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Abstract

Nowadays, the Internet of Things (IoT) is inevitable in human daily life. Many IoT-based applications are executed on
interoperable devices via the IoT-Fog-Cloud continuum to satisfy users’ requirements. Such applications are generally
time-sensitive, so they must be executed in real-time. The time constraint satisfaction strongly depends on the strategy
of application placement on processing nodes. In this paper, a multi-objective optimization strategy for deploying
microservices of real-time IoT applications is presented, which is considered among the challenging problems in fog and
edge environments. A bi-objective optimization model for three-level deadline-aware application services is proposed,
which is solved by using a parallel version of the Ant Colony Optimization (ACO) metaheuristic. The simulation
results using IFogSim2, the new release of the famous Fog simulator IFogSim, show the superiority of the proposed
approach compared to counterpart algorithms in terms of total resource wastage, total network latency, the main
objective function, and execution time.
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1 Introduction

With the ever-increasing pervasiveness of the IoT paradigm in every aspect of human life, the number of devices
equipped with the IoT is increasing at a tremendous speed. According to predictions, more than 75.44 billion IoT
devices will be connected to the Internet by 2025, and this number can exceed 500 billion devices by 2030 [45, 2, 43].
Different types of geographically distributed devices, such as smartphones, smart cameras, vehicles, home appliances,
etc. with the ability to connect to the Internet, can be connected and cooperated to process the applications needed
by users. In this way, a huge amount of heterogeneous data called metadata is produced that can be processed [43, 1].
Due to resource limitations, energy limitations in battery-powered devices, instability and high mobility like wireless
networks, dealing with such a volume of data relying on IoT devices is a big challenge.

One of the new technologies that emerged in response to new processing needs is cloud computing, and due to
elastic virtual resources, flexibility in payment pricing scheme, and scalability in computing model, appears useful at
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first sight [19, 26, 28, 29]. However, the shortcomings of cloud computing have been revealed in the face of a large
number of IoT devices and a large volume of production data. Since most IoT applications are latency-sensitive (such
as emergency response, healthcare systems, intelligent transportation systems, and interactive mobile games), some
problems arise with processing in the cloud environment. First, massive data transmission over the network between
IoT devices and centralized cloud data centers can increase communication latency, which acts as a bottleneck for
network and application performance in the face of bandwidth limitations. Second, the processing of such time-
sensitive applications through cloud data centers may lead to service time crises and thus increase the rate of service
level agreement violations [32, 40, 23, 31]. To overcome the mentioned drawbacks of cloud computing, Cisco Systems
in 2012 started fog computing as a decentralized middle computing layer between cloud and fog devices [17, 7, 8].
Fog computing places to network and storage resources on nodes (eg, smart gateways, cellular base stations, switches,
routers, wireless access points, micro data centers, etc.) near the edge of the network and close to users’ devices
[7, 8, 21]. Therefore, IoT application services can be processed near end devices. In addition, the collection, analysis
and filtering of the required data is done near the respective end device. Therefore, the goal of fog computing is: to
reduce the power consumption of end devices; reduce traffic problems in the main cloud and fog networks; Minimizing
response time and latency (due to traffic management and multi-hop physical distance management between the end
user and the cloud data center); It also enhances privacy and security, while location and context-aware decision-making
become more accurate and resource heterogeneity is properly managed [28, 5, 36, 25, 12].

Despite all the positive points mentioned, deploying applications in a fog environment requires some considerations.
Typically, IoT applications are decomposed into many interdependent services that are placed in the fog environment
to be processed in a distributed style, known as the fog service placement problem (FSPP) [14, 15, 42]. Communication
between these interdependent services, especially for services with high communication rates, can easily saturate the
limited bandwidth between host nodes [6, 16, 44]. This situation may fundamentally threaten the timing aspects of
latency-sensitive IoT applications, which can lead to performance degradation for the entire application. At the same
time, the availability of resources in the fog environment is not as good as that provided by the cloud [13]. Therefore,
it is necessary to choose a suitable policy for providing resources while considering application deadlines. Therefore,
an efficient approach is needed to optimize FSPP that: simultaneously optimizes resource utilization and network
congestion. Since FSPP belongs to the NP-hard time complexity class [40, 9], it is unlikely to find an exact solution
for large-sized real-world problems [34]. Therefore, the next concern is to make the problem solvable by using an
efficient approximate solution while achieving the desired solution.

