Int. J. Nonlinear Anal. Appl. In Press, 1–7 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2024.29806.4264



# On the capability, non-abelian tensor square and non-commuting graph of prime power groups

Abdulqader Mohammed Abdullah Bin Basri<sup>a</sup>, Kayvan Moradipour<sup>b,\*</sup>

<sup>a</sup>Department of Mathematics, College of Education, Seiyun University (SU), Yemen <sup>b</sup>Department of Mathematics, Technical and Vocational University (TVU), Tehran, Iran

(Communicated by Abasalt Bodaghi)

### Abstract

In this paper, we give necessary and sufficient conditions under which finite non-abelian metacyclic *p*-group (*p* an odd prime) *G* is capable. We also, determine the non-abelian tensor square  $G \otimes G$  for the groups of order  $p^{\alpha+\beta}$  for some  $\alpha, \beta \in \mathbb{N}$ . Finally, we obtain some conditions on the parameters of two prime power groups  $G_p$  and  $G_q$  in which the groups have isomorphic non-commuting graphs.

Keywords: prime power group, capable group, tensor square, isomorphic graphs 2020 MSC: 05C25, 20F05

# 1 Introduction

A group is metacyclic if there is a normal cyclic subgroup whose factor group is also cyclic. Meanwhile, a group is said to be capable if it is a central factor group. The term capability was introduced by Hall and Senior [6], where they defined a capable group as equal to its central factor group. Using the non-abelian tensor square, capability of 2-generator *p*-group of nilpotency class 2, where *p* is odd had already been computed by Bacon and Kappe [3]. Moreover, the Capability of 2-generator non-torsion groups of nilpotency class two determined by Kappe et al. [9]. On the other hand, Rashid et al. [12] used the Schur multiplier of a group of order 8q in determining whether a group of this type is capable. Beuerle and Kappe also had given the capability of finite metacyclic groups using tensor square [2].

The non-abelian tensor squares of a 2-Engel group and 2-generator 2-groups of nilpotency class two have been found [3, 10]. It is determined the non-abelian tensor square for groups of order  $p^2q$  by Jafari et al. where p, q are primes and p < q [7]. Non-abelian tensor square of groups of order  $p^2q$ , special orthogonal groups and spin group are computed by some other researchers [13, 12]. In the recent studies, Beuerle and Kappe determined the non-abelian tensor squares and some homological functors of only infinite metacyclic groups [2]. Moreover, the non-commuting graph  $\Delta(G)$  which is defined as the graph whose vertex set is  $G \setminus Z(G)$  and edge set contains (x, y) such that  $xy \neq yx$  have been studied by some researchers. Abdollahi and Shahverdi [1] studied the relation between some graph theoretical properties of  $\Delta(G)$  and the group theory properties of G.

\*Corresponding author

Email address: kayvan.mrp@gmail.com (Kayvan Moradipour)

In this research we deal with the capability and non-abelian tensor square of all finite non-abelian metacyclic p-groups where p is an odd prime. Moreover, necessary and sufficient conditions under which two non-abelian metacyclic prime power groups have isomorphic non-commuting graphs are given. To end this, the classification of finite metacyclic p-groups given by Beuerle [4] is used.

# 2 Preliminary results

In the case that p is an odd prime, Beuerle's classification [4] of non-abelian metacyclic p-group which can be given into three types, namely Type 1, 2 and 3 as follows:

Type 1:

$$G \cong \langle a, b | a^{p^{\alpha}} = b^{p^{\beta}} = 1, [a, b] = a^{p^{\alpha - \delta}} \rangle$$

where p is an odd prime,  $\alpha, \beta, \delta \in \mathbb{N}$ ,  $\alpha \ge 2\delta$  and  $\beta \ge \delta \ge 1$ .

**Type 2:** 

$$G \cong \langle a, b | a^{p^{\alpha}} = b^{p^{\beta}} = 1, [b, a] = a^{p^{\alpha - \delta}} \rangle,$$

where p is an odd prime,  $\alpha, \beta, \delta \in \mathbb{N}$ ,  $\delta \leq \alpha < 2\delta, \delta \leq \beta$  and  $\delta \leq \min\{\alpha - 1, \beta\}$ .

Type 3:

$$G \cong \langle a, b | a^{p^{\alpha}} = 1, b^{p^{\beta}} = a^{p^{\alpha - \epsilon}}, [b, a] = a^{p^{\alpha - \delta}} \rangle,$$

where p is an odd prime,  $\alpha, \beta, \delta, \epsilon \in \mathbb{N}, \delta + \epsilon \le \alpha < 2\delta, \delta \le \beta, \alpha < \beta + \epsilon$  and  $\delta \le \min\{\alpha - 1, \beta\}$ .

In the following, we give some notations which are used in the next sections. For some integers m, n, r and s we consider the notation

$$G(m, n, r, s) = \langle x, y \mid x^{m} = 1, y^{-1}xy = x^{r}, y^{n} = x^{s} \rangle,$$

to show a metacyclic two generators group. From now till end, all groups are considered as finite non abelian metacyclic p- group of Types 1, 2 or 3. For a non-negative integer m, let  $C_m$  be the cyclic group of order m and  $v_m$  the set of integers relatively prime to m. For x and y not both zero, let (x, y) = gcd(x, y). We use the notation  $\text{Deg}\Delta(G)$  for the set of degrees of vertices of non-commuting graph  $\Delta(G)$ . The function  $\top_n$  in the following definition will be used in the subsequent sections [4]. It considerably facilitates our exposition.

**Definition 2.1.** Let n, k be integers with  $n \ge 0, k \in v_n$  and  $y \in \mathbb{N}$ . Then define a function  $\top_n : v_n \times \mathbb{N} \longrightarrow \mathbb{N}$  by

$$\top_n(k,y) = 1 + k + \dots + k^{y-1}.$$

The next four lemmas enable us to determine the exact prime powers dividing certain expressions. We first begin with a definition mentioned in [4].

**Definition 2.2.** Let p be a prime and x a non-negative integer. If  $x \neq 0$  then  $[x]_p$  be the largest integer such that  $p^{[x]_p}$  divides x.

The following lemma is an application of the binomial formula and is used to prove the subsequent theorem [4].

**Lemma 2.3.** Let x, m and n be non-negative integers and p a prime with (p, x) = 1. Then

$$\left[ (p^n x + 1)^{p^m} - 1 \right]_p = m + n \text{ if } p \neq 2;$$
(2.1)

$$\left[ (2^n x + 1)^{2^m} - 1 \right]_2 = \begin{cases} m+n, & \text{if } n > 1 \text{ or } m = 0, \\ [x+1]_2 + m + 1, & \text{if } n = 1 \text{ and } m > 0, \end{cases}$$

$$(2.2)$$

$$\left[ (2^n x - 1)^{2^m} - 1 \right]_2 = \begin{cases} 1, & \text{if } n > 1 \text{ and } m = 0, \\ m + n, & \text{if } n > 1 \text{ or } m > 0, \\ [x - 1]_2 + m + 1, & \text{if } n = 1 \text{ and } x \neq 0, \\ 0, & \text{if } n = 1 \text{ and } x = 1. \end{cases}$$
(2.3)

The result of the next theorem is needed to prove some theorems in the next section for determining the capability of group G.

**Theorem 2.4.** Let p, c, d, e be positive integers with p a prime,  $c = p^d + 1$  or  $c = 2^d - 1$ ,  $d \ge 2$  and f a non-negative integer. Then

$$\left[ (c^{p^f e} - 1) \right]_p \ge \begin{cases} 1 & \text{if } c = 2^d - 1 \text{ and } e \text{ is odd and } f = 0, \\ f + d & \text{otherwise,} \end{cases}$$

with equality if (e, p) = 1.

**Proof**. Let p, c, d, e and f be as given in the assumption. Using the binomial formula we expand  $c^e$  as follows:

$$c^{e} = \sum_{i=0}^{e} {e \choose i} p^{di} (\pm 1)^{e-i} = \sum_{i=1}^{e} {e \choose i} p^{di} (\pm 1)^{e-i} + (\pm 1)^{e-i}$$
$$= p^{d} \left( \sum_{i=1}^{e} {e \choose i} p^{d(i-1)} (\pm 1)^{e-i} \right) + (\pm 1)^{e}.$$

Thus  $c^e = p^{d'}x + (\pm 1)^e$  for some positive integers d' and x such that  $d' \ge d$ ,  $x \le \sum_{i=1}^{e} {e \choose i} p^{d(i-1)} (\pm 1)^{e-i}$  and (p, x) = 1.

