
تعداد نشریات | 21 |
تعداد شمارهها | 635 |
تعداد مقالات | 9,314 |
تعداد مشاهده مقاله | 67,881,289 |
تعداد دریافت فایل اصل مقاله | 17,104,663 |
ارزیابی مقایسهای گوگردزدایی استخراجی از سوخت مایع با استفاده از حلالهای اوتکتیک عمیق حاوی تری اتانول آمین با نقش دوگانه دهنده پیوند هیدروژنی - گیرنده پیوند هیدروژنی | ||
شیمى کاربردى روز | ||
دوره 20، شماره 74، فروردین 1404، صفحه 281-296 اصل مقاله (813.26 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2025.36942.2346 | ||
نویسندگان | ||
فریناز خالقی؛ محبوبه بهروزی* | ||
گروه شیمی، دانشکده علوم، دانشگاه زنجان، زنجان، ایران | ||
تاریخ دریافت: 01 اسفند 1403، تاریخ بازنگری: 15 اردیبهشت 1404، تاریخ پذیرش: 28 خرداد 1404 | ||
چکیده | ||
گوگرد موجود در سوخت، یکی از منابع اصلی آلایندهها است که مشکلات زیست-محیطی را به همراه دارد. بعلاوه، وجود ناخالصیهای گوگرد، منجر به بروز مشکلات خوردگی در واحدهای پالایشگاه و غیرفعال شدن کاتالیزور مورد استفاده در پالایشگاهها میشود؛ بنابراین گوگردزدایی از سوخت بسیار ضروری است. استفاده از فناوریهای سبز جهت حل این مشکل، مورد توجه بسیاری از محققان است. حلالهای اوتکتیک عمیق (DESs) به عنوان حلالهایی مشابه با مایعات یونی در نظر گرفته میشوند و به دلیل ویژگیهایی چون سازگاری با محیط زیست و قیمت بسیار پایین، توجه روزافزونی را در فرآیندهای جداسازی و استخراج به خود جلب کردهاند. در این مطالعه، حلال اوتکتیک عمیق با اختلاط تری اتانول آمین (TEOA) به عنوان دهنده پیوند هیدروژنی (HBD) وکولین کلراید (ChCl) به عنوان گیرنده پیوند هیدروژنی (HBA) تهیه شد. سپس این حلال اوتکتیک عمیق در گوگردزدایی استخراجی جهت حذف تیوفن (Th) مورد استفاده قرار گرفت. نتایج حاصل با زمانی که TEOA نقش HBA در DES را ایفا میکند، مورد مقایسه قرار گرفت و کارایی TEOA در هر دو نقش دهندگی و گیرندگی پیوند هیدروژنی در فرآیند گوگردزدایی ارزیابی شد. برای مدلسازی و بهینهسازی فرایند استخراج، از روش سطح پاسخ (RSM) استفاده شد. سه پارامتر عملیاتی موثر بر گوگردزدایی، نسبت اجزای حلال اوتکتیک عمیق (HBA:HBD)، محتوای اولیه گوگرد و نسبت جرمی حلال اوتکتیک عمیق به سوخت مدل (DES:MF)، انتخاب شدند. در شرایط عملیاتی بهینه برای دو حلال اوتکتیک عمیق، حداکثر راندمان استخراج در یک مرحله به ترتیب 3/70 و 8/71 درصد بود. | ||
کلیدواژهها | ||
گوگردزدایی استخراجی؛ حلالهای اوتکتیک عمیق؛ کولین کلرید؛ تری اتانول آمین؛ پلی اتیلن گلیکول | ||
عنوان مقاله [English] | ||
Comparative Evaluation of the Extractive Desulfurization of Liquid Fuel Using Deep Eutectic Solvents Containing Triethanolamine with Dual Role Hydrogen Bond Donor-Hydrogen Bond Acceptor | ||
نویسندگان [English] | ||
Farinaz Khaleghi؛ Mahboobe Behroozi | ||
Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran | ||
چکیده [English] | ||
Sulfur in fuel is one of the main sources of pollutants that cause environmental problems. In addition, the presence of sulfur impurities leads to corrosion problems in refinery units and deactivation of the catalyst used in refineries; therefore, desulfurization of fuel is very necessary. The use of green technologies to solve this problem is of interest to many researchers. Deep eutectic solvents (DES) are considered as solvents similar to ionic liquids and have attracted increasing attention in separation and extraction processes due to their features such as environmental compatibility and very low price. In this study, a deep eutectic solvent (DES) was prepared by mixing triethanolamine (TEOA) as the hydrogen bond donor (HBD) and choline chloride (ChCl) as the hydrogen bond acceptor (HBA). This DES was then used in extractive desulfurization to remove thiophene (Th). The results were compared with those obtained when TEOA acted as the HBA in the DES and the efficiency of TEOA in both HBD and HBA roles in desulfurization was evaluated. Response surface methodology (RSM) was used to model and optimize the extraction process. Three operating parameters affecting desulfurization, the DES component ratio (HBA: HBD), the initial sulfur content, and the mass ratio of DES to model fuel (DES:MF), were selected. Under optimal operating conditions for both DES, the maximum extraction efficiency in one stage was 70.3 and 71.8%, respectively. | ||
کلیدواژهها [English] | ||
Desulfurization, Deep eutectic solvents, Choline chloride, Triethanolamine, Polyethylene glycol | ||
مراجع | ||
[1] Taghizadeh, F., Mokhtarani, B., & Rahmanian, N. (2023). Air pollution in Iran: The current status and potential solutions. Environmental Monitoring and Assessment, 195(6), 737.
[2] Kumar, K., Bharti, A., Kumar, A., Ghosh, S. K., & Kumar, A. (2023). Choline based deep eutectic solvent for denitrogenation of liquid fuel: A molecular dynamics study. Journal of Molecular Liquids, 382, 121862..
[3] Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry, 25, e00080.
[4] Chen, M., Zou, C., Tang, W., & Cao, Y. (2023). Stable hydrogen bonding interactions in supramolecular deep eutectic solvents based on carbon quantum dots: For extraction and oxidative desulfurization. Separation and Purification Technology, 323, 124491.
[5] Haruna, S. Y., Faruq, U. Z., Zubairu, A. Y., Liman, M. G., & Riskuwa, M. L. (2018). Comparative studies on reduction of sulphur content of heavy crude oil using KMnO4+ H2O2/CH3COOH and KMnO4+ H2O2/HCOOH via oxidative desulphurization (ODS). American Journal of Applied Chemistry, 6(1), 15-24.
[6] Zhu, J., Yu, J., Wu, P., Liu, J., Ji, H., Huang, Y., ... & Liu, Z. (2024). 3D printing of hierarchically porous lightweight activated carbon/alumina monolithic adsorbent for adsorptive desulfurization of hydrogenated diesel. Separation and Purification Technology, 330, 125334..
[7] Yang, L., Zhang, Z., Zhang, C. N., & Wang, X. L. (2024). A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective photogeneration of hydrogen. Rare Metals, 43(1), 236-246.
[8] Zhang, W. S., Li, Y., Zhang, X., Shen, J., Wang, Y. G., Niu, Y. X., ... & Xu, Q. B. (2025). Study on extraction desulfurization of road-paving asphalt by deep eutectic solvents. Journal of Industrial and Engineering Chemistry, 144, 310-322.
[9] Akram, J., Hussain, M. U., Aslam, A., Akhtar, K., Anwar, M. A., Iqbal, M., ... & Akhtar, N. (2024). Genomic analysis and biodesulfurization potential of a new carbon–sulfur bond cleaving Tsukamurella sp. 3OW. International Microbiology, 27(5), 1429-1444.
[10] Li, X., Wu, X., Yu, H., Zhou, Z., Du, C., & Ren, Z. (2023). Highly selective extraction of aromatics from diesel fuel using dual N-containing heterocyclic deep eutectic solvents. Chemical Engineering Journal, 476, 146618.
[11] Liu, Y., Su, X., Cui, Y., & Zhou, X. (2023). One-step preparation of deep eutectic solvents/reduced graphene oxide composite materials for the removal of dibenzothiophene in fuel oil. Scientific Reports, 13(1), 832.
[12] Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical communications, (1), 70-71.
[13] Omar, K. A., & Sadeghi, R. (2023). Database of deep eutectic solvents and their physical properties: A review. Journal of Molecular Liquids, 384, 121899.
