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Abstract

In this paper, our aim is to prove some matrix inequalities involving arbitrary matrix means and positive multilinear
mappings. For example, it is shown that for Hermitian matrices A;, B; such that 0 <m < 4;,B; <M (i=1,--- k),

2
®?(A101By, -, Apo1By) < (K(u"))” ®*(A102By, -+, Axo2By),

where o1 and o9 are two arbitrary matrix means between the arithmetic and harmonic means, ® : .Z*(C) — .#,(C)

_ (1+u)2
T 4w

is a positive unital multilinear mapping, u = % and K (u) . We also give the obtained results for the adjoint

and the dual of an arbitrary matrix mean.
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1 Introduction

Let .#,,(C) denote the C*-algebra of all n x n matrices with entries in the complex field C with the identity I. For
a Hermitian matrix A € ., (C), we write A > 0 if all its eigenvalues are non-negative. We also write A > 0, if it be
invertible, moreover the before condition. For two Hermitian matrices A, B € .#,,(C), we use the nonation A < B( or
A > B) to mean that B— A > 0( or B— A > 0). A mapping ® : #F(C) = #,,(C) x -+ x M, (C) — #(C) is said to
be multilinear whenever it is linear in each of its variable and also is called positive if A; > 0 for i = 1,--- , k implies
that ®(A;,---,Ar) > 0. Moreover, ® is called unital if &(,---,I) =I. If A € #,(C) is a Hermitian matrix, the
Gelfand map f(t) — f(A) is an isometrically #-isomorphism between the C*-algebra C'(sp(A)) of continuous functions
on the spectrum sp(A) of the Hermitian matrix A and the C*-algebra generated by I and A. If f,g € C(sp(4)), then
f(t) > g(t) (t € sp(A)) implies that f(A) > g(A). For J C R, a real valued continuous function f : .J — R is called
matrix monotone if A < B implies that f(A) < f(B) for all Hermitian matrices A and B whose eigenvalues are in J.
Kubo and Ando [I] defined the matrix mean o for pairs of positive definite matrices A and B and the nonnegative
matrix monotone function f : (0,00) — (0,00) with f(1) =1

AocB = A2 f(A"2BA"2)A?
where f is the representing function for o.
For two positive definite matrices A, B € #,,(C), the Lowner—Heinz inequality states that, if A < B, then

AP < B, (0<p<1). (1.1)
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In general (1.1)) is not true for p > 1. The authors [8] proved that if A and B are two positive definite matrices
such that 0 <m < A, B < M, then

(M +m)*

T ) ®?(AcyB), (1.2)

®?(Ao1B) < <

where ® is a positive unital linear mapping and 01,09 are two arbitrary matrix means between the harmonic and
arithmetic matrix means. The authors in [6] generalized the inequality (1.2]) for p > 0 as follows:

(M +m)?

P <
[0 (ACTlB) =~ ( AMm

)pfbp(AagB), (1.3)

where 0 <m < A, B < M, ® is a positive unital linear mapping, 01,09 are two arbitrary matrix means between the
harmonic and arithmetic matrix means. For more information on the above inequalities see [5 [10] 12} T3] 14} 15} [7]
and references therein. In this paper, we intend to extend the inequality for multilinear positive mappings. Then,
we shall generalize the derived results for the adjoint and the dual of an arbitrary matrix mean.

2 Main results
2.1 Some inequalities for arbitrary matrix means

This section is started by recalling several well known lemmas.

Lemma 2.1. [4] Suppose that A; € #,(C) (i = 1,--- ,k) be positive definite. Then for every unital multilinear
mapping ® : .#¥(C) — .#)(C)
B(Ar, -, Ap) T < B(ATY, LAY,

Lemma 2.2. [I, 2, B] Let A, B € #,(C) be positive definite and a > 0. Then
(i) [|AB|| < %l|A + BJ%.

(ii) ||JA* +B?|| < ||[(A + B)¥|| for a > 1.