This paper proposes a two-partite trade-off between resource utilization and traffic management about the priority
of applications deadlines [22] by using a Parallel Bi Objective ACO (PBOACO) algorithm with Master-slave structure
which is solved in a reasonable time. Therefore, the contributions of this research are as follows:

� Proposing a prioritization policy based on the type of deadline for real-time IoT applications.

� Proposing an algorithm to calculate the delays caused by the communication between services related to appli-
cations, to manage traffic congestion.

� Utilizing a parallel version of ACO to solve the problem according to the optimization model.

The rest of the paper is arranged as follows. Section 2 has an overview of related works. Section 3 is dedicated to
the proposed scheme, including the system framework, optimization model, and PBOACO solution. Evaluation and
comparison are described in section 4; section 5 concludes the paper and proposes future directions.

2 Related works

The issue of FSPP has attracted a lot of effort as a hot research topic from different perspectives due to the
significant impact on the performance of fog systems. In this chapter, some related studies in the literature are
discussed considering their goals and proposed solutions to solve the problem.

In [28], an approach to jointly optimize load distribution and service deployment for IoT and edge environments was
proposed, focusing on reducing SLA violations due to deadline, operational cost, and unavailability, which was solved
using a multi-objective GA based on Biased Random Key Genetic Algorithm (BRKGA) and NSGA-II considering the
solutions close to Pareto optimal frontier. Optimization of resources and communication issues were not included in
this study. The authors in [40] proposed a genetic-based service deployment algorithm to reduce network utilization
and application delay suitable for a cloud-fog environment. The simulation results in the iFogSim simulator showed a
reduction in program delay, network utilization, energy consumption, and cost compared to GA-PSO and random
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deployment approaches. The use of resources is not considered in this work a multi-objective two-tier resource
provisioning framework was proposed in [31], which used Docker-container technology to deploy IoT applications
in a fog environment. The proposed model was solved using the Elite Genetic Algorithm (EGA). However, bandwidth
usage, traffic management and inter-node communications were not considered in that work. Research [14] compared
the effectiveness of three evolutionary algorithms for optimizing the place of services in fog architectures: Weighted Sum
Genetic Algorithm (WSGA), Non-Dominated Sorting Genetic Algorithm (NSGA-II) and Decomposition Based Multi-
Objective Evolutionary Algorithm (MOEA/D). The paper focused on optimizing network latency, service deployment,
and resource utilization. The results showed that the NSGA-II approach provides the best results compared to others.
A lightweight decentralized service deployment approach was proposed in [15] qualified for fog architecture to optimize
network utilization and reduce delay by managing the distance between interdependent services. The main idea of
this work was that the best devices to host the service are those that are as close as possible to the clients’ gateways.
The proposed policy was evaluated using iFogSim against the Edge-ward approach and the results showed that the
proposed approach is effective in terms of network utilization and service delay in most requested services. The authors
in [42] proposed a fog conceptual framework and defined a formal model for the FSPP to optimize fog resources while
considering the heterogeneity of applications and resources. The proposed architecture problem was solved using the
greedy first-fit (FF) heuristic approach, the genetic meta-heuristic algorithm and an exact approach implemented in
the IBM CPLEX library. The results showed that approaches based on genetic algorithms and exact methods do
not violate the deadline of users’ requests. The exact approach showed a better use of resources, while the genetic
algorithm played a better role in reducing communication delays. The authors in [6] presented a precise and innovative
delay-aware algorithm to minimize the delay between nodes and the overall delay in the deployment process of IoT
application modules in the fog environment. The exact approach was defined as an integer linear programming
(ILP) model that was solved using the CPLEX solver. The result of the exploratory approach was obtained through
iFogSim. The evaluation results showed that both approaches have their own advantages and disadvantages. The
exact approach produced a globally optimal solution with high execution time, while the heuristic algorithm led to
a near-optimal solution, which in turn saves time. In [16], a simulation called iFogSim, which is an extension of
its previous tool, CloudSim, was proposed for IoT systems. Among the most key capabilities of this simulator is
the possibility of evaluating the impact of resource management on various criteria such as electricity consumption,
network consumption and delay. In this work, in addition to introducing iFogSim, a virtual machine deployment policy
called Edge-ward placement was proposed to be applied in a cloud-fog environment. The simulation results proved the
high efficiency of the Edge-ward deployment compared to the cloud-only mode, in terms of energy, network density and
delay reduction. A heuristic module mapping algorithm was proposed by [44] to reduce energy consumption, network
utilization and application delay in deploying IoT applications in cloud-fog infrastructure. The simulation results
obtained through iFogSim showed the superiority of the proposed approach in the fog-cloud topology in comparison
with the traditional cloud infrastructure. Authors in [33] proposed a resource management technique by applying