[14] Li, C., Li, D., Zou, S., Li, Z., Yin, J., Wang, A., ... & Zhao, Q. (2013). Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chemistry, 15(10), 2793-2799.
[15] Mahdavi, A. R., Sobati, M. A., & Movahedirad, S. (2023). Intensification of extractive desulfurization in micro-channels using triethylamine/propionic acid as deep eutectic solvent. Chemical Engineering and Processing-Process Intensification, 191, 109459.
[16] Lima, F., Gouvenaux, J., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2018). Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel, 234, 414-421.
[17] Khan, N., & Srivastava, V. C. (2021). Quaternary ammonium salts-based deep eutectic solvents: utilization in extractive desulfurization. Energy & Fuels, 35(15), 12734-12745.
[18] Hadj-Kali, M. K., Mulyono, S., Hizaddin, H. F., Wazeer, I., El-Blidi, L., Ali, E., ... & AlNashef, I. M. (2016). Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents. Industrial & Engineering Chemistry Research, 55(30), 8415-8423.
[19] Xu, H., Zhang, D., Wu, F., Wei, X., & Zhang, J. (2018). Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents. Fuel, 225, 104-110.
[20] Khaleghi, F., & Behroozi, M. (2025). Effective extractive desulfurization using novel, green and cost-effective triethanolamine-based deep eutectic solvents: Experimental design and optimization. Fuel, 395, 135219.
[21] Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J., & Bilsky, J. (1997). Toxicology of mono-, di-, and triethanolamine. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 1-86.
[22] Zhu, D., Xu, L., Zhang, B., Zhu, L., He, J., Li, H., ... & Jiang, W. (2023). Designing Inorganic–Organic Dual-Acid Deep Eutectic Solvents for Synergistically Enhanced Extractive and Oxidative Desulfurization. Molecules, 28(23), 7743.
[23] Li, J. J., Xiao, H., Tang, X. D., & Zhou, M. (2016). Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization. Energy & Fuels, 30(7), 5411-5418.
[24] Gano, Z. S., Mjalli, F. S., Al-Wahaibi, T., Al-Wahaibi, Y., & AlNashef, I. M. (2015). Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design. Chemical Engineering and Processing: Process Intensification, 93, 10-20.
[25] Khan, N., & Srivastava, V. C. (2022). Extractive desulfurization using ethylene glycol and glycerol-based deep eutectic solvents: engineering aspects and intensification using ultrasound. Chemical Engineering and Processing-Process Intensification, 180, 108973.
[26] Shah, D., Gapeyenko, D., Urakpayev, A., & Torkmahalleh, M. (2019). Molecular dynamics simulations on extractive desulfurization of fuels by tetrabutylammonium chloride based Deep Eutectic Solvents. Journal of Molecular Liquids, 274, 254-260.
[27] Lemaoui, T., Benguerba, Y., Darwish, A. S., Hatab, F. A., Warrag, S. E., Kroon, M. C., & Alnashef, I. M. (2021). Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: A parametric study. Separation and Purification Technology, 256, 117861.
[28] Abro, R., Kiran, N., Ahmed, S., Muhammad, A., Jatoi, A. S., Mazari, S. A., ... & Plechkova, N. V. (2022). Extractive desulfurization of fuel oils using deep eutectic solvents–A comprehensive review. Journal of Environmental Chemical Engineering, 10(3), 107369.
[29] Almashjary, K. H., Khalid, M., Dharaskar, S., Jagadish, P., Walvekar, R., & Gupta, T. C. S. M. (2018). Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents. Fuel, 234, 1388-1400.
[30] Lima, F., Gouvenaux, J., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2018). Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel, 234, 414-421.
[31] Rahma, W. S. A., Mjalli, F. S., Al-Wahaibi, T., & Al-Hashmi, A. A. (2017). Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions. Chemical Engineering Research and Design, 120, 271-283.
[32] Makoś, P., & Boczkaj, G. (2019). Deep eutectic solvents based highly efficient extractive desulfurization of fuels–Eco-friendly approach. Journal of Molecular Liquids, 296, 111916.
[33] El-Hoshoudy, A. N., Soliman, F. S., & Abd El-Aty, D. M. (2020). Extractive desulfurization using choline chloride-based DES/molybdate nanofluids; Experimental and theoretical investigation. Journal of Molecular Liquids, 318, 114307. | ||
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 3 |