(iii) A < oB if and only if [|A2 B~ 2| < az.

Lemma 2.3. [9] Let X € .#,(C). Then || X|| <t if and only if

X
(X* tI)ZO'

Lemma 2.4. [I3] Let f be a strictly positive convex twice differential function on the interval [m, M] with 0 < m < M
and let C; € #,,(C) such that Zle CiCi=11tA; € M,(C)suchthat 0 <m < A; <M (i =1,---,k), then

k k k
ZC;JC(Ai)Ci <ay ZCfAiCi +b5I <af (Z CfAiCi> ,
=1

i=1 i=1

_ JD)—f(m)
M—

Mf(m)—mf(M)
m M—m

aft+bf }

where a , by = and o = maxmm<i<ym {W

First, we prove following efficient lemma.

Lemma 2.5. Let A;, B; € .#,(C) be such that 0 < m < 4;,B; < M (i = 1,--- , k), for some scalars 0 < m < M.
Then, for every positive unital multilinear mapping ® : .Z*(C) — .#;(C),

D(Ar, -, Ag) + MFmMFO(AT, - ALY < MY+ mF.
Proof . It follows the spectral decomposition of A; € #,(C) that A; = Z?:l XijQi; (0 = 1,--- k) such that

Z?:l Qij = I Putting
Clir,- i) = (@(Qujrs -+ Qi)
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such that

Z Z"'ZC*(jl""’jk)c(jl"”’jk):]‘

Jj1=172=1 Jr=1

One can get

3

< Z UlQlj, . Z)\ Qr;j (by the convexity of f(t) =t 1)
= Z Z Z /\1_J1)\2_]12 ,wk O(Qujy, -, Qrj) (by the multilinearity of @)

<a Zn: L Clj, - Je) M A2jp - Ak C(1s -+ 5 k) + il
(by Lemma [2.4)

=a z”: z”: z”: Ay A2y Ak ®(Qugys -+ 5 Qi) + b1

=a1P(Ay, Ao, -+, Ap) + 011,

k k
where a; = M%nk and b; = %szﬁ . Therefore,

(I)(A1,"' ,Ak) +Mkmk(I)(A;17... 7Alzl) < MF _,'_mk.

This proves the desired inequality. [
By applying Lemma we have the following result:

Lemma 2.6. Let A;, B; € #,(C) be such that 0 < m < A;, B; <M (i =1,--- , k), for some scalars 0 < m < M and
® : M} (C) — 4,(C) be a positive unital multilinear mapping, then

®(A\VBy, -+, AV By) + MEmFo(AT'VBTY - ATVBY) < (MF 4+ mb). (2.1)

Proof . Since ® is multilinear and by Lemma [2.5] it follows that
®(A1VBy,---, AV By) +Mkmkq>(A;1VB;1,.-. JALTVBY

= (;)k [@(Al, o A) + MM (ATY ALY 4+ ®(By, - By) + MEm P e(Br Y- B
< (M* +m").
d
Remark 2.7. If we choose k = 1, in the inequality , then we get
®(AVB) + Mm®(A~'VB™!) < M + m.

Lemma 2.8. Let A;, B; € #,(C) be such that 0 < A; < B; (i=1,--- ,k) and ® : .#*(C) — #(C) be any positive
unital multilinear mapping. Then

D(Ay, -, Ar) < O(By, -+, By). (2.2)
Proof . Since 0 < A; < B; (1 =1,---,k), and in result B; — A; > 0. Thus, we can write

(I)(A17A27"' 7Ak) < (b(BlvAQ"' ?Ak)
SQ(B17BQ7“' 7Ak))
< ®(By, By, -+, By).
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Theorem 2.9. Let A;, B; € #,(C) be such that 0 <m < A;,B; <M (i=1,--- k), for some scalars 0 < m < M
and let o1 and o9 be two arbitrary matrix means between the arithmetic and harmonic means. Then, for every positive
unital multilinear mapping ® : .#*(C) — .#,(C),

2
@2(A10'1.Bl,~ N ,AkalBk) S (K(uk)) @2(1410231,' M ,AkO'QBk;)7 (23)

where u = 2 and K (u) = %.