multi-objective VMs placement in a dynamic cloud environment, to reduce energy consumption and SLA violation,
where resources balance. they solved multi-objective problems by applying heuristics and meta-heuristic algorithms. A
priority, power, and traffic-aware IoT application deployment model in the form of deploying qualified virtual machines
for cloud data centers was presented in [34], where applications were classified into two categories based on importance.
For critical applications, minimizing traffic and power was the main goal. While for non-critical applications, the goal
was to reduce the loss of resources and electricity consumption. Although, the proposed approach performed better
than others in many scenarios, the proposed schemes similar to the proposed method by [33] were not designed for
active fog environments. In [37], a VM-based task deployment method was proposed for IoT applications in the fog
environment to reduce energy consumption through resource management. This model was solved using a combination
of ACO and GA to achieve high exploration in the search space, while an acceptable convergence rate was obtained.
Simulation experiments showed that the combined method has better results compared to ACO and GA in terms of
power, time and cost reduction. A two-stage multi-criteria FSPP optimization approach was developed in [35] suitable
for decentralized network edge microclouds. Computational experiments showed that the proposed method performs
better than both the random location strategy and the basic bandwidth-aware method based on the optimization of
bandwidth consumption and resource consumption. In [3], the authors developed a multi-objective service placement
optimization model to reduce construction time, energy consumption and cost in fog environments. The proposed
model was followed by usinga genetic algorithm to solve the problem. The simulation results using the Python-based
YAFS tool showed that the proposed genetic algorithm performed better than random deployment in all the studied
criteria. In [18], a network and energy-aware service deployment policy, called MinRE, was proposed for the fog-cloud
environment, which aimed to optimize the deployment of IoT services in two ways based on application priority. In
this work, the problem was formulated as a mixed integer linear programming model and then the model was solved
using two heuristic algorithms separately for critical and normal services. The simulation results showed that the
proposed approach performs better than the standard policies in most scenarios. Research [4] proposed a four-phase
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autonomous IoT service deployment method called MADE to optimize service delay, fog usage, and the total cost
of computing and communication. The evaluation results showed that MADE performed better than multi-objective
particle swarm optimization and NSGAII in general comparison. The authors in [39] presented a conceptual framework
used in fog-cloud control middleware, called MADE-k, to optimize the deployment of IoT service in fog. The objectives
of the proposed approach were to reduce service latency and cost while maximizing the use of fog resources. MADE-k
consisted of four steps similar to those proposed by [4], using a common knowledge base to solve the problem. The
PSO algorithm was used for the decision-making process in the third step of the approach. The evaluation results
indicated the higher efficiency of MADE-k compared to other counterparts. Another meta-heuristic algorithm, the
Cuckoo Search Algorithm, was implemented in MADE-k in [24]. Evaluations showed that CSA showed better results
compared to other leading algorithms, especially PSO implemented in [39] in terms of response time, service delay, non-
violation of SLA, use of fog, cost and energy consumption. A distributed automatic service deployment strategy was
developed in [20], which optimizes the energy consumption of fog nodes while reducing the communication overhead of
applications. Next, the model was solved using the approximate method based on the Markov chain. The evaluation
results against some centralized and distributed heuristics indicate that the proposed method works better than others
in many scenarios. An application deployment strategy focusing on bandwidth utilization and delay reduction was
proposed in [11], which classified IoT applications into critical and non-critical classes. The main policy was to deploy
critical dependent modules in a fog node or at least in close proximity. The simulations performed with iFogSim
showed that the proposed method performs better than the competing approaches in terms of delay and reduction of
network usage. The authors [38] proposed an independent service placement optimization strategy called MAPE-k to
increase efficiency in relation to execution costs, which was implemented using the Gray Wolf Optimization approach.
The simulation results showed that the proposed approach has achieved an acceptable performance compared to other
counterparts from the perspective of total scheduled time, average waiting time, number of successfully deployed
services and number of failed services. The authors [10] proposed a simulation-based approach using the Monte Carlo
method to select the appropriate deployment of multi-component applications on a fog-enabled IoT infrastructure. In
addition, a multi-objective optimization algorithm was proposed to optimize the placement of the application according
to the issue of energy, deployment cost and quality of service factors. However, maximizing the use of resources is not
considered in this study.

According to our studies, the present research is the first in the fog environment that minimizes resource wastage
and network traffic between nodes according to the priority class of real-time schedule deadline (soft/moderate/hard)
using a master-slave parallel version of the ACO metaheuristic.

