| تعداد نشریات | 21 |
| تعداد شمارهها | 671 |
| تعداد مقالات | 9,781 |
| تعداد مشاهده مقاله | 69,568,763 |
| تعداد دریافت فایل اصل مقاله | 48,709,339 |
ساختار جاذب کامل گرافنی دو باندی مستقل از قطبش جهت استفاده در حسگرهای زیستی | ||
| مدل سازی در مهندسی | ||
| دوره 23، شماره 83، دی 1404، صفحه 121-132 اصل مقاله (1.17 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22075/jme.2025.34256.2675 | ||
| نویسندگان | ||
| علیرضا پیله رودی؛ جواد جاویدان* ؛ یوسف رفیق ایرانی؛ حمید حیدرزاده | ||
| دانشکده مهندسی برق و کامپیوتر، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
| تاریخ دریافت: 13 خرداد 1403، تاریخ بازنگری: 23 اسفند 1403، تاریخ پذیرش: 17 فروردین 1404 | ||
| چکیده | ||
| در این مقاله، ساختار برش یافته گرافنی جاذب کامل دو باندی مستقل از پلاریزاسیون پیشنهاد شده است. ساختار پیشنهادی از سه لایه طلا، دی اکسید سیلیکون و لایه گرافنی برشیافته و آنالیت تشکیل شده است. با تغییر اندازه لایهها و شکل برشهای گرافن تعدادمناسب باندها طراحی شده است. با تغییر در مقادیر پتانسیل شیمیایی و زمان استراحت گرافن، کیفیت و میزان جذب قابل تغییر است در ضمن طول موج جذب را میتوان با پارامترهای مذکور به مقدار مورد نظر تنظیم کرد. این ساختار به عنوان حسگر زیستی برای تشخیص ویروسها، پروتئینها و سلولهای سرطانی، تصویربرداری و فیلتر کردن امواج مخابراتی با توجه به نتایج ساختار پیشنهادی بسیار مناسب میباشد. با توجه به برشهای انجام گرفته روی گرافن در طول موج nm ۲۴۵۸۱ وnm۲۷۶۴۰ مقادیر جذب به ترتیب ۹۹.۹ و ۹۹.۹ درصد به دست آمده است. وجود ضریب شکست متفاوت عناصر با قرار گرفتن آنالیت روی ساختار طراحی شده موجب جابجایی مقادیر طول موج جذب شده و نوع عنصر قرار گرفته با استفاده از مقادیر طول موج قابل تشخیص است که این روش تشخیص اساس کار حسگر زیستی طراحی شده است. بیشترین مقدار حساسیت در باند دوم nm / RIU۴۸۲۰۰ بدست آمده که با توجه به ساختار ساده متشکل از سه لایه و با مقایسه مقادیر خروجی این تحقیق با تحقیقات قبلی، میتواند بهترین گزینه برای ساخت حسگر زیستی باشد. از دیگر ویژگی مهم این ساختار حساس نبودن به قطبی شدن میباشد. شبیه سازیها در نرمافزار شبیه سازی کامپیوتری (CST) انجام شده است. | ||
| کلیدواژهها | ||
| گیرنده زیستی؛ حسگر زیستی؛ ساختار ناهمگن گرافن؛ تراهرتز؛ فراماده؛ ضریب شکست | ||
| عنوان مقاله [English] | ||
| Two-Band Graphene Based Polarization-Independent Full Absorber as a Biosensor | ||
| نویسندگان [English] | ||
| Alireza Pilehroudi؛ Javad Javidan؛ Yousef Rafig Irani؛ Hamid Heidarzadeh | ||
| Department of Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran | ||
| چکیده [English] | ||
| In this paper, the cut structure of polarization-independent two-band perfect absorbing graphene is proposed. The proposed structure consists of three layers of gold, silicon dioxide and a cut graphene layer and analyte. By changing the size of the layers and the shape of the graphene slices, the number of bands can be changed, and by changing the values of the chemical potential and the relaxation time of the graphene, the quality and amount of absorption can be changed, while the absorption wavelength can be adjusted to the desired value with the mentioned parameters. This structure is very suitable as a biosensor for detecting viruses, proteins and cancer cells, imaging and filtering telecommunication waves according to the results of the proposed structure. According to the cuts made on graphene at wavelengths of 24581 nm and 27640 nm, absorption values of 99.9 and 99.9% were obtained, respectively. The presence of different refractive index of the elements with the placement of the analyte on the designed structure causes the displacement of the absorbed wavelength values and the type of the placed element can be recognized using the wavelength values, which is the basis of biosensor work. The highest sensitivity value is obtained in the second band of RIU48200/nm, which can be the best option for making a biosensor due to the simple structure consisting of three layers and by comparing the output values of this research with previous research. Another important feature of this structure is that it is not sensitive to polarization. The simulations have been done in computer simulation software (CST). | ||
| کلیدواژهها [English] | ||
| Biosensor, Graphene heterogeneous, Metamaterial, Refractive index, Terahertz | ||
| مراجع | ||
|
[1] Zhang, Yubin, Zao Yi, Xinyue Wang, Peixin Chu, Weitang Yao, Zigang Zhou, Shubo Cheng, Zhimin Liu, Pinghui Wu, Miao Pan, and Yougen Yi. "Dual band visible metamaterial absorbers based on four identical ring patches." Phys. E Low-Dimens. Syst. Nanostructures 127 (2021): 114526. [2] Zhang, Xiao, Zhimin Liu, Zhenbin Zhang, Enduo Gao, Xin Luo, Fengqi Zhou, Hongjian Li, and Zao Yi. "Polarization-sensitive triple plasmon-induced transparency with synchronous and asynchronous switching based on monolayer graphene metamaterials." Optics Express 28, no. 24 (2020): 36771-36783. [3] Pan, Miao, Zhicong Su, Zhenfang Yu, Pinghui Wu, Huge Jile, Zao Yi, and Zeqiang Chen. "A narrowband perfect absorber with high Q-factor and its application in sensing in the visible region." Results in Physics 19 (2020): 103415. [4] He, Zhihui, Lingqiao Li, Huqiang Ma, Lihui Pu, Hui Xu, Zao Yi, Xinliang Cao, and Wei Cui. "Graphene-based metasurface sensing applications in terahertz band." Results in Physics 21 (2021): 103795. [5] Cheng, Tingting, Huajing Gao, Xiaofeng Sun, Tao Xian, Shifa Wang, Zao Yi, Guorong Liu, Xiangxian Wang, and Hua Yang. "An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: Construction strategy and application in environmental purification." Advanced Powder Technology 32, no. 3 (2021): 951-962. [6] Cheng, Tingting, Xiaofeng Sun, Tao Xian, Zao Yi, Ruishan Li, Xiangxian Wang, and Hua Yang. "Tert-butylamine/oleic acid-assisted morphology tailoring of hierarchical Bi4Ti3O12 architectures and their application for photodegradation of simulated dye wastewater." Optical Materials 112 (2021): 110781. [7] Li, Xin, Xifang Chen, Zao Yi, Zigang Zhou, Yongjian Tang, and Yougen Yi. "Fabriction of ZnO nanorods with strong UV absorption and different hydrophobicity on foamed nickel under different hydrothermal conditions." Micromachines 10, no. 3 (2019): 164. [8] Qi, Yunping, Baohe Zhang, Jinghui Ding, Ting Zhang, Xiangxian Wang, and Zao Yi. "Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces." Chinese Physics B 30, no. 2 (2021): 024211. [9] Yao, Baicheng, Yuan Liu, Shu-Wei Huang, Chanyeol Choi, Zhenda Xie, Jaime Flor Flores, Yu Wu et al. "Broadband gate-tunable terahertz plasmons in graphene heterostructures." Nature Photonics 12, no. 1 (2018): 22-28. [10] Wang, Xiangxian, Jiankai Zhu, Yueqi Xu, Yunping Qi, Liping Zhang, Hua Yang, and Zao Yi. "A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure." Chinese Physics B 30, no. 2 (2021): 024207. [11] Zhang, Yubing, Pinghui Wu, Zigang Zhou, Xifang Chen, Zao Yi, Jiayi Zhu, Tiansheng Zhang, and Huge Jile. "Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide." IEEE Access 8 (2020): 85154–85161. [12] Cen, Chunlian, Yubin Zhang, Xifang Chen, Hua Yang, Zao Yi, Weitang Yao, Yongjian Tang, Yougen Yi, Junqiao Wang, and Pinghui Wu. "A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency." Physica E: Low-dimensional Systems and Nanostructures 117 (2020): 113840. [13] Jiang, Liying, Chuang Yuan, Zhiyou Li, Ju Su, Zao Yi, Weitang Yao, Pinghui Wu, Zhimin Liu, Shubo Cheng, and Miao Pan. "Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial." Diam. Relat. Mater. 