Proof . By our assumption and using Lemma [2.6] we have
®(A101 By, -, Apo1 By) + MPm*®((A109B1) 7Y, -, (AgoaBr) ™Y
< ®(AVBy, -+, AV BL) + MEmFo((A'By) 7Y, - (AR!Br) ™)
=®(A1VBy, -, AV By) + M*mF (AT VB - AT VBY
< (M* +mh). (2.4)

Applying Lemma (i)7 Lemma respectively, and utilizing (2.4)), we have
H@(AlalBl, e ,AkolBk)Mkmk(I)_l(AlagBl, e 7Ak02-Bk)||
1 2
< 1 H‘I’(A1CT1BL oo Ago1By) + MFm*® "1 (A109By, - - - ,AkUgBk)”

2

IN

1
Z H@(AlalBl, e ,Aka'lBk) + Mkmk(l)((A10'2B1)71, ety (AkO'QBk)il)H
(M* 4+ m*)?
4 )
which completes the proof. [J

IN

Remark 2.10. Let A;, B; € #,,(C) be such that 0 <m < A;, B; <M (i=1,--- k), let o1 and o5 be two arbitrary
matrix means between the arithmetic and harmonic means and ® : .Z*(C) — .#,(C) be a positive unital multilinear
mapping. Then,

CI)p(AlalBl, cee 7Akngk) S (K(uk))p (I)p(Alo'QBl, e ,AkO'QBk), 0 S P S 2 (25)
where K (u) = % and u = L,

Note that for 0 < p <2, it follows 0 < & < 1. So, by the (2.3) and the Lowner-Heinz inequality, we have (2.5]).
The following theorem is an extension of inequality (2.5 for p > 2.

Theorem 2.11. Let A;,B; € #,(C) such that 0 < m < A4;,B; < M (¢ = 1,--- ,k) and let 01 and o2 be two
arbitrary matrix means between the arithmetic and harmonic means. Then for every positive unital multilinear

mapping ® : .#*(C) — .#)(C) and p > 2,

(I)p(AldlBl, e ,AkdlBk) S (K(uk))p@p(AlagBl, e ,AkJQBk), (26)
where u = 2 and K (u) = %.

Proof . By Lemma[2.2)i) and (ii), Lemma[2.1] and (2.4), respectivly, one can get

H(I)%(A1J1Bla e ,AkU1Bk)M%km%k(I>ig(A102B17 o ’AkUQBk)H

1 g P P P 2
= 4 H(Iﬁ(AlalBl’ wo AgorBy) + MTkakq’_E(AuTQBh e ,Akosz)H

1 .
< 1 H(<1>(A101B1,... Aro1B) + MEmP®((A109By) 7Y, -+ (AroeBr) 1)) 2

1
! H(I)(AlalBl’”' , Ao By) + MFmFe((AyoyBy) 7t - ,(Akasz)fl)Hp
< M

This shows (2.6]). O
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Remark 2.12. If we take k = 1, the inequality (2.6) reduces the inequality (1.3). So, (2.6)) is an extension of (L.3]).
Now, we prove the folllowing useful result to present the another extension of inequality (2.5)) for p > 4.

Lemma 2.13. Let A;, B; € #,(C) be such that 0 < m < 4;,B; < M (i = 1,--- , k), for some scalars 0 < m < M
and let o1 and o9 be two arbitrary matrix means between the arithmetic and harmonic means. Then, for every positive
unital multilinear mapping ® : .Z*(C) — .#(C), we have

®%(A101 By, - -+, Apo1By) + M**m**®~2(A101 By, - - - , Apo1 By) < (M 4 m?F). (2.7)
Proof . From 0 <m < A;,B; <M (i=1,--- ,k) and (2.2)), it is clear that
d(ml,--- ,ml) =m" < ®(Ay01By,--- , Ayo1By,) < O(MI,--- ,MI) = M". (2.8)
We know that for every matrix 7" such that 0 <m < T < M,
M*mPT ™2+ T% < M? +m?,
If we apply the same property for (2.8)), deduces. O
In below, we obtain the another extension of (2.5)) for p > 4.

