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Abstract

In reliability studies, the probability R = P (Y < X) is called “reliability”, and X,Y are typically considered
independent. However, in many applications, such an assumption may be unrealistic. In this paper, we consider the
stress-strength reliabilityR = P (Y < X) where the stress Y and strengthX are dependent. We use a copula to describe
dependence among random variables X and Y . We obtain R for several copula functions with exponential marginal
and plot graphs of R versus the dependence parameter to study the effect of (positive and negative) dependency on
R.
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1 Introduction

Researchers in various fields, like medicine, psychology, engineering, and quality control, are interested in stress-
strength models. In stress-strength models, a component with a random strength X is assumed to be subject to
a random stress Y . The reliability of a component in such modes is defined as R = P (X > Y ). The reliability
of a stress-strength model has been studied in many cases when both stress and strength are independent random
variables (see [6, 10, 11]). Jovanović and Rajić [5] presented a stress-strength model where X and Y follow gamma and
exponential distributions. Jovanović [4] studied the estimation of the reliability for the independent random variables
X and Y. Less attention has been given to the evaluation of R when variables X and Y are dependent.

R has been studied when strength and stress are assumed to have a bivariate distribution (see [7, 2]). Patil et al. [9]
investigated the effect of dependency on the estimation of R in the exponential stress-strength models. They considered
FGM, AMH, Gumbel’s bivariate exponential, and Gumbel-Hougaard copula functions to take into account dependency
among the random variables X and Y. In this study, we consider more copula functions describing the positive and
negative dependency of variables and investigate the effect of type and strength of dependency on the R. In this work,
we denote by F , FX , and FY the joint and marginal distributions of bivariate random variables X and Y , respectively.
The joint survival function and the marginal survival functions of (X,Y ), that is, F̄ (x, y) = P{X > x,X > y},
F̄X(x) = P (X > x), and F̄Y (y) = P (Y > y) will be denoted by F̄ , F̄X , and F̄y, respectively. During this paper, we
assume the distributions FX and FY are continuous.
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2 Preliminaries

Let (X,Y ) be a random vector with the joint distribution function and marginal distributions FX and FY . The
function C : [0, 1]2 → [0, 1] such that, for all (x, y) ∈ R2, satisfies

F (x, y) = C(FX(x), FY (y)) (2.1)

is called copula of the vector (X,Y ). In this case, it also holds

C(u, v) = F (F−1
X (u), F−1

Y (v)),

for all u, v ∈ [0, 1]. Such a copula is a bivariate distribution function with margins uniformly distributed on [0, 1] ⊂ R,
and is unique whenever FX and FY are continuous. For further details on copulas, we refer the reader to the standard
references Joe [3] and Nelsen[8].

Definition 2.1. ([8]) If C1 and C2 are copulas, we say that C1 is smaller than C2, and write C1 ≺ C2 if C1(u, v) ≤
C2(u, v) for all u, v ∈ [0, 1].

In definition 2.1 C2 is said to be more concordant than C1. A parametric family {Cθ} of copulas is said to be
positively ordered if Cα ≺ Cβ whenever α ≤ β, and negatively ordered if Cα ≻ Cβ whenever α ≤ β (see [8, 3]). If
X and Y have joint distribution function F (x, y) with continuous margins FX(x) and FY (y), respectively, and copula
C(u, v), then X and Y are positively quadrant dependent (PQD) if

F (x, y) ≥ FX(x)FY (y), for all (x, y) ∈ R2, (2.2)

or equivalently if
F̄ (x, y) ≥ F̄X(x)F̄Y (y), for all (x, y) ∈ R2, (2.3)

where F̄ (x, y) = P (X > x, Y > y) is the joint survival function of (X,Y ). If X and Y have copula C then (2.3) is
equivalent to

C(u, v) ≥ uv for all (u, v) ∈ [0, 1]2. (2.4)

Negative quadrant dependence (NQD) is defined analogously by reversing the inequalities in (2.2), (2.3) and (2.4).
An important class of copulas known as Archimedean copulas.

Definition 2.2. A copula is said to be Archimedean if it can be written as

C(u, v) = ϕ(ϕ−1(u) + ϕ−1(v)), (2.5)

where ϕ : R+ −→ [0, 1] is a continuous, strictly decreasing and convex function such that ϕ(0) = 1, and limx→∞ϕ(x) =
0. The ϕ is called generator of the Archimedean copula.

Next, we recall some well-known families of bivariate copulas considered in this paper.

1. The Product (independent) copula
C(u, v) = uv (2.6)

2. The Clayton copula

The Clayton copula is a PQD Archimedean copula for θ > 0 and describes positive dependence, i.e., it is PQD.

Cθ(u, v) =
(
u−θ + v−θ − 1

)− 1
θ , θ > 0. (2.7)

3. The Gumbel-Hougaard copula

The Gumbel-Hougaard copula is an Archimedean copula and describes a positive dependence between the variables,
i.e., it is PQD.

Cθ(u, v) = exp
(
−
[
(− log u)θ + (− log u)θ

] 1
θ

)
; θ ∈ [1,∞). (2.8)

4. The Frank copula



Short Title of the Paper 3

The Frank copula is an Archimedean copula and is PQD for θ > 0 and NQD for θ < 0. This copula describe
negative dependence for θ ∈ (−∞, 0) and a positive dependence for θ ∈ (0,∞) .

Cθ(u, v) = −1

θ
log

[
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

]
.θ ∈ (−∞,∞) \ {0} (2.9)

5. The Farlie-Gumbel-Morgenstern (FGM) copula

Cθ(u, v) = uv[1 + θ(1− u)(1− v)] ; θ ∈ [−1, 1]. (2.10)

6. The Gumbel-Barnett (GB) copula

The Gumbel-Barnett copula is an Archimedean copula and describes a negative dependence between the variables,
i.e., it is NQD.

Cθ(u, v) = uv exp{−θ log u log v} ; θ ∈ [0, 1]. (2.11)

The Gumbel-Barnett copula is equal to product copula for θ = 0.

In the next section, we examine the effect of strength of dependence of X and Y on the p by considering different
copula functions. The strength of dependence in a copula with dependent parameter θ, can be transformed to Kendall’s
tau, which is a well-known measure to assess the dependence among two variables. Given the copula model (2.1),
Kendall’s tau for X and Y is expressed as

Kendall′s τ = 4

∫ 1

0

∫ 1

0

Cθ(u, v)Cθ(du, dv)− 1.

The Kendall’s τ does not depend on the marginals, and is solely determined by the copula. Therefore, it is
advantageous over the Pearson correlation X and Y . The Kendall’s τ of each aforementioned copula is expressed as
follows:

1. The Product (independent) copula τθ = 0.

2. The Clayton copula τθ = θ
θ+2 ; θ ∈ [−1,∞) \ {0}.

3. The Gumbel-Hougaard copula τθ = θ−1
θ ; θ ∈ [1,∞).

4. Frank copula τθ = 1− 4
θ [1−Dθ]; Dθ = 1

θ

∫ θ

0
x

exp(x)−1dx.

5. The FGM copula τθ = 2θ
9 ; θ ∈ [−1, 1].

6. The Gumbel-Barnett copula τθ = 1− 4
θ

∫ 1

0
x(1− θ log x) log(1− θ log x)dx; θ ∈ [0, 1].

3 Computation of p under different dependency conditions

In this section, we compute R for dependent random variables X and Y . Let U = FX(x) and V = FY (y) be the
corresponding marginal distribution functions of X and Y having copula C. Now we define

C
[1,1]
θ (u, v) =

∂2C(u, v)

∂u∂v
(3.1)

and

C
[1,0]
θ (u, v) = P (V < v|U = u) =

∂C(u, v)

∂u
. (3.2)

Using Theorem in [1] and (3.2), R can be written in terms of a univariate integral as follows:

R = P (X > Y )

= P (FY (X)) > FY (Y )) = P (FY (F
−1
X (U) > V ))

= E[P (V < FY (F
−1
X (U)|U)]

=

∫ 1

0

P (V < FY (F
−1
X (u))|U = u)du

=

∫ 1

0

C [1,0](u, FY (F
−1
X (u))du, (3.3)
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also we can write

R = P (X > Y ) =

∫∫
y<x

f(x, y)dxdy (3.4)

=

∫∫
y<x

C
[1,1]
θ [FX(x), FY (y)]fX(x)fY (y)dxdy.

In the following examples, we will see the behavior of R when the strength of dependence changes.

Example 3.1. Let the independent marginals X and Y have the exponential distributions with parameters λx and
λy ( E(X) = 1/λx, E(Y ) = 1/λy). Then by (3.4) we can write

R = P (X > Y ) =

∫∫
y<x

f(x, y)dxdy

=

∫ ∞

0

∫ x

0

λxλye
−xλxe−yλydydx =

λy

λx + λy
.

Example 3.2. Let the marginals X and Y have the exponential distributions with parameters λx and λy and corre-
sponding Clayton copula, i.e.,

Cθ(u, v) =
(
u−θ + v−θ − 1

)− 1
θ , θ > 0.

Then X and Y have a positive dependence and we obtain

C
[1,0]
θ (u, v) =

∂C(u, v)

∂u
= u−(θ+1)(u−θ + v−θ − 1)−

1
θ−1, (3.5)

and also we have

FX(x) = 1− exp(−λxx); FY (F
−1
X (u)) = 1− (1− u)

λx
λy .

Thus we get

R = P (X > Y ) =

∫ 1

0

[1 + uθ(1− (1− u)
λx
λy )−θ − uθ]−

1
θ−1du.

In Fig. 1, we have plotted the R in terms of θ where we assume λx/λy = 2, 3 and 0.5. For the case λx/λy = 2,
Fig. 1 shows (it has been verified numerically with the R package) that the reliability R increases when dependence
parameter θ increases from 0 to ∞ (i.e., when positive dependence increases).

Example 3.3. Let the marginals X and Y have the exponential distributions with parameters λx and λy and corre-
sponding Gumbel-Hougaard copula, i.e.,

Cθ(u, v) = exp
(
−
[
(− log u)θ + (− log u)θ

] 1
θ

)
; θ ∈ [1,∞).

Then

C
[1,0]
θ (u, v) =

∂C(u, v)

∂u

=
1

u
(− log u)θ−1 ×

[
(− log u)θ + (− log v)θ

] 1
θ−1 × exp

(
−
[
(− log u)θ + (− log u)θ

] 1
θ

)
and

C
[1,0]
θ (u, FY (F

−1
X (u))) =C

[1,0]
θ (u, 1− (1− u)

λx
λy ) (3.6)

=
1

u
(− log u)θ−1 ×

[
(− log u)θ + (− log[1− (1− u)λ])θ

] 1
θ−1

× exp
(
−
[
(− log u)θ + (− log[1− (1− u)λ])θ

] 1
θ

)
.
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Figure 1: R in term of θ in example 3.2

By replacing relation3.6 in relation 3.3 we can compute the R. In Fig. 2 we have plotted the R in terms of θ
where we assume λx/λy = 2, 3 and 0.5. For the case λx/λy = 0.5, as shown in Fig. 2, the R increases when positive
dependence increases. Noting that for GH copula τθ = θ−1

θ ; θ ∈ [1,∞), and the dependence between X and Y is
considered positive.

Example 3.4. Let the marginals X and Y have the exponential distributions with parameters λx and λy and corre-
sponding Gumbel-Barnett copula, i.e.,

Cθ(u, v) = uv exp{−θ log u log v}; θ ∈ [0, 1].

Then

C
[1,0]
θ (u, v) =

∂C(u, v)

∂u
= (1− θ)v exp{−θ log u log v},

and by letting λx

λy
= λ we get

C
[1,0]
θ (u, FY (F

−1
X (u))) = C

[1,0]
θ (u, 1− (1− u)λ)

= (1− θ)[1− (1− u)λ]× exp{−θ log u log[1− (1− u)λ]}. (3.7)

In Fig. 3, we have plotted the R in terms of θ where we assume λx/λy = 2, 3 and 0.5. For the cases λx/λy = 2, 3,
as shown in 3, the R decreases when negative dependence increases.

Example 3.5. Let the marginals X and Y have the exponential distributions with parameters λx and λy and corre-
sponding FGM copula, i.e.,

Cθ(u, v) = uv[1 + θ(1− u)(1− v)]; θ ∈ [−1, 1].

According to τθ = 2θ
9 ; θ ∈ [−1, 1] this copula describe the positive dependence for θ > 0 and the negative

dependence for θ < 0. However, for FGM copula we have −2
9 < τ < 2

9 . Thus, we get

c(u, v) = C
[1,1]
θ (u, v) =

∂2C(u, v)

∂u∂v
= 1 + θ(1− 2u)(1− 2v),

and since
FX(x) = 1− exp(−λxx); FY (y) = 1− exp(−λyy)

then using 3.4 we obtain

R = P (X > Y ) =

∫ ∞

0

∫ x

0

[1 + θ(1− 2FX(x))(1− 2FY (y))]fX(x)fY (y)dydx.
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Figure 2: R in term of θ in example 3.3

.

Figure 3: R in term of θ in example 3.4
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By replacing marginal density and distribution function in (3.4) and computing the simple integral, we obtain R
as

R = P (X > Y ) =
λy

λx + λy
− θλx[

2

λx + λy
− 1

λx + 2λy
− 2

2λx + λy
].

If assume λx = 2, λy = 1, then R = 1
3 − θ

30 , that is, for θ ∈ [−1, 1], R is a linear decreasing function of θ. Since

τ = 2θ
9 , one can say that R increases when negative dependence increases (i.e., θ decreases in [-1,0] ) and R decreases

when positive dependence increases (i.e., θ increases in [0,1]). If we suppose λx = 1, λy = 2 , this conclusion will be
the opposite (see Fig. 4).

Figure 4: R in term of θ in example 3.5

Example 3.6. Let the marginals X and Y have the exponential distributions with parameter λx and λy and corre-
sponding Frank copula, i.e.,

Cθ(u, v) = −1

θ
log

[
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

]
; θ ∈ (−∞,∞) \ {0}.

Then we obtain

C
[1,0]
θ (u, v) =

e−θu(e−θv − 1)

e−θ − 1 + (e−θu − 1)(e−θv − 1)
.

Thus

C
[1,0]
θ (u, FY (F

−1
X (u))) =C

[1,0]
θ (u, 1− (1− u)λ)

=
e−θu(e−θ(1−(1−u)λ) − 1)

e−θ − 1 + (e−θu − 1)(e−θ(1−(1−u)λ) − 1)
,

where λ = λx/λy. then using (3.3) we have

R = P (X > Y ) =

∫ 1

0

[
C

[1,0]
θ (u, FY (F

−1
X (u)))

]
du

=

∫ 1

0

e−θu(e−θ(1−(1−u)λ) − 1)

e−θ − 1 + (e−θu − 1)(e−θ(1−(1−u)λ) − 1)
du.

In Fig.s 5 and 6 , we have plotted the R in terms of θ where we assume λ = 2, 3 and 0.5. For the case λ = 2, 3, and
θ > 0 as shown in 5, the R increases when positive dependence increases and vice versa for the case λ = 0.5. There is
a similar interpretation but in the opposite direction for the case θ < 0 and Fig.R-Frank-neg.
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Figure 5: R in term of θ > 0 in example 3.6

Figure 6: R in term of θ < 0 in example 3.6

4 Conclusion

In this paper, we consider the stress-strength reliability R = P (X > Y ), where the stress Y is smaller than
the dependent strength variable X. We obtain the reliability function R according to the different types of copulas
describing positive and negative dependence with exponential marginal distribution functions. We compute R under
a variety of parametric marginal distributions and copulas. The results show that changes in R under a positive
dependence for E(X) < E(Y ) are increasing in terms of the dependency parameter, and R increases when the positive
dependence increases. When we consider the negative dependence between random variables stress and strength, R
decreases when the negative dependence increases, i.e., the dependency parameter increases (Examples 3.4, 3.5 and
3.6).
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