Now, if  $c = p^d + 1$  where p is odd, we have  $c^e = p^{d'}x + 1$ . Using Lemma 2.3 with n replaced by d', we get  $\left[(c^{p^f e} - 1)\right]_p = f + d'$ . In addition, assume  $c = p^d + 1$  and p = 2. So, we get  $c^e = 2^{d'}x + 1$ . Therefore, we obtain  $\left[(c^{p^f e} - 1)\right]_p = f + d'$ . Moreover, suppose  $c = 2^d - 1$  and e is even. Hence, we get  $c^e = 2^{d'}x + 1$ . Therefore, from Lemma implies  $\left[(c^{p^f e} - 1)\right]_p = f + d'$ . Finally, let  $c = 2^d - 1$  and e is odd. It follows that  $c^e = 2^{d'}x - 1$ . If f = 0, we get  $\left[(c^{p^f e} - 1)\right]_p = 1$ . If f > 0, we have  $\left[(c^{p^f e} - 1)\right]_p = f + d'$ . Thus, the desired results are followed.

Now, assume that (e, p) = 1. It is observed that

$$\sum_{i=1}^{e} {e \choose i} p^{d(i-1)} (\pm 1)^{e-i} = p^d \left( \sum_{i=2}^{e} {e \choose i} p^{d(i-2)} (\pm 1)^{e-i} \right) + (\pm 1)^{e-1} e.$$

Hence,  $\sum_{i=1}^{e} {e \choose i} p^{d(i-1)} (\pm 1)^{e-i}$  is relatively prime to p and d = d'. Therefore, it is concluded that equality is obtained for (e, p) = 1.  $\Box$ 

The following theorem is needed to prove some results in the next section for determining the capability of p-group G.

**Theorem 2.5.** Let a, p, c, d, e be positive integers with p a prime,  $c = p^d + 1$  or  $c = 2^d - 1$ ,  $d \ge 2$  and f a non-negative integer. Then

$$\left[\top_{p^{a}}(c^{e}, p^{f})\right]_{p} \geq \begin{cases} f, & \text{if } c = p^{d} + 1 \text{ or } e \text{ an even}, \\ 0, & \text{if } c = 2^{d} - 1 \text{ and } e \text{ an odd and } f = 0, \\ f + d - 1, & \text{if } c = 2^{d} - 1 \text{ and } e \text{ an odd and } f > 0. \end{cases}$$

with equality if (e, p) = 1.

**Proof**. Let a, p, c, d, e and f be as given in the assumption. By direct computation, we get  $c^{p^f e} - 1 = (c^e - 1) \top_{p^a} (c^e, p^f)$  and thus  $[\top_{p^a}(c^e, p^f)]_p = [c^{p^f e} - 1]_p - [c^e - 1]_p$ . First, let d' and x be as stated in the proof of Lemma 2.4. Now, suppose that  $c = p^d + 1$  and p is odd. It follows that  $c^e = p^{d'}x + 1$ . Hence,  $[\top_{p^a}(c^e, p^f)]_p = f + d' - d' = f$ . However, if  $c = p^d + 1$  and p = 2, we get  $c^e = 2^{d'}x + 1$ . Therefore, we obtain  $[\top_{p^a}(c^e, p^f)]_p = f + d' - d' = f$ . Moreover, suppose  $c = 2^d - 1$  and e is even. It follows that  $c^e = 2^{d'}x + 1$ . Hence, we have  $[\top_{p^a}(c^e, p^f)]_p = f + d' - d' = f$ . Finally, when  $c = 2^d - 1$  and e is odd, we have  $c^e = 2^{d'}x - 1$ . If f = 0, we get  $[\top_{p^a}(c^e, p^f)]_p = 0 = f$ . If f > 0, then we obtain  $[\top_{p^a}(c^e, p^f)]_p = f + d' - 1$ . Now the claim follows. The equality for (e, p) = 1 is obtained from the equality in Lemma 2.4.  $\Box$ 

Finite metacyclic groups which presented by Beyl *et al.* are given as follows [5]:

**Lemma 2.6.** Every finite group G having a cyclic normal subgroup of order m with cyclic factor group of order n has a presentation

$$G(m, n, r, s) = \langle x, y \mid x^m = 1, y^{-1}xy = x^r, y^n = x^s \rangle,$$

where r and s are positive integers satisfying  $r^n \equiv 1 \pmod{m}$  and  $(m, 1 + r + r^2 + \dots + r^{n-1}) \equiv 0 \pmod{s}$ .