Figure 1: Proposed Fog computing framework.

3 Parallel ACO based placement policy

3.1 Fog landscape

A conceptual architecture of our fog computing framework is shown in Figure 1 with three distinct layers in a
hierarchical structure: the cloud layer at the top; the fog layer in the middle; and the IoT layer at the bottom of
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the architecture. The IoT layer, which consists of endpoint devices, generally requests a service, receives a response,
generates data (eg, collected by sensors) to be stored, or consumes the data to act upon it. Each IoT device can be
routed to the fog layer through a Fog GateWay (FGW) node using related protocols such as Zigbee, Bluetooth, WiFi,
etc. [18]. In addition to FGWs as entry points, there are two types of nodes, generally network devices, in the fog
layer: fog control nodes (FONs) and fog computing nodes (FCNs). FONs continuously monitor topology dynamics
to provide resources and coordinate services to deploy services according to the chosen placement strategy. FCNs
are independent nodes with different types and amounts of resources that are used to host services (in the form of
containers or virtual machines) and data [31, 14].

Fog nodes form clusters called fog colonies. In other words, each fog colony is a micro data center that includes an
arbitrary number of FCNs, FGWs and a FON that controls the operation of the colony nodes. We assume that the
nodes of a colony form a complete network as in [4] and the connections between colonies in the fog layer form the
structure of the graph. Each FON must be aware of its neighbour colonies’ status. In the deployment process, the IoT
device sends the service request to its FGWs. If the FGW has enough resources to handle the request, it processes
the request and sends the response to the device. Otherwise, the FGW forwards the request to the corresponding
FON to decide whether the service is hosted by the appropriate FCN. In our fog structure, similar to [18] and [30],
all fog nodes can play the role of computing and packet forwarding. Figure 2 shows a scheme of services of an IoT
application placed on fog nodes in a colony.

Figure 2: Service placement in a fog colony.

3.2 Applications prioritization

The real-time application must run within an expected time frame. The final moment of the time period is called
the deadline. Obviously, the result must be produced before the deadline expires. Programs are classified into three
categories in terms of deadline [22, 41]: Hard : In hard real-time applications, which are essentially safety-critical, all
deadlines must be met. This means that even one case of missing the deadline will lead to severe consequences such
as complete failure. It is clear that the utility of the result after the deadline is zero. Train signalling systems, flight
control systems and nuclear power plant monitoring systems are included in this category. Moderate: In moderate
real-time applications, a few rare missed deadlines are tolerable. In other words, a major disaster (e.g. failure) will
not occur if a deadline is missed. However, the utility of the result after the deadline is zero. Also, QoS may decrease.
Video conferencing, interactive online games and online image processing are examples of this class. Soft : In soft
real-time applications, the result after the timeout is not useless, but its usefulness decreases and it also reduces QoS.
Web browsing and ticket reservation systems are in this class.

For high-priority applications, it must be ensured that the deadline is never violated. Therefore, as a constraint,
the application’s round-trip time (RTT) must be less than or at most equal to the request deadline. For moderate-
priority applications, several rare deadline violations are tolerable. Therefore, two limitations should be considered
at this level: i) The number of non-compliance with the deadline should not exceed the maximum number of allowed
violations. ii) In addition, the sequence of violations is not allowed. Therefore, if a violation occurs in this class, our
approach temporarily increases the priority level of the program to ”high” and when the first deadline is met, the
priority level returns to its default. This strategy ensures that the chain of violations never occurs. For low-priority
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classes, meeting the deadline is not a strict constraint. However, it is still considered an important optimization
cornerstone in our model.

3.3 Service model

Let us define a number of applications (a) as set (3.1).

A = {APiDi
i |i = 1, 2, . . . , a} (3.1)

where Pi ∈ P = {1(High), 2(Moderate), 3(Low)} and Di indicate the priority level and the deadline associated with
i-th application respectively. In FSPP, each application is decomposed into a number (s) of services, which is shown
as set (3.2).

Ai = {Sij |i = 1, 2, . . . , a , j = 1, 2, . . . , s}. (3.2)

We have c colonies in our Fog environment, as set (3.3), each of which has f Fog nodes to accommodate services.
So, we can define Fog nodes of k-th colony as set (3.4)

C = {Ck|k = 1, 2, . . . , c} (3.3)

Ck = {F kw|k = 1, 2, . . . , c , w = 1, 2, . . . , f}. (3.4)

All Fog nodes inside a colony include FGWs, FCNs, and the FON are mesh connected. The FON is directly
connected to FONs of neighbor colonies. The connections may be wired or wireless. Each connection that connects
two different Fog nodes has a bandwidth (BW) which determines the traffic volume passing over the link. We define
BW matrix among Fog nodes of each colony Ck as equation (3.5). Note that we consider the FON of each colony as
the head-node and the first node of that colony (node id = 1).

