ2 and µ : Z(Gp) −→ Z(Gq)

is a bijection, then the map φ : Gp\Z(Gp) −→ Gq\Z(Gq) defined by φ(aibjz) = ai1b
j
1µ(z) for 1 ≤ i, j ≤ pδ is an

isomorphism between △(Gp) and △(Gq). Therefore, △(Gp) ≃ △(Gq). □

To illustrate the above theorem, we consider the following example.

Example 3.7. By taking p = 7, q = 5, α1 = 3, α2 = 4, β1 = 2, β2 = 1, δ1 = δ2 = 1 and ϵ1 = ϵ2 = 0 in Theorem 3.6,
two non-commuting graphs △G7(3, 2, 1, 0) and △G5(4, 1, 1, 0) are isomorphic.
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