111 (2021): 108227. [14] Veselago, Viktor G. "The electrodynamics of substances with simultaneously negative values of ε and μ." Physics-Uspekhi 10, no. 4 (1968): 509-514. [15] Shalaev, Vladimir M. "Optical negative-index metamaterials." Nature photonics 1, no. 1 (2007): 41-48. [16] Pendry, John Brian. "Negative refraction makes a perfect lens." Physical review letters 85, no. 18 (2000): 3966. [17] Wang, Yanping, Li Ruishan, Xiaofeng Sun, Xian Tao, Yi Zao, and Hua Yang. "Photocatalytic application of Ag-decorated CuS/BaTiO3 composite photocatalysts for degrading RhB." Journal of Electronic Materials 50, no. 5 (2021): 2674-2686. doi:10.1007/s11664-021-08787-x. [18] Appasani, Bhargav, Pallav Prince, Rajeev Kumar Ranjan, Nisha Gupta, and Vijay Kumar Verma. "A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications." Plasmonics 14, no. 3 (2019): 737-742. doi:10.1007/s11468-018-0852-x. [19] Li, Jiakun, Jiangchuan Lin, Feng Qin, Xifang Chen, Weitang Yao, Zhimin Liu, Shubo Cheng, Pinghui Wu, and Hailiang Li. "Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array." Nanoscale 12, no. 45 (2020): 23077–23083. [20] Ahmed, Kawsar, Fahad Ahmed, Subrata Roy, Bikash Kumar Paul, Mst Nargis Aktar, Dhasarathan Vigneswaran, and Md Saiful Islam. "Refractive index-based blood components sensing in terahertz spectrum." IEEE Sensors Journal 19, no. 9 (2019): 3368-3375. [21] Tung, Nguyen Thanh. "Lithographic fabrication and spectroscopic characterization of a THz metamaterial absorber." Vietnam Journal of Science and Technology 59, no. 1 (2021): 40-46. [22] Shen, Xiaopeng, Yan Yang, Yuanzhang Zang, Jianqiang Gu, Jiaguang Han, Weili Zhang, and Tie Jun Cui. "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation." Appl. Phys. Lett. 101, no. 15 (2012). Available online: https://pubs.aip.org/aip/apl/article/101/15/154102/150835. [23] Chiam, Sher-Yi, Ranjan Singh, Carsten Rockstuhl, Falk Lederer, Weili Zhang, and Andrew A. Bettiol. "Analogue of electromagnetically induced transparency in a terahertz metamaterial." Physical Review B—Condensed Matter and Materials Physics 80, no. 15 (2009): 153103. doi:10.1103/PhysRevB.80.153103. [24] Shalini, V. Baby. "A polarization insensitive miniaturized pentaband metamaterial THz absorber for material sensing applications." Optical and Quantum Electronics 53, no. 5 (2021): 213. doi:10.1007/s11082-021-02898-9. [25] Tian, Jinping, Rujiao Ke, Rongcao Yang, and Weihua Pei. "Tunable quad-band perfect metamaterial absorber on the basis of monolayer graphene pattern and its sensing application." Results in Physics 26 (2021): 104447. [26] Chen, Pai-Yen, and Andrea Alu. "Atomically thin surface cloak using graphene monolayers." ACS nano 5, no. 7 (2011): 5855-5863. doi:10.1021/nn201622e. [27] Cheng, Ruijian, Ling Xu, Xin Yu, Liner Zou, Yun Shen, and Xiaohua Deng. "High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces." Optics Communications 473 (2020): 125850. [28] Yi, Zao, Cuiping Liang, Xifang Chen, Zigang Zhou, Yongjian Tang, Xin Ye, Yougen Yi, Junqiao Wang, and Pinghui Wu. "Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application." Micromachines 10, no. 7 (2019): 443. [29] Zhang, Yubin, Chunlian Cen, Cuiping Liang, Zao Yi, Xifang Chen, Meiwen Li, Zigang Zhou, Yongjian Tang, Yougen Yi, and Guangfu Zhang. "Dual-band switchable terahertz metamaterial absorber based on metal nanostructure." Results in Physics 14 (2019): 102422. [30] Huang, Jing, Gao Niu, Zao Yi, Xifang Chen, Zigang Zhou, Xin Ye, Yongjian Tang, Yong Yi, Tao Duan, and Yougen Yi. "High sensitivity refractive index sensing with good angle and polarization tolerance using elliptical nanodisk graphene metamaterials." Physica Scripta 94, no. 8 (2019): 085805. [31] Tiang, Jun Jiat, Naglaa F. Soliman, Imran Khan, Jaeyoung Choi, Hee Chan Chung, and Dag Øivind Madsen. "Design and performance evaluation of a novel broadband THz modulator based on graphene metamaterial for emerging applications." Frontiers in Materials 10 (2023): 1305793. [32] Lai, Runing, Pengcheng Shi, Zao Yi, Hailiang Li, and Yougen Yi. "Triple-band surface plasmon resonance metamaterial absorber based on open-ended prohibited sign type monolayer graphene." Micromachines 14, no. 5 (2023): 953. [33] Hadipour, Soheil, and Pejman Rezaei. "Retracted article: A graphene-based triple-band THz metamaterial absorber for cancer early detection." Optical and Quantum Electronics 55, no. 13 (2023): 1122.
| ||
|
آمار تعداد مشاهده مقاله: 350 تعداد دریافت فایل اصل مقاله: 144 |
||