BW k =
(
bwk

ww′

)
f×f

bwk
ww′ = 0 iff w = w′

bwk
ww′ = bwk

w′w w,w′ = 1, 2, . . . , f , ∀k ∈ (1, 2, . . . , c)

(3.5)

where all the elements on the main diagonal are equal to zero which means any Fog node has no communication link
to itself. Each colony has a FON that is connected to the FONs of neighbor colonies. For simplicity, the BW of
inter-FONs connections are considered to be same and is shown equation (3.6).

bw FONkk′ , ∀k, k′ ∈ (1, 2, . . . , c) . (3.6)

In service deployment process, we use a decision variable xkw
ij that is defined as equation (3.7).

xkw
ij =

{
1 if Sij placed on F kw

0 otherwise
(3.7)

After placing services, inter-dependent services belonging to application Ai establish some communications to reach
the common goal. Let us define the traffic matrix among services of Ai as equation (3.8).

Traf i =
(
traf i

jj′
)
s×s

traf i
jj′ = 0 iff j = j′ j, j′ = 1, 2, . . . , s , ∀i ∈ (1, 2, . . . , a) ,

(3.8)

where all the elements on main diagonal are equal to zero. It means that obviously any of services does not require to
communicate with itself.

3.4 Resource wastage

In FSPP, resource provisioning is the first consideration. Applications’ services have different resource requirements
that should be provided. Service resource requirements such as CPU and RAM must not exceed the resources capacity
of host node. So, for each Fog node F k,w we have 2 constraints denoted by equations (3.9) and (3.10) corresponding
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to CPU and RAM capacities respectively. For simplicity of calculations, we assume there are sufficient capacities of
other resources such as storage and memory bandwidth in host nodes.

a∑
i=1

s∑
j=1

Sij
CPU req × xkw

ij ≤ F kw
CPU cap ∀k ∈ (1, 2, . . . , c) ,∀w ∈ (1, 2, . . . , f) (3.9)

a∑
i=1

s∑
j=1

Sij
RAM req × xkw

ij ≤ F kw
RAM cap ∀k ∈ (1, 2, . . . , c) ,∀w ∈ (1, 2, . . . , f) , (3.10)

where Sij
CPU req, S

ij
RAM req, F

kw
CPU cap, and F kw

RAM cap are CPU request of Sij , RAM request of Sij , CPU capacity

of F kw, and RAM capacity of F kw respectively. In application deployment process, enhancing resources utilization
of Fog node is a desired goal which leads to sprawl reduction in nodes’ resources, and consequently, it implicitly
yields to power consumption reduction due to hibernating unused Fog nodes. To reach this end, services of different
applications are tried to be placed compactly in less number of Fog nodes, so that resource usage to be increased and
wasted amount of resources to be reduced. The total resource usage (TRU) in our Fog landscape, similar to [14], can
be obtained according to equation (3.11).

TRU =

∑a
i=1

∑c
k=1

∑f
w=1

∑s
j=1

[(
Sij
CPU req + Sij

RAM req

)
× xkw

ij

]
∑c

k=1

∑f
w=1

[
F kw
CPU cap + F kw

RAM cap

] . (3.11)

So, the total resource wastage (TRW) amount could be calculated via equation (3.12), that it is tried to be
minimized.

TRW = 1.0− TRU (3.12)

3.5 Communication latency

Latency is a challenge which can seriously threaten QoS for hard real time applications and services. Network
latency is highly affected by some technical factors such as inter-nodes traffic congestion, nodes distance, network BW,
packet propagation, serialization, queuing, and switching delays. This paper attempts to keep RTT in an acceptable
range based on applications’ priority level RTT is defined as summation of application’s processing time and network
latency. So, the equation (3.13) should be minimized.

RTT (Ai) = Tproc(Ai) + L(Ai) ∀i ∈ (1, 2, . . . , a) (3.13)

where, Tproc(Ai) and L(Ai) are the total processing time and the total data transmission time of services belonging to
Ai , respectively. As denoted in [31], processing time of application Ai is calculated via equation (3.14) by summation
processing time of all services Sij belonging to Ai.