Theorem 2.14. Let A;, B; € #,(C) such that 0 < m < A;,B; < M (i = 1,--- ,k) and let o1 and o2 be two
arbitrary matrix means between the arithmetic and harmonic means. Then for every positive unital multilinear
mapping ® : .#¥(C) — .#)(C) and p > 4,

K k M2k 2k p
OP(Ayo1By,- -+, Aro1By) < ( (u )2 m )> OP(Ay09By,- -+, AroaBy), (2.9)
47 Mkmk
where u = 2 and K (u) = (111‘)2.
Proof . By(2.3) and (2.7)), we get
M2km2k
K(uk)<1>2(A1crlBl, cee ,AkalBk) + W®72(A10231, cee ,AkUQBk)
S K(Uk)®2(A10'1B1, cee ,Akngk) + M2km2kK(uk)q)72(A10'1B1, e ,Akngk)
< K (uF)(M?* + m?F). (2.10)

Applying Lemma [2.2)(i) and (ii), together with (2.10), we derive
H(I)g(Alo'lBl, “ee 7Akngk)M%km%(I)ig(A10'2B1, fee 7A]€O'2Bk;)H

2

1 2, & » M2km2k 4 oy
< Z K4(u )(1’2(A101B1,~~- ,AkalBk)—l— W 0] 2(A102B1,--- 7Ak0'2Bk—)
1 M2k 2k &
S Z (K(Uk)(p2(A10'1B1, e ,Akngk) —+ WéiQ(AlO—QBl’ s ,AA]CO'QBIC))Z
1 M2km2k 3 2
= Z K(uk)QQ(AlalBl, s ,AkalBk) + W‘D 2(1410’231, s 7Ak0'2Bk;)

(K (uF) (M2 + m?%))5
4 b
which leads to the desired result. [

<

Theorem 2.15. Let A;, B; € #,(C) be such that 0 < m < A;;B; <M (i =1,--- k) with 0 < m < M and let o1
and o9 be two arbitrary matrix means between the arithmetic and harmonic means. Then, for every positive unital
multilinear mapping ® : .#Z*(C) — .#(C) and 1 < a < 2,

™

D

(K%(uk)(Mka + mka))?

®P(Ay01By,- -, Apo1By) < L6 PP

(I)p(AIUQBla"' 7Ak02Bk)7 pZ 20(7 (211)

2
where u = 2 and K (u) = (11'5) is the Kantorovich constant.
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Proof . For 1 < a < 2, the (2.3) and the Lowner-Heinz inequality ensures us that
®Q(A10-2Bl, [ 7AkJQBk) S (K(Uk))a @a(Alo'lBl, e 7Ak‘0—1-Bk‘))
which is equivalent to

O~ (Ayoy By, -, Apor1 Br) < (K (uF))" @7 (A102By, -+, Apoa By). (2.12)

Making use of our assumptions, one can easily prove that

‘IJa(AlagBl, tee 7AkO—QBk-) + Mkamka(pia(Ala'lBl, te ,Ak(lek) S Mka + mko‘. (213)

To prove (2.11), from Lemma [2.2(i) and (ii) and inequalities (2.12)) and (2.13]), we have

|MEmF ok (MiorBy, -+ A1 B (MroaBy, - A B

2
< i K5 YMFTmT o 5 (A109By, -+, AwoaBy) + K5 (uF)®% (Ayoy By, -+, Ao1By)
» 2
< i (K_% (uF)M*m*e®d=2(A101By, - -, Apo1By) + K2 (u*)®* (A 09By, - - - ,AkUgBk)) 2
.
_ i K8 (b MFmbo =0 (Ay0y By, - , Aoy By) + K 3 (uF)®(A10s By, - , Apors By
_ KA () (MM mh) s

This is equivalent to

ol

(K% (uP) (M + mbe))

<I)1”(A10231, cee 7Ak02Bk) < 16 M *Pmkp

®P(A101By, -+, Apo1By)
This shows the desired inequality. [J

Remark 2.16. Choosing o = 1 and o = 2, in the inequality (2.11]), we get to the inequalities (2.6) and ({2.9),
respectively.