Next proposition computes the epicenter  $Z^*(G)$  for the finite metacyclic group G.

**Proposition 2.7.** [5] Let G = G(m, n, r, s) and k be the smallest positive divisor of n satisfying  $1+r+r^2+\cdots+r^{k-1} \equiv 0 \pmod{s}$ . Then  $Z^*(G)$  for the group G(m, n, r, s) is the cyclic group of order mn/ks generated by  $y^k$ .

Using Proposition 2.7, Beyl *et al.* [5] established necessary and sufficient conditions for every finite metacyclic group to be capable.

**Theorem 2.8.** [5] The group G(m, n, r, s) is capable if and only if s = m and n is the smallest positive integer satisfying  $1 + r + r^2 + \cdots + r^{n-1} \equiv 0 \pmod{m}$ .

The following criterion now characterizes the capability of the groups.

**Theorem 2.9.** [5] A group G is capable if and only if  $Z^*(G) = 1$ .

**Definition 2.10.** For a group G the non-abelian tensor square,  $G \otimes G$ , is the group generated by the symbols  $g \otimes h$  where  $g, h \in G$ , subject to the relations;

$$gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h), \tag{2.4}$$

$$g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}h'), \qquad (2.5)$$

for all  $g, g', h, h' \in G$ , where  ${}^{h}g = hgh^{-1}$  denotes the conjugate of g by h.

# 3 Main results

In this section we determine all capable groups of finite non-abelian metacyclic p-groups where p is an odd prime.

**Theorem 3.1.** Let G be a finite non-abelian metacyclic p-group, where p is an odd prime. Then G is capable if and only if G is of Type (1) or Type (2) with  $\beta = \alpha$ .

**Proof**. Suppose that G is a finite non-abelian metacyclic p-group of Type (1). We represent G so that the presentation matches the one for all finite metacyclic groups given in Lemma 2.6. The presentation of G can be rewritten as follows:

$$G \cong \langle a, b | a^{p^{\alpha}} = 1, aba^{-1}b^{-1} = a^{p^{\alpha-\delta}}, b^{p^{\beta}} = a^{p^{\alpha}} \rangle,$$
  
where  $\alpha, \beta, \delta \in \mathbb{N}, \alpha \ge 2\delta$  and  $\beta \ge \delta \ge 1$ .

From the group presentation, it is easy to see that  $b^{-1}ab = a^{p^{\alpha-\delta}+1}$ . Thus,

$$G(p^{\alpha}, p^{\beta}, p^{\alpha-\delta}+1, p^{\alpha}) \cong \langle a, b | a^{p^{\alpha}} = 1, b^{-1}ab = a^{p^{\alpha-\delta}+1}, b^{p^{\beta}} = a^{p^{\alpha}} \rangle,$$

where  $m = p^{\alpha}, n = p^{\beta}, r = p^{\alpha-\delta} + 1$  and  $s = p^{\alpha}$ . From the considerations above and using Theorem 2.4, we have  $\left[(p^{\alpha-\delta}+1)^{p^{\beta}}-1\right]_{p} = \beta + \alpha - \delta$ . So,  $p^{\beta+\alpha-\delta}$  divides  $(p^{\alpha-\delta}+1)^{p^{\beta}} - 1$ . Since  $p^{\alpha}$  divides  $p^{\beta+\alpha-\delta}$  for all  $\alpha, \beta$  and  $\delta$  satisfying the conditions of Type (1),  $p^{\alpha}$  divides  $(p^{\alpha-\delta}+1)^{p^{\beta}} - 1$ . Thus,  $(p^{\alpha-\delta}+1)^{p^{\beta}} \equiv 1 \pmod{p^{\alpha}}$  for all  $\alpha, \beta$  and  $\delta$  satisfying the conditions of Type (1). Using Definition 2.1, we have

$$1 + (p^{\alpha-\delta} + 1) + (p^{\alpha-\delta} + 1)^2 + \dots + (p^{\alpha-\delta} + 1)^{p^{\beta}-1} = \top_{p^{\alpha}} (p^{\alpha-\delta} + 1, p^{\beta}).$$

