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Abstract

This study centers on establishing the existence of a unique solution for a class of fractional differential equations that
incorporate the Riemann-Liouville fractional derivative. The boundary conditions encompass a nonlocal condition
involving integration in a sub-domain near the boundary. Initially, the precise solution is derived for the linear
fractional differential equation. Subsequently, the Banach contraction mapping theorem is employed to establish the
primary result for the general nonlinearity of the source term. Additionally, the validity and applicability of our
primary result are illustrated through a specific example.
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1 Introduction and the problem formulation

Fractional-order differential and integral operators, characterized by their nonlocal nature, find diverse applications
in various applied fields. These applications span a range of disciplines, including but not limited to blood flow
problems, anomalous diffusion phenomena, the spread of diseases, control processes, and population dynamics. for
instance see [13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24].

The utilization of the fixed-point theory, coupled with various other methodologies, is a pivotal approach for
examining solutions to boundary value problems. This method plays a significant role in not only establishing the
existence of a solution but also in obtaining an approximate solution, see [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 18, 25].
There has been a significant surge of interest in investigating nonlocal nonlinear fractional-order phenomena, evident in
both single-valued and multi-valued boundary value problems over recent years. Within the research domain focused
on establishing existence and uniqueness results for boundary value problems using fixed-point theory, the task of
identifying the Green function – a crucial element facilitating the presentation of a unique solution in linear cases –
has proven to be particularly challenging, except in instances of simpler cases.
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In this research, we explore the presence of a distinct solution for a category of fractional differential equations
with nonlocal boundary conditions, as expressed by:{

0D
α
t u+ f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(η) +
∫ 1

η
u(s)ds = 0.

(1.1)

where 2 < α ≤ 3, 0 ≤ η < 1, 0D
α
t u is the left Riemann-Liouville fractional derivative and f : (0, 1)× R× R → R is a

given continuous function.

Definition 1.1. Let α ∈ R+. The operator aD
−α
t , defined on L1[a, b] by

aD
−α
t u(t) :=

1

Γ(n)

∫ t

a

(t− τ)α−1u(τ)dτ

for t ∈ [a, b], is called the Riemann-Liouville fractional integral of order α.

Definition 1.2. Let α ∈ R+ and m = ⌈α⌉.The operatoraD
α
t , defined by

aD
α
t u := Dm(aD

−(m−α)
t u) =

1

Γ(m− α)

( dm

dtm
) ∫ t

a

(t− τ)m−1−αu(τ)dτ

is called the Riemann-Liouville fractional differential of order α.

2 Solution to the linear equation

First, let we have an observation to

Lemma 2.1. [4, Lemma 5.2] Let α > 0, where α is a positive integer, and let m be the ceiling of α. Additionally,
assume that all the hypotheses of Theorem 5.1 in [4] are satisfied. Consider the function u ∈ C(0, h] as a solution to
the differential equation:

0D
α
t u(t) = f(t, u(t)),

subject to the initial conditions:

0D
α−k
t u(0) = bk (k = 1, 2, ...,m− 1), lim

z→0+
0Dt

−(m−α)u(z) = bm.

This function u is a solution to the Volterra integral equation if and only if it satisfies these conditions.

u(t) =
1

Γ(α)

∫ t

0

(x− τ)α−1f(τ, u(τ))dτ +

m∑
k=1

bk
Γ(α− k + 1)

tα−k. (2.1)

Now, we go back to the aimed problem 1.1. Typically, the methodology involves seeking solutions as fixed points
of an operator. This operator is defined by utilizing the Green’s function associated with the linear version of the
problem

0D
α
t u(t) + y(t) = 0, t ∈ (0, 1), (2.2)

with respect to the integral boundary conditions.