Theorem 2.17. Let A;, B; € #,(C) be such that 0 <m < A;, B; <M (i=1,--- ,k), when 0 < m < M and let o,
and o9 be two arbitrary matrix means between the arithmetic and harmonic means. Then, for every positive unital
multilinear mapping ® : .#Z*(C) — .#,(C),

e +ml <2KP(WF),  p>0,

where ’ -
mn =®2(A109B1,- -, AroaBy)®72 (Ao B, -, Ayo1Bi),

Y2 = Q%p(AlalBl, e ,AkUlBk)@%(Alo'gBl, e ’AkO'QBk)

and K (u) = (11;‘)2.

Proof . From inequality (2.6, it follows that
|®P(A101B1,- -+, Apo1Br)® P(A109By, - -+, ApoaBy)|| < (K(“k))p
Lemma 2.3 leads to

Y2 Kp(uk)l
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and ( k)
KP(u")I Yo
>
( no KW > =0
where
v = ®P(A102B1, -+ , ApoaBy)® P(A101By, - -, Aro1 By)
and

y2 = ®P(A101By, -+, Ago1 By )PP (A102By, - -+, Ako2By).
By summing up the two above inequalities, we obtain the following inequality:

( 2(KP(uF)I 71+ Y2 > >0
T2+ 2AKP(uNI ) =
Again using Lemma [2.3] we obtain result. [J
Now, utilizing the continuous functional calculus, we show the following result.

Theorem 2.18. Let A;, B; € #,,(C) be such that 0 < m < A;,B;, < M (i = 1,--- ,k), o1 and o9 be two arbitrary

matrix means between the arithmetic and harmonic means and f, g : [m, M] — [0, 00) be two continuous functions such
that g is non-zero, increasing and concave. Then, for every positive unital multilinear mapping ® : .Z*(C) — .#;(C)

f(@(Ayo1 By, Apo1By)) < vg(®(A102By, -+, ApoaBy))

A, By = Ml oy = 3 K (u) = U320 and

where oy = 4u

t
V= max{agKliik))t—i—ﬁg (te [m,M]}.

Proof . It follows from concavity of g that for ¢ € [m, M]

g(t) > agt + By.

On the other hand, by our assumptions m < ®(A,01By,- -, A,01B,) < M. Applying monotonicity principle for
operator functions and using lowner Heinz inequality for([2.3)), we get
g((I)(AlUgBl, e ,AnO'QBn)) Z ag(I)(AlagBl, e ,AnO'QBn) + Bg
> a K (uF)®(Ay01By, -+, Ayo1By) + By (2.14)

where K (u*) = 0+u)”  From K= (u*)t + B, # 0 for t € [m, M], it concludes that the function S (O
4uk . g g I ) agK_l(uk)t-‘r,@g

continuous on the interval [m, M]. Now, we can put

V= max{agK—ljzgk))t+ﬁg ite [m,M]}

Therefore, y(a, K~ (u*)t + B,) > f(t). Again with the aid of monotonicity principle for operator functions, we get
Y(ag K H(uF)®(A101 By, -, Apo1Bp) + By) > f(®(A101 By, -+, Ano1 By)). (2.15)

Combining inequalities (2.14)) and (2.15]), we derive the desired result. O

3 Some inequalities for dual and adjoint of matrix means

The authors in [I1] introduced the adjoint and the dual of a matrix mean as follows: Let o be an operator mean
with representing function f. A matrix mean with representing function f(¢=!)~! and ¢f(¢)~! are called the adjoint
and the dual of o, respectively, and are denoted by ¢* and o, respectively. Thus by the definition, we have

Ac*B=(A"'oB™)"! and ActB= (B loA™H)~ L

The next Theorem is the key result of this section.
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Theorem 3.1. Let A;, B; € #,(C) such that 0 < m < A;,B; < M (i =1,--- ,k) with 0 < m < M and ¢ be an
arbitrary matrix mean. Then

®*(A10By,- - , Ao By) < K*(uF)®?(A10" By - - - Ao By),

2
where o* is adjoint o, K(u) = % and v = %

Proof . Applying [4, Proposition 3.6],

®(A10By, -+, Ao By) + ME*mFo(AT o BT, - Ao B Y
S (b(Ala e 7Ak)0-¢(Bl7 U ?Bk) + Mkmk((b(Al_17 e aAlzl)(T@(Bl_l’ e 7Bk;_1))

By Lemma [2.5| and the subadditivity and the monotonicity property of the matrix mean o, respectively, we derive

®(A10By, -+, Ao By) + ME*mFo(AT o By, - A o B Y) < MP 4+ mP (3.1)

Using Lemma i), Lemma and inequality (3.1) and applying a method similar to (2.3, the rest of proof is
trivial. O

As a consequence, we have the following result:

Remark 3.2. Let A;, B; € #,(C) such that 0 < m < A;, B; <M (i=1,--- k), let 0 be an arbitrary matrix mean
and p > 0. Then,

(14 uk)?

P (Ao By, -+, AyoBy) < < T

p
> CI)p(Ala*Bl e AkO'*Bk)

for every positive unital multilinear mapping ® : .Z*(C) — .#,(C) and u = % For 0 < p <2, by Theorem and
the Lowner-Heinz inequality, the result is clear. If p > 2, then using a similar method in Theorem and using of
Lemma [2.2{ii), we get the desired result.

Using the same proof as in Theorem we have the following interesting Corollary.

Corollary 3.3. Let A;,B; € #,(C) be such that 0 < m < 4;,B; < M (1 <i < k) with 0 < m < M, let o1 and
09 be two arbitrary matrix means between arbitrary matrix mean ¢ and its adjoint ¢*. Then, for every multilinear
mapping ® : .#ZF(C) — .4,(C),

@p(Alo'lBl, e ,AkcrlBk) S Kp(uk)(pp(Alngl, cee ,AkO'QBk), P > 0 (32)

where u = & and K (u) = (11::)2.

Remark 3.4. Taking ¢ = V, then ¢* =! and the inequality (3.2)) becomes the inequality (2.5). Thus, this result
generalize the obtained results in the first section.

Now, we present inequality (1.2]) for the dual of a matrix mean.

Theorem 3.5. Let A;, B; € #,(C) such that 0 < m < A;,B; < M (i =1,--- ,k) with 0 < m < M and o be an
arbitrary matrix mean. Then, for every multilinear mapping ® : .#*(C) — .;(C)

®%(A1oBy, -+, Ao By) < K2 (u®)®?(Biot A, --- Brot Ay,

where ot is the dual of o, u = 2 and K (u) = %.

Proof . Notice that, by Lemma i) and the inequality (3.1]), we get
|®(AcB, -, Ao B)YM*m*® Y (Bio" Ay, -, Beot Ay)|| < (M" +m").

This shows the assertion as desired. [J

Using the same idea of the adjoint of a matrix mean, we can state:
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Corollary 3.6. Let A;, B; € #,,(C) besuch that 0 <m < A;,B; <M (i=1,--- ,k) with 0 < m < M, let oy and o9
be two arbitrary matrix means between arbitrary matrix mean ¢ and its dual o. Then, for every multilinear mapping

@ MF(C) — #4/(C),

(I)p(Alo'lB1, e ,AkalBk) S Kp(uk)@p(BlagAl, cee BkO'QAk), p > O7

where u = 2 and K (u) = “Zj)z.
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