By Theorem 2.5,  $\left[ \top_{p^{\alpha}} (p^{\alpha-\delta}+1,p^{\beta}) \right]_p = \beta$ . So,  $\beta$  is the greatest integer such that  $p^{\beta}$  divides  $\top_{p^{\alpha}} (p^{\alpha-\delta}+1,p^{\beta})$ . Thus,  $\left(p^{\alpha}, \top_{p^{\alpha}} (p^{\alpha-\delta}+1,p^{\beta})\right) \equiv 0 \pmod{p^{\alpha}}$  for  $\beta \geq \alpha$ . Now, Theorem 2.8, Proposition 2.7 and Theorem 2.9 are applied to determine the capability. It is obvious that  $s = m = p^{\alpha}$ . For the second condition, three cases need to be considered:

Case 1: if  $\beta > \alpha$  then  $n = p^{\beta}$  satisfying  $\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{\beta}) \equiv 0 \pmod{p^{\alpha}}$ . But there exists a positive integer,  $n' = p^{\beta-1} < p^{\beta} = n$  satisfying  $\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{\beta-1}) \equiv 0 \pmod{p^{\alpha}}$ . Therefore, G is not capable.

Case 2: if  $\beta < \alpha$  then  $\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{\beta}) \not\equiv 0 \pmod{p^{\alpha}}$ . Thus, G is not capable in this case as well.

Case 3: if  $\beta = \alpha$  then  $n = p^{\beta}$  satisfies  $\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{\beta}) \equiv 0 \pmod{p^{\alpha}}$ . Now, let  $p^{i}, 0 \leq i < \beta$  be a divisor of  $n = p^{\beta}$ . Thus,  $[\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{i})]_{p} = i$ . Since  $\beta = \alpha$  and  $i < \beta, p^{\alpha} \nmid p^{i}$ . So,  $\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{i}) \not\equiv 0 \pmod{p^{\alpha}}$ . Hence, the smallest positive divisor of  $n = p^{\beta}$  satisfying  $\top_{p^{\alpha}}(p^{\alpha-\delta}+1,p^{\beta}) \equiv 0 \pmod{p^{\alpha}}$  is n itself. Proposition 2.7, shows that G has a trivial  $Z^{*}(G)$ , so using Theorem 2.9, the group G is capable.

Now, if G is the group of Type (2), using Lemma 2.2 the presentation of G can be rewritten as follows:

$$G(p^{\alpha}, p^{\beta}, p^{\alpha-\delta}+1, p^{\alpha}) \cong \langle x, y | x^{p^{\alpha}} = 1, y^{-1}xy = x^{p^{\alpha-\delta}+1}, y^{p^{\beta}} = x^{p^{\alpha}} \rangle,$$

where  $m = p^{\alpha}$ ,  $n = p^{\beta}$ ,  $r = p^{\alpha-\delta} + 1$  and  $s = p^{\alpha}$ . Similar as for Type (1), we get that G is capable if and only if  $\beta = \alpha$ .

**Theorem 3.2.** Let G be a p-group of Type (3). Then G is not capable for all  $\alpha$ ,  $\beta$ ,  $\delta$  and  $\epsilon$ .

**Proof**. Suppose that G is a group of Type (3), the presentation of G can be rewritten as follows:

$$G(p^{\alpha}, p^{\beta}, p^{\alpha-\delta}+1, p^{\alpha-\epsilon}) \cong \langle x, y | x^{p^{\alpha}} = 1, y^{-1}xy = x^{p^{\alpha-\delta}+1}, y^{p^{\beta}} = x^{p^{\alpha-\epsilon}} \rangle,$$

where  $m = p^{\alpha}, n = p^{\beta}, r = p^{\alpha-\delta} + 1$  and  $s = p^{\alpha-\epsilon}$ . Using Theorem 2.4, we have  $(p^{\alpha-\delta} + 1)^{p^{\beta}} \equiv 1 \pmod{p^{\alpha}}$  for all  $\alpha, \beta$  and  $\delta$  satisfying the conditions of the group G. Since  $\alpha < \beta + \epsilon$ , we conclude that  $(p^{\alpha}, \top_{p^{\alpha}}(p^{\alpha-\delta} + 1, p^{\beta})) \equiv 0 \pmod{p^{\alpha-\epsilon}}$  for all  $\alpha, \beta, \delta$  and  $\epsilon$  satisfying the conditions of the group. Since  $s \neq m$ , by Theorem 2.8, we get that G is not capable for all  $\alpha, \beta, \delta$  and  $\epsilon$ .  $\Box$ 

Now, we compute the non-abelian tensor square of the groups of Types 1, 2 and 3. We start by computing the non-abelian tensor square of Type (1). It is shown that  $G \otimes G$  is a direct product of cyclic groups.

**Theorem 3.3.** Let G be a finite non-abelian metacyclic p-group of Type (1). Then

$$G \otimes G \cong \left\{ \begin{array}{ll} C_{p^{\alpha-\delta}} \times C_{p^{\beta}}^{3}, & \text{if } \beta \leq \alpha - \delta, \\ C_{p^{\alpha-\delta}} \times C_{p^{\beta}} \times C_{p^{\alpha-\delta}} \times C_{p^{\beta}}, & \text{if } \alpha - \delta \leq \beta \leq \alpha, \\ C_{p^{\alpha-\delta}} \times C_{p^{\alpha}} \times C_{p^{\alpha-\delta}} \times C_{p^{\beta}}, & \text{if } \alpha \leq \beta. \end{array} \right.$$

and is generated by  $a \otimes a$ ,  $b \otimes a$ ,  $(b \otimes a)(a \otimes b)$ ,  $b \otimes b$  of orders  $p^{\alpha-\delta}$ ,  $p^{\min\{\alpha,\beta\}}$ ,  $p^{\min\{\alpha-\delta,\beta\}}$  and  $p^{\beta}$  respectively.

**Proof**. Let G be a metacyclic group of Type (1) with p an odd prime. From the presentation of G, we consider  $m = p^{\alpha}$ ,  $n = p^{\beta}$  and  $r = p^{\alpha-\delta} + 1$ . Thus from [8],  $G \otimes G$  can be written as a direct product of four cyclic groups with generators  $a \otimes a$ ,  $b \otimes a$ ,  $(b \otimes a)(a \otimes b)$  and  $b \otimes b$  of orders (m, r - 1),  $(m, \top_m(r, n))$ ,  $(m, r - 1, \top_m(r, n))$  and n respectively.

All that remains to be done is to calculate the orders of the factors explicitly. The order of the first factor is  $(m, r-1) = (p^{\alpha}, p^{\alpha-\delta}) = p^{\alpha-\delta}$ . The order of the second factor is  $(m, \top_m(r, n)) = (p^{\alpha}, \top_{p^{\alpha}} (p^{\alpha-\delta} + 1, p^{\beta}))$ . The order of the third factor is  $(m, r-1, \top_m(r, n)) = (p^{\alpha}, p^{\alpha-\delta}, \top_{p^{\alpha}} (p^{\alpha-\delta} + 1, p^{\beta}))$ . The order of the fourth factor is  $p^{\beta}$ . Lemma 2.5 leads to  $(p^{\alpha}, \top_{p^{\alpha}} (p^{\alpha-\delta} + 1, p^{\beta})) = p^{\min\{\alpha,\beta\}}$  and  $(p^{\alpha}, p^{\alpha-\delta}, \top_{p^{\alpha}} (p^{\alpha-\delta} + 1, p^{\beta})) = p^{\min\{\alpha-\delta,\beta\}}$ . Thus, we conclude that if  $\beta \leq \alpha - \delta$  then  $G \otimes G \cong C_{p^{\alpha-\delta}} \times C_{p^{\beta}}^{\beta}$ , if  $\alpha - \delta \leq \beta \leq \alpha$  then  $G \otimes G \cong C_{p^{\alpha-\delta}} \times C_{p^{\beta}}$  and if  $\alpha \leq \beta$  then  $G \otimes G \cong C_{p^{\alpha-\delta}} \times C_{p^{\alpha-\delta}} \times C_{p^{\beta}}$ , the desired result.  $\Box$ 

Using a similar method and observing the condition  $\alpha - \delta < \beta$  on the parameters of Type (2), the following theorem for computing the non-abelian tensor square of groups of Type (2) can be proved.

**Theorem 3.4.** Let G be a finite non-abelian metacyclic p-group of Type (2). Then

$$G \otimes G \cong \left\{ \begin{array}{ll} C_{p^{\alpha-\delta}} \times C_{p^{\beta}} \times C_{p^{\alpha-\delta}} \times C_{p^{\beta}}, & \text{if } \beta \leq \alpha, \\ C_{p^{\alpha-\delta}} \times C_{p^{\alpha}} \times C_{p^{\alpha-\delta}} \times C_{p^{\beta}}, & \text{if } \alpha \leq \beta. \end{array} \right.$$

generated by  $a \otimes a$ ,  $b \otimes a$ ,  $(b \otimes a)(a \otimes b)$ ,  $b \otimes b$  of orders  $p^{\alpha-\delta}$ ,  $p^{\min\{\alpha,\beta\}}$ ,  $p^{\alpha-\delta}$  and  $p^{\beta}$  respectively.

The non-abelian tensor square of groups of Type (3) is given in the following theorem.

**Theorem 3.5.** Let G be a finite non-abelian metacyclic p-group of Type (3). Then

$$G \otimes G \cong C_{p^{\alpha-\delta}} \times C_{p^{\alpha-\epsilon}} \times C_{p^{\alpha-\delta}} \times C_{p^{\beta}}.$$

**Proof**. Suppose that G is a p-group of Type (3) and p is an odd prime

$$G \cong \langle a, b | a^{p^{\alpha}} = 1, b^{p^{\beta}} = a^{p^{\alpha - \epsilon}}, [b, a] = a^{p^{\alpha - \delta}} \rangle.$$

Observe that  $[b, a] = a^{p^{\alpha-\delta}} = bab^{-1} = a^{p^{\alpha-\delta}+1}$  and we consider  $r = p^{\alpha-\delta} + 1$ , then G is of type  $G_p(\alpha, \beta, \epsilon, \delta, +)$ . From [4] and observing the conditions on the parameters of groups of Type (3) that  $\alpha - \epsilon < \beta$  and  $\alpha - \delta < \beta$ , the result now follows.  $\Box$ 

We now investigate the non- commuting graphs of the groups of types 1, 2 and 3. These groups can be fallen in the following presentation:

$$\mathcal{G} \cong \langle a, b | a^{p^{\alpha}} = 1, b^{p^{\beta}} = a^{p^{\alpha-\epsilon}}, a^{b} = a^{p^{\alpha-\delta}+1} \rangle,$$
(3.1)

for some  $\alpha, \beta \in \mathbb{N}$  and  $\delta, \epsilon \geq 0$  are integers, where  $\beta \geq \gamma \geq 1$  and p is an odd prime. In what follows,  $\text{Deg}(\Delta(\mathcal{G}))$  stands for the set of all degrees of vertices of graph  $\Delta(\mathcal{G})$ . Also, we call  $\text{ccz}(\mathcal{G})$  for the set of all conjugacy class sizes of group  $\mathcal{G}$ .

The following theorems gives necessary and sufficient conditions under which two non-abelian prime power groups  $G_p$  and  $G_q$  of  $\mathcal{G}$  type, have isomorphic non-commuting graphs.

**Theorem 3.6.** Consider *p*-group  $G_p = G(\alpha_1, \beta_1, \delta_1, \epsilon_1)$  and *q*-group  $G_q = G_q(\alpha_2, \beta_2, \delta_2, \epsilon_2)$  in the  $\mathcal{G}$  group Type. Then  $\triangle(G_p) \simeq \triangle(G_q)$  if and only if  $\alpha_1 + \beta_1 = \alpha_2 + \beta_2$  and  $\delta_1 = \delta_2$ .

**Proof**. Let  $f: \triangle(G_p) \longrightarrow \triangle(G_q)$  be an isomorphism from  $\triangle(G_p)$  to  $\triangle(G_q)$ . Suppose that  $x_1, x_2 \in G_p \setminus Z(G_p)$ , such that deg $(x_1)$  and deg $(x_2)$  are two minimum elements of the set  $\text{Deg}\triangle(G_p)$  such that deg $(x_1) \leq \text{deg}(x_2)$ . Moreover, if  $y_i = f(x_i)$  for i = 1, 2, then deg $(y_1)$  is the minimum of  $\text{Deg}\triangle(G_q)$  and deg $(y_2) = \min \text{Deg}\triangle(G_q) - \{\text{deg}(y_1)\}$ . Since  $\text{deg}(x_1) = \text{deg}(y_i)$ , it follows by Theorem 3.1 [11] that:

$$p^{\alpha_1+\beta_1} - p^{\alpha_1+\beta_1-1} = q^{\alpha_2+\beta_2} - q^{\alpha_2+\beta_2-1}$$
$$p^{\alpha_1+\beta_1} - p^{\alpha_1+\beta_1-2} = q^{\alpha_2+\beta_2} - q^{\alpha_2+\beta_2-2}.$$