Tproc(Ai) =

c∑
k=1

f∑
w=1

s∑
j=1

Ssize
ij

F kw
proc cap

× xkw
ij ∀i ∈ (1, 2, . . . , a) (3.14)

where,F kw
proc cap is processing capacity of Fog node F kw. The other focus of this section is on latency, which is

attempted to be reduced by placing inter-dependent services as close as possible, so that, traffic among these services
to be transmitted by passing the shortest possible path over the network. In this regard, high-dependency services are
tried to be placed on the same Fog node, in the next choice on two different Fog nodes in the same colony, and as the
last choice, on two different Fog nodes in different colonies aim to reduce the number of hops between nodes. Each
service from each application may be placed on FGW, FON, or on a suitable FCNa in a colony based on the decision
made by the colony’s FON. All Fog nodes inside a colony are fully mesh connected, and the FON of each colony is
connected to the FONs of other colonies. So, if a service Sij placed on Fog node F kw transfers the traffic to a service

Sij placed on Fog node F k′w′
, the latency of traffic transmission is calculated using Algorithm 1.

Note that we assume the FON of each Fog colony is the first node (id = 1) of that colony. So, the communication
latency of application Ai and the total network latency (TNL) can be obtained via equations (3.15) and (3.16)
respectively.

L(Ai) =

c∑
k=1

c∑
k′=1

f∑
w=1

f∑
w′=1

s∑
j=1

s∑
j′=1

xkw
ij × xk′w′

ij′ × Li
jj′ ∀i ∈ (1, 2, . . . , a) (3.15)
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TNL =

a∑
i=1

L(Ai) (3.16)

Algorithm 1 :Inter-services communication latency

input: BWk, BWk′
, traf i

jj′ , k, w, k′, w′

output: communication latency (L) between Sij and Sij′

01. % ——————– k = k′ ——————–
02. if w = w′ then Li

jj′ = 0

03. if w ̸= w′ then Li
jj′ = traf i

jj′ / bwk
ww′

04. % ——————– k ̸= k′ ——————–
05. if w = 1 then

06. if w′ = 1 then Li
jj′ =

(
traf i

jj′ / bw FONkk′

)
07. if w′ ̸= 1 then Li

jj′ =
(
traf i

jj′ / bw FONkk′

)
+

(
traf i

jj′ / bwk′
1w′

)
08. if w ̸= 1 then

09. if w′ = 1 then Li
jj′ =

(
traf i

jj′ / bwk
w1

)
+

(
traf i

jj′ / bw FONkk′

)
10. if w′ ̸= 1 then Li

jj′ =
(
traf i

jj′ / bwk
w1

)
+

(
traf i

jj′ / bw FONkk′

)
+

(
traf i

jj′ / bwk′
1w′

)
11. return Li

jj′

3.6 Bi-objective model

With considering the set A of real time IoT applications each of which has associated specifications of deadline and
priority level, we want to place applications’ services on Fog colonies consisting Fog nodes, so that, the summation of
total resource wastage and total network latency to be minimized as defined according to equation (3.17).

min(TRW + TNL). (3.17)

Constraints: Equations (3.9) and (3.10) that guarantee the resources requirements of services placed on a Fog
node, would not exceed that node’s resources capacities. Each service Sij should be placed exactly on one Fog node,
which is implied by equation (3.18).

c∑
k=1

f∑
w=1

xkw
ij = 1 , ∀Sij ∈ Ai , ∀Ai ∈ A. (3.18)

In addition to constraints above, we should consider deadline constraint for each priority level of applications. For
high priority applications, any deadline violation is not permitted. Hence, the constraint (3.19) must be taken into
account, which guarantees that deadline never would be missed.

(3.13) ≤ Di , ∀Ai ∈ A. (3.19)

For moderate priority applications, constraint (3.19) should be satisfied for utility of application’s response. How-
ever, a number of infrequent deadline violations are tolerable. Thus, the constraint (3.19) along with (3.20) should be
considered for this category.

Dmiss ≤ Dmax
miss, (3.20)

where, Dmiss is the number of deadline violations happened currently, and Dmax
miss is the maximum number of allowed

violations. Finally, for low priority applications, the application’s response is useful after deadline, but its usefulness
degrades over a tolerable time interval tolmax. So, we define constraint (3.21) to satisfy this deadline criteria.

(3.13) ≤ Di +∆t , ∀Ai ∈ A , 0 ≤ ∆t ≤ tolmax. (3.21)

Note that, it is desired that the value of elapsed time ∆t be as small as possible to keep the response usefulness.
Obviously, if ∆t passes the tolmax, the application’s response will be useless. Then, we can represent our multi-objective
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optimization model via equations (3.17), (3.9), (3.10), and (3.18)-(3.21) as represented in the following:

min(TRW + TNL) s.t :
a∑

i=1

s∑
j=1

Sij
CPU req × xkw

ij ≤ F kw
CPU cap,

a∑
i=1

s∑
j=1

Sij
RAM req × xkw

ij ≤ F kw
RAM cap

c∑
k=1

f∑
w=1

xkw
ij = 1, RTT (Ai) ≤ Di

Dmiss ≤ Dmax
miss , Pi = 2

RTT (Ai) ≤ Di +∆t , Pi = 3 ∀Ai ∈ A , 0 ≤ ∆t ≤ tolmax.

3.7 PBOACO meta-heuristic

The pseudo-code of the proposed PBOACO is depicted in algorithm 2. This algorithm works as follows: Our
main ACO procedure employs three slave procedures in parallel, each of which is dedicated to the applications of a
priority level. For each priority level, we consider some coefficients for elements of the objective function (eq. 3.17)
to determine their importance in fitness calculation. For high priority, we consider 0.2 and 0.8, which give the most
importance to reduce latency. Resource wastage is reduced the in second level. For moderate priority, we consider 0.3
and 0.7, which give importance to latency and resource, respectively. For low priority, we consider 0.4 and 0.6, which
give more importance to resources in comparison with high priority levels. However, because of the real-time nature
of all categories, latency reduction is the most crucial objective and consequently receives the greatest weight. Note
that the summation of coefficients is equal to 1.0.

In an initialization phase of ACO, the parameters are initialized and all the pheromone trails are set to τ0. In
the next part, the procedure receives all requests and starts assigning services to nodes. A local pheromone update is
performed once an artificial ant has built a movement. Similarly to the general implementation of ACO algorithms,
PBOACO starts with a pheromone trails matrix and a heuristic information matrix.

Algorithm 2 :PBOACO meta-heuristic

input: list of applications, services, deadlines, priority levels, colonies, Fog nodes
output: service allocation [ ]
begin // —— initializing by master ——-
01. sort Fog nodes inside of each colony based on connections’ BW descending; // FON is fixed
02. sort applications based on deadline ascending;
03. sort services of each application based on traffic-interdependency descending;
04. categorize applications based on their associated priority (P);
05. coeff S = [coeff1, coeff2];
06. for P = 1 to 3 do in parallel // slave 1 to slave 3
07. sol S ← random solution of applications with priority level P;
08. sol S size ← number of individuals in sol S;
09. fitness function = coeff S(1).TRW + coeff S(2).TNL
10. fit S ← fitness function (sol S);
11. sol S sorted ← sort (sol S, fit S);
12. pheromone = update (pheromone);
13. service allocation S [ ] ← the best individual of sol S sorted;
14. for iteration = 1 to maximum iteration do
15. new sol = next solutions (pheromone);
16. new sol fit = fitness (new sol);
17. new pheromone = update (pheromone);
18. sol S = new sol;
19. pheromone = new pheromone;
20. fit S ← fitness function (sol S);
21. sol S sorted ← sort (sol S, fit S);
22. service allocation S [ ] ← the best individual of sol S sorted;
23. endfor
24. endfor
25. for P = 1 to 3 do
26. service allocation [ ] ← concatenate (service allocation [ ], service allocation S [ ]);
27. endfor
28. return service allocation [ ]
end
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The quality of an ACO implementation depends greatly on the definition of the meaning of the pheromone trail.
Another important factor in an ACO application is the choice of a good heuristic, which will be used in combination
with the pheromone information to build solutions. It guides the probabilistic solution construction of ants with
problem-specific knowledge.

4 Evaluation results

We simulated the proposed framework by utilizing the iFogSim2 simulator [27] for 3 Fog colonies, each of which
covers 10 Fog nodes. Fog nodes, including FONs, FGWs, and FCNs are considered from 5 types with their resource
capacities, similar to Fog cells specifications described in [24]. Table 1 shows details of Fog nodes. Generally, FGWs
and FONs are from high capacity types to handle services eliminating deploying them on other FCNs.

