
تعداد نشریات | 21 |
تعداد شمارهها | 635 |
تعداد مقالات | 9,314 |
تعداد مشاهده مقاله | 67,881,298 |
تعداد دریافت فایل اصل مقاله | 17,105,147 |
بررسی اثر چارچوب فلز-آلی حاوی عامل کربوکسیل اضافی روی جداسازی CO2 در غشاء بر پایه PEBAX | ||
شیمى کاربردى روز | ||
دوره 20، شماره 74، فروردین 1404، صفحه 217-234 اصل مقاله (1.18 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2025.36657.2335 | ||
نویسنده | ||
الهه احمدی فیجانی* | ||
گروه شیمی کاربردی، دانشکده شیمی و علوم نفت، دانشگاه بوعلی سینا، همدان، ایران | ||
تاریخ دریافت: 02 بهمن 1403، تاریخ بازنگری: 14 خرداد 1404، تاریخ پذیرش: 28 خرداد 1404 | ||
چکیده | ||
فرایندهای غشائی به عنوان روشهای اقتصادی برای جداسازی توجه بسیاری را به خود جلب نمودهاند. در این مطالعه غشاهای ماتریس مختلط از وارد نمودن UiO-66-(COOH)2 در ماتریس پلی(اتر-بلاک-آمید) (PEBAX) با درصدهای وزنی متفاوت با روش ریختهگری محلول و تبخیر حلال ساخته شدند. از آنالیزهای FT-IR، XRD، TGA، DSC و FESEM برای ارزیابی خواص غشاء ماتریس مختلط استفاده گردید. عبور دو گاز خالص CO2 و N2 از غشاها در دمای °C25 و فشار 2 بار اندازهگیری شد.نتایج نشان داد که وارد نمودن %wt 15 از UiO-66-(C)OOH)2 در ماتریس PEBAX منجر به 135 و %127 افزایش به ترتیب در عبور CO2 و انتخابپذیری CO2/N2 نسبت به غشاء خالص گردید. همچنین اثر افزایش دما و فشار بر روی رفتار گازی این غشاء مورد بررسی قرار گرفت. افزایش دما منجر به افزایش عبورCO2 و کاهش انتخابپذیری CO2/N2 گردید و افزایش فشار افزایش در هر دو را به دنبال داشت. در فشار bar 6 و دمای °C25،به ترتیب 174 و %145 افزایش در عبور CO2 و انتخابپذیری CO2/N2 نسبت به غشاء خالص ثبت گردید | ||
کلیدواژهها | ||
غشاء؛ جداسازی CO2؛ چارچوب فلز-آلی؛ PEBAX | ||
عنوان مقاله [English] | ||
Investigation of the effect of metal-organic framework containing additional carboxyl group on CO2 separation in PEBAX-based membrane | ||
نویسندگان [English] | ||
Elahe Ahmadi Feijani | ||
Department of Applied Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu–Ali Sina University, Hamedan 6517838695, Iran | ||
چکیده [English] | ||
Membrane-based processes have attracted significant attention as economical methods for separation. In this study, mixed matrix membranes were fabricated by incorporating UiO-66-(COOH)2 into a poly(ether-block-amide) matrix at various loading percentages using the solution casting and solvent evaporation method. FT-IR, XRD, TGA, DSC, and FESEM analyses were employed to evaluate the properties of the mixed matrix membrane. Pure CO2 and N2 gas permeability through the membranes was measured at 25°C and 2 bar. Results showed that incorporating 15 wt% of UiO-66-(COOH)2 into the poly(ether-block-amide) matrix led to a 135% and 127% increase in CO2 permeability and CO2/N2 selectivity, respectively, compared to the pure membrane. The effect of increasing temperature and pressure on the gas transport behaviour of this membrane was also investigated. Increasing temperature resulted in an increase in CO2 permeability and a decrease in CO2/N2 selectivity, while increasing pressure led to an increase in both. At 6 bar and 25°C, a 174% and 145% increase in CO2 permeability and CO2/N2 selectivity, respectively, was registered compared to the pure membrane. | ||
کلیدواژهها [English] | ||
Membrane, CO2 separation, Metal-organic framework, PEBAX | ||
مراجع | ||
[1] Pedersen, J.T.S., van Vuuren, D., Gupta, J., Santos, F.D., Edmonds, J., and Swart, R. (2022) IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022? Glob. Environ. Chang., 75 (2022), 102538.
[2] Dai, Z., and Deng, L. (2024) Membranes for CO2 capture and separation: Progress in research and development for industrial applications. Sep. Purif. Technol., 335 (2024), 126022.
[3] Comesaña-Gándara, B., Chen, J., Bezzu, C.G., Carta, M., Rose, I., Ferrari, M.C., Esposito, E., Fuoco, A., Jansen, J.C., and McKeown, N.B. (2019) Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci., 12 (9), 2733–2740.
[4] Kamble, A.R., Patel, C.M., and Murthy, Z.V.P. (2021) A review on the recent advances in mixed matrix membranes for gas separation processes. Renew. Sustain. Energy Rev., 145, 111062.
[5] Shah Buddin, M.M.H., and Ahmad, A.L. (2021) A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. J. CO2 Util., 51 (June), 101616.