By dividing the first sides of the above equations by their second sides, we obtain p/p + 1 = q/q + 1. It follows that p = q. Hence,  $\alpha_1 + \beta_1 = \alpha_2 + \beta_2$ . Form which it follows that  $|G_p| = |G_q|$ , as well as  $|Z(G_p)| = |Z(G_q)|$ . Thus, clearly we arrive at  $\delta_1 = \delta_2$ . Conversely, suppose that  $\alpha_1 + \beta_1 = \alpha_2 + \beta_2$  and  $\delta_1 = \delta_2$  and  $\mu : Z(G_p) \longrightarrow Z(G_q)$  is a bijection, then the map  $\varphi : G_p \setminus Z(G_p) \longrightarrow G_q \setminus Z(G_q)$  defined by  $\varphi(a^i b^j z) = a_1^i b_1^j \mu(z)$  for  $1 \le i, j \le p^{\delta}$  is an isomorphism between  $\Delta(G_p)$  and  $\Delta(G_q)$ . Therefore,  $\Delta(G_p) \simeq \Delta(G_q)$ .  $\Box$ 

To illustrate the above theorem, we consider the following example.

**Example 3.7.** By taking p = 7, q = 5,  $\alpha_1 = 3$ ,  $\alpha_2 = 4$ ,  $\beta_1 = 2$ ,  $\beta_2 = 1$ ,  $\delta_1 = \delta_2 = 1$  and  $\epsilon_1 = \epsilon_2 = 0$  in Theorem 3.6, two non-commuting graphs  $\Delta G_7(3, 2, 1, 0)$  and  $\Delta G_5(4, 1, 1, 0)$  are isomorphic.

#### References

- A. Abdollahi and H. Shahverdi, Non-commuting graphs of nilpotent groups, Commun. Algebra 42 (2014), 3944– 3949.
- J.R. Beuerle and L.C. Kappe, Infinite metacyclic groups and their non-abelian tensor squares, Proc. Edinburgh Math. Soc. 43 (2000), 65–662.
- [3] M.R. Bacon and L.C. Kappe, On capable p-group of nilpotency class two, Illinois J. Math. 47 (2003), 49-62.
- [4] J.R. Beuerle, An elementary classification of finite metacyclic p-groups of class at least three Algebra Colloq. 12 (2005), no. 4, 553–562.

- [5] F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161–177.
- [6] M. Hall and J.K. Senior, The Groups of Order  $2^n (n \leq 6)$ , MacMillan Co., New York. 1964.
- [7] S.H. Jafari, P. Niroomand, and A. Erfanian, The non-abelian tensor square and Schur multiplier of groups of order p<sup>2</sup>q, pq<sup>2</sup> and p<sup>2</sup>qr, Algebra Colloq. 9 (2011), 68–78.
- [8] R. Johnson and E.F. Robertson, Some computations of the non-abelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177–202.
- [9] L.C. Kappe, N.M. Mohd Ali, and N.H. Sarmin, On the capability of finitely generated nontorsion groups nilpotency class two, Glasgow Math. J. 53 (2011), 411–417.
- [10] L.C. Kappe, N.H. Sarmin, and M.P. Visscher, Two generator two-groups of class two and their non-abelian tensor squares, Glas. Math. J. 41 (1999), 417–430.
- [11] K. Moradipour, Conjugacy class sizes and n-th commutativity degrees of some finite groups, Compt. Rend. Acad. Bulg. Sci. 71 (2018), no. 4, 453–459.
- [12] S. Rashid, N.H. Sarmin, A. Erfanian, and N.M. Mohd Ali, On the non-abelian tensor square and capability of groups of order p<sup>2</sup>q, Arch. Math. 97 (2011), 299–306.
- [13] S. Rashid, N.H. Sarmin, R. Zainal, A. Erfanian, and N.M. Mohd Ali, A note on the non-abelian tensor square, Indian J. Sci. Technol. 5 (2012), 2877–2879.