Theorem 2.2. Let 2 < α ≤ 3. Assume y ∈ C[0, 1], then the problem (2.2) has a unique solution u ∈ C1[0, 1], given
by

u(t) = −1
Γ(α)

∫ t

0
(t− s)α−1y(s)ds+ µ1(t)

∫ η

0
(η − s)α−2y(s)ds+ µ2(t)

[ ∫ η

0
(η − s)αy(s)ds

−
∫ 1

0
(1− s)αy(s)ds+ (1−ηα)

ηα−2

∫ η

0
(η − s)α−2y(s)ds

]
, (2.3)

where

µ1(t) =
tα−1

Γ(α)ηα−2
, and µ2(t) =

tα−1

Γ(α)[α(α− 1)ηα−2 + ηα − 1]
.
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Proof . By applying Lemma 2.1, we observe that Eq. (2.2) is equivalent to

u(t) = 0Dt
−α(−y(t)) =

−1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+

3∑
k=1

0D
α−k
t u(0)

Γ(α− k + 1)
tα−k. (2.4)

Set ck = 0D
α−k
t u(0)

Γ(α−k+1) , so

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c1t
α−1 + c2t

α−2 + c3t
α−3. (2.5)

Since 2 < α ≤ 3 and u(0) = 0 then we should have c3 = 0. Similarly, since u′(0) = 0 we have c2 = 0. So the Eq.
(2.5) deduces to

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c1t
α−1.

Hence

u′(t) =
1− α

Γ(α)

∫ t

0

(t− s)α−2y(s)ds+ c1(α− 1)tα−2.

Set t = η in above equality, by integral BC u′(η) +
∫ 1

η
u(s)ds = 0, we get

−
∫ 1

η

u(s)ds =
1− α

Γ(α)

∫ η

0

(η − s)α−2y(s)ds+ c1(α− 1)ηα−2.

Therefore

c1 =
1

Γ(α)ηα−2

∫ η

0

(η − s)α−2y(s)ds+
1

(1− α)ηα−2

∫ 1

η

u(s)ds.

Which yields:

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
tα−1

Γ(α)ηα−2

∫ η

0

(η − s)α−2y(s)ds+
tα−1

(1− α)ηα−2

∫ 1

η

u(s)ds. (2.6)

Set A =
∫ 1

η
u(s)ds. By integrating both sides of the last equality on interval [η, 1] with respect to t, we get the

following:

A = −1
Γ(α)

∫ 1

η

∫ t

0
(t− s)α−1y(s)dsdt+

∫ 1

η
tα−1

Γ(α)ηα−2

∫ η

0
(η − s)α−2y(s)dsdt+ A

(1−α)ηα−2

∫ 1

η
tα−1dt. (2.7)

or

A =
1− α

Γ(α)
(
α(1− α)ηα−2 + ηα − 1

)[ηα−2

∫ η

0

(η− s)αy(s)ds− ηα−2

∫ 1

0

(1− s)αy(s)ds+ (1− ηα)

∫ η

0

(η− s)α−2y(s)ds
]
.

(2.8)

Replacing this value to Eq. (2.6), we obtain the following expression for u:

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
tα−1

Γ(α)ηα−2︸ ︷︷ ︸
µ1(t)

∫ η

0

(η − s)α−2y(s)ds

+
tα−1

Γ(α)
(
α(1− α)ηα−2 + ηα − 1

)︸ ︷︷ ︸
µ2(t)

[ ∫ η

0

(η − s)αy(s)ds−
∫ 1

0

(1− s)αy(s)ds+
(1− ηα)

ηα−2

∫ η

0

(η − s)α−2y(s)ds
]
.

(2.9)

□
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3 Fixed point iteration

Consider C1[0, 1], the Banach space comprising all continuously differentiable functions from [0, 1] to R. This space
is equipped with the usual norm |u| = |u|∞ + |u′|∞. By replacing y(x) with f(t, u(t), u′(t)) in Theorem 2.2, we can
define an operator T : C1[0, 1] → C1[0, 1] associated with problem (1.1) