- Kalpak, S., Nagesh, S. & Manoj, D., 2017. A comparative study of hot rolled section (HRS) and cold formed section under combined bending and shear using ANSYS.16. International Journal of Scientific Research and Development, 5(2), pp.1399–1403.
- Arbaoui, J., Schmitt, Y. & Royer, F., 2014. Effect of core thickness and intermediate layers on mechanical properties of polypropylene honeycomb multi-layer sandwich structures. Archives of Metallurgy and Materials, 59(1), pp.11–16. doi:10.2478/amm-2014-0002.
- Khan, M.A. et al., 2017. Experimental and numerical analysis of flexural and impact behaviour of glass/pp sandwich panel for automotive structural applications. Advanced Composite Materials. doi:10.1080/09243046.2017.1396199.
- Ijaz, H. et al., 2017. Finite element analysis of bend test of sandwich structures using strain energy based homogenization method. Advances in Materials Science and Engineering, p.8670207. doi:10.1155/2017/8670207.
- Gornet, L., Marguet, S. & Marckmann, G., 2006. Finite element modeling of Nomex® honeycomb cores: Failure and effective elastic properties. International Journal of Computational Materials Science and Continuum Technology, 4(2), pp.63–74. DOI:10.3970/cmc.2006.004.063.
- Ijaz, H. et al., 2014. Strain energy based homogenization method to find the equivalent orthotropic properties of sandwich structures. Sindh University Research Journal (Science Series), 46(1), pp.93–98.
- Schwingshackl, C.W., Aglietti, G.S. & Cunningham, P.R., 2006. Determination of honeycomb material properties: Existing theories and an alternative dynamic approach. Journal of Aerospace Engineering, 19(3), pp.177–183.doi:10.1061/(ASCE)08931321(2006)19:3(177).
- Chamis, C., Aiello, R. & Murthy, P., 1988. Fiber composite sandwich thermostructural behavior: Computational simulation. Journal of Composite Technology and Research, 10, pp.93–99.
- Czechowski, L., Jankowski, J. & Kotełko, M., 2017. Experimental and numerical three-point bending test for sandwich beams. Journal of KONES Powertrain and Transport, 24(3), pp.53–62. doi:10.5604/01.3001.0010.3071.
- Hussain, M., Khan, R. & Abbas, N., 2019. Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University - Science, 31, pp.222–229. doi:10.1016/j.jksus.2018.05.012.
- Chauhan, S.S. & Bhaduri, S.C., 2020. Structural analysis of a four-bar linkage mechanism of prosthetic knee joint using finite element method. EVERGREEN – Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 7(2), pp.209–215.
- Çınar, O., Erdal, M. & Kayran, A., 2017. Accurate equivalent models of sandwich laminates with honeycomb core and composite face sheets via optimization involving modal behavior. Journal of Sandwich Structures & Materials, 19(2), pp.139–166. doi:10.1177/1099636215613934.
- Foo, C.C., Chai, G.B. & Seah, L.K., 2008. Mechanical properties of Nomex material and Nomex honeycomb structure. Composite Structures, 80(4), pp.588–594. doi:10.1016/j.compstruct.2006.07.010.
- Roy, R. et al., 2012. Finite element modeling of Nomex® honeycomb core carbon/epoxy composite sandwich panels. Advanced Science Letters, 15(1), pp.257–264. doi:10.1166/asl.2012.4164.
- Herranen, H. et al., 2012. Design and testing of sandwich structures with different core materials. Materials Science (Medžiagotyra), 18(1),pp.45–50. doi:10.5755/j01.ms.18.1.1340.
- Ijaz, H. et al., 2017. Finite element analysis of bend test of sandwich structures using strain energy based homogenization method. Advances in Materials Science and Engineering. doi:10.1155/2017/8670207.
- Hussain, M., Khan, R. & Abbas, N., 2017. Experimental and computational studies on honeycomb sandwich structures under static and fatigue bending load. Journal of King Saud University - Science, 31(2), pp.222–229. doi:10.1016/j.jksus.2018.05.012.
- Yuan, J., Zhang, L. & Huo, Z., 2017. An equivalent modeling method for honeycomb sandwich structure based on orthogonal anisotropic solid element. International Journal of Aeronautical and Space Sciences, 21(4), pp.957–969. doi:10.1007/s42405-020-00259-6.
- Kumar, A. & Supale, J.P., 2023. Manufacturing and structural analysis of a composite sandwich panel used for aircraft flooring. Energy and Environment Focus, 7(2), pp.129–136. doi:10.1166/eef.2023.1276.
- Seemann, R. & Krause, D., 2017. Numerical modelling of Nomex honeycomb cores for detailed analyses of sandwich panel joints. In 11th World Congress on Computational Mechanics (WCCM XI).
- Kumar, A., Chanda, A.K. & Angra, S., 2020. Analysis of the effects of varying core thicknesses of Kevlar honeycomb sandwich structures under different regimes of testing. Materials Today: Proceedings, 21, pp.1615–1623. doi:10.1016/j.matpr.2019.11.2.
- Narasimhan, R.K. & Zeleniakiene, D., 2017. Modelling of honeycomb core sandwich panels with fiber reinforced plastic facesheets and analysing the mechanical properties. IOP Conference Series: Materials Science and Engineering, 111(1). doi:10.1088/1757-899X/111/1/012001.
- Rupani, S.V., Jani, S.S. & Acharya, G.D., 2017. Design, modelling and manufacturing aspects of honeycomb sandwich structures: A review. International Journal of Scientific Development and Research. doi:10.1712/ijsdr.17013.
- Kumar, A., Chanda, A.K. & Angra, S., 2021. Numerical modelling of a composite sandwich structure having non-metallic honeycomb core. EVERGREEN – Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8(4), pp.759–767. doi:10.5109/4742119.
- Gibson, L. & Ashby, M., 1997. Cellular solids: Structure and properties (Cambridge Solid State Science Series). Cambridge: Cambridge UniversityPress. doi:10.1017/CBO9781139878326.
- Plascore, 2019. Honeycomb Data Sheets. [online] Available at: https://www.plascore.com/download/datasheets/honeycomb_data_sheets/PLA_PK2_2019.pdf [Accessed January 2023].
- ASTM International, 2020. ASTM C393 / C393M-20. Standard test method for core shear properties of sandwich constructions by beam flexure. West Conshohocken, PA: ASTM International. Available at: www.astm.org.
- Kumar, A., Dev, K. & Dahiya, A., 2023. Fabrication and mechanical characterization of pomegranate peel powder mixed epoxy. EVERGREEN, 10(4), pp.2173–2179. doi:10.5109/7160892.
- Kumar, A., Chanda, A.K. & Angra, S., 2021. Optimization of stiffness properties of composite sandwich using hybrid taguchi-gra-pca. EVERGREEN, 8(2), pp.310–317. doi:10.5109/4480708.
- Gupta, M.K., Singhal, V. & Rajput, N.S., 2022. Applications and challenges of carbon-fibers reinforced composites: a review. EVERGREEN, 9(3), pp.682–693. doi:10.5109/4843099.
- Taghipoor, H. & Ghiaskar, A., 2024. Optimized enhanced energy absorption in polymer nanocomposites reinforced with nano-clay, nano-silica, and diethylenetriamine. Scientific Reports, 14. doi:10.1038/s41598-024-77960-z.
- Ghiaskar, A. & Nouri, M.D., 2023. Investigating fracture behavior and energy absorption of flexible hybrid biocomposites with soft–hard rubber/biofiller layers and fabric impregnated with matrix under high-velocity impact. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, p.585. doi:10.1007/s40430-023-04507-0.
|