Table 1: Details of Fog nodes
FN type CPU cap (MIPS) RAM cap (MB)
FCN 1 100 256
FCN 2 200 512
FCN 3 300 1024
FCN 4 1400 2048
FCN 5 1600 4096

15 IoT applications are considered with random deadlines, and from three priority levels, i.e. high: hard real-time;
moderate: firm real-time; and low: soft real-time. Each application consists of 5 to 10 services. For simplicity, we
considered 5 applications per priority level. Types and specifications of services are shown in Table 2. As considered
in [24], we consider 5 types of services, i.e. sense, actuate, and three processing services, with their resource demands.

Table 2: Details of services
Service type CPU req (MIPS) RAM req (MB)
Sense 50 30
Actuate 50 20
Process 1 200 10
Process 2 200 20
Process 3 100 30

We define 3 scenarios to evaluate the performance of the proposed PBOACO algorithm against other counterparts:
random placement, first fit decreasing (FFD) heuristic, bi-objective ACO (BOACO), and bi-objective genetic algorithm
(BOGA) approach. In the first scenario, we observe outcomes of 1 application per each priority level, a total of 3
applications, to be deployed on 1 Fog colony. In the second scenario, we compare outcomes of 3 applications per
priority level, i.e. 9 applications with different priorities to be deployed on 2 Fog colonies. In the third scenario, we
deploy all 15 applications on 3 Fog colonies.

4.1 Total resource wastage

Total resource wastage (TRW) is the first metric in our evaluation in which the smaller value indicates the better
performance of the algorithm. TRW obtained from PBOACO along with other counterparts are shown in Figure
3. As illustrated in Figure 3, results obtained from meta-heuristics compete, in comparison with random and FFD
approaches. Although TRW values obtained from meta-heuristics in the first scenario appear in a near range, in the
second and third scenarios the proposed PBOACO outperformed the others with an increase in the number of services
and Fog nodes.

4.2 Total network latency

TNL as an effective objective on QoS, influences the RTT of applications which are defined in 3 real-time levels.
Obviously, real-time application performance heavily depends on adhering to the associated deadline. Network latency,
which is defined as the time that data is in flight from the source node to the destination node, seriously affects the
possibility of a deadline meeting. Figure 4 illustrates the performance of proposed and rival algorithms on TNL. As
we see in Figure 4, the proposed algorithm shows superiority against other algorithms in this important metric.
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Figure 3: TRW evaluation.

Figure 4: TNL evaluation.

4.3 Main objective function

The main objective of our model is defined as a weighted summation of TRW and TNL. As we considered a high
weight for TNL in the objective function to ensure adhering to applications’ deadlines, the value of TNL plays the
most important role in calculating the value of the main objective function. Figure 5 illustrates the values of the main
objective provided by algorithms. As shown, the value of the main objective of PBOACO is minimized in all scenarios.

Figure 5: Main obj. fun. evaluation.

4.4 Execution time

Generally, a number of services and a number of Fog nodes increase the execution time of the placement algo-
rithms. As indicated in Figure 6, the execution times of the random placement approach and pure FFD heuristic are
significantly less than meta-heuristics. This time distance is at the expense of degrading the result’s quality and fitness
value. In such a situation, the execution time superiority is not the matter. Among meta-heuristics, the proposed
algorithm shows superiority against BOACO, which is well-known for the property of fast convergence.
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Figure 6: Execution time evaluation.

5 Conclusion

With the pervasiveness of IoT applications in humans’ daily lives, the Fog computing paradigm appeared as a
complement facility to the Cloud capabilities. The distance between IoT devices and powerful servers located in
centralized Cloud data centers, was a great challenge for QoS parameters desired for users according to the service
level agreement. This challenge became bolder for time-sensitive real-time applications. Hence, these applications
were preferred to be processed in Fog nodes, closer to the user’s device location. Although this close neighbourhood
was a significant help in avoiding deadline violations, the limited resources of Fog nodes were an issue. In this
regard, this paper proposed a deadline-aware bi-objective optimization model for FSPP to optimize resource wastage
and network latency, that reducing the resource wastage implicitly yields power consumption reduction. Real-time
applications were categorized into three priority levels: high, moderate, and low; corresponding to hard, firm, and
soft real-time, respectively. Our main focus was on deploying interdependent services in the closest proximities as
possible. The problem is solved using a parallel ACO algorithm which deploys services of all types of applications,
by considering their associated deadline, in parallel. Experimental results indicate that the proposed PBOACO
outperformed its counterparts: Random, FFD, BOGA, and BOACO strategies in terms of optimizing TRW, TNL,
and reducing algorithm running time. As a future direction, we plan to investigate time-related prioritization properties
in horizontal and vertical deployment of services in the IoT-Fog-Cloud hierarchy.
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