[6] He, S., Zhan, Y., Hu, J., Zhang, G., Zhao, S., Feng, Q., and Yang, W. (2020) Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Compos. Part B Eng., 197 (May), 108188.
[7] Yang, Q., Vaesen, S., Ragon, F., Wiersum, A.D., Wu, D., Lago, A., Devic, T., Martineau, C., Taulelle, F., Llewellyn, P.L., Jobic, H., Zhong, C., Serre, C., De Weireld, G., and Maurin, G. (2013) A Water Stable Metal-Organic Framework with Optimal Features for CO2 Capture . Angew. Chemie, 125 (39), 10506–10510.
[8] Malankowska, M., Coronas, J., Embaye, A.S., Martínez-Izquierdo, L., and Téllez, C. (2021) Poly(ether-block-amide) copolymer membranes in CO2 separation applications. Energy and Fuels, 35 (21), 17085–17102.
[9] Surya Murali, R., Sridhar, S., Sankarshana, T., and Ravikumar, Y.V.L. (2010) Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind. Eng. Chem. Res., 49 (14), 6530–6538.
[10] Bondi, A. (1964) Van der waals volumes and radii. J. Phys. Chem., 68 (3), 441–451.
[11] Yang, Y., and Xia, Y. (2019) Polycarboxyl metal–organic framework UiO-66-(COOH)2 as efficient desorption/ionization matrix of laser desorption/ionization mass spectrometry for selective enrichment and detection of phosphopeptides. J. Nanoparticle Res., 21 (11).
[12] Jiang, Y., Zhang, B., Zheng, Y., and Wu, Y. (2024) Highly permselective Pebax/MWCNTs mixed matrix membranes for CO2/N2 separation. Polym. Bull., 81 (11), 9699–9719.
[13] Gao, Y., Pan, Y., Zhou, Z., Tian, Q., and Jiang, R. (2022) The Carboxyl Functionalized UiO-66-(COOH)2 for Selective Adsorption of Sr2+. Molecules, 27 (4).
[14] Jiang, L., Chen, Y., and Hou, X. (2022) Preparation of a Poly (Ether-b-Amide) Mixed-Matrix Membrane and Its Application in Blast Furnace Gas. Coatings, 12 (12), 1851.
[15] Ghadimi, A., Amirilargani, M., Mohammadi, T., Kasiri, N., and Sadatnia, B. (2014) Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J. Memb. Sci., 458, 14–26.
[16] Dong, L., Chen, M., Li, J., Shi, D., Dong, W., Li, X., and Bai, Y. (2016) Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J. Memb. Sci., 520, 801–811.
[17] Sutrisna, P.D., Hou, J., Zulkifli, M.Y., Li, H., Zhang, Y., Liang, W., D’Alessandro, D.M., and Chen, V. (2018) Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. J. Mater. Chem. A, 6 (3), 918–931.
[18] Xu, L., Xiang, L., Wang, C., Yu, J., Zhang, L., and Pan, Y. (2017) Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chinese J. Chem. Eng., 25 (7), 882–891.
[19] Shi, F., Sun, J., Wang, J., Liu, M., Yan, Z., Zhu, B., Li, Y., and Cao, X. (2021) MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J. Memb. Sci., 620 (October), 118850.
[20] Kim, J.H., Ha, S.Y., and Lee, Y.M. (2001) Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. J. Memb. Sci., 190 (2), 179–193.
[21] Liu, G., Cheng, L., Chen, G., Liang, F., Liu, G., and Jin, W. (2020) Pebax‐Based Membrane Filled with Two‐Dimensional Mxene Nanosheets for Efficient CO2 Capture. Chem. – An Asian J., 15 (15), 2364–2370.
[22] Zhu, W., Qin, Y., Wang, Z., Zhang, J., Guo, R., and Li, X. (2019) Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation. J. Energy Chem., 31, 1–10.
[23] Duan, K., Wang, J., Zhang, Y., and Liu, J. (2019) Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Memb. Sci., 572, 588–595.
[24] Moghadam, F., Omidkhah, M.R., Vasheghani-Farahani, E., Pedram, M.Z., and Dorosti, F. (2011) The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol., 77 (1), 128–136.
[25] Hou, W., Cheng, J., Liu, N., Yang, C., Chen, Y., Zhang, H., Ye, B., and Zhou, J. (2022) Selection-diffusion-selection mechanisms in ordered hierarchically-porous MOF-on-MOF: ZIF-8 @NH2-MIL-125 for efficient CO2 separation. J. Environ. Chem. Eng., 10 (3), 108029.
[26] Azizi, N., Isanejad, M., Mohammadi, T., and Behbahani, R.M. (2019) Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes. Front. Chem. Sci. Eng., 13 (3), 517–530.
[27] Wang, X., Zhang, Y., Chen, X., Wang, Y., He, M., Shan, Y., Li, Y., Zhang, F., Chen, X., and Kita, H. (2022) Preparation of Pebax 1657/MAF-7 Mixed Matrix Membranes with Enhanced CO2/N2 Separation by Active Site of Triazole Ligand. Membranes (Basel)., 12 (8).
[28] Isanejad, M., and Mohammadi, T. (2018) Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Mater. Chem. Phys., 205, 303–314. | ||
آمار تعداد مشاهده مقاله: 9 تعداد دریافت فایل اصل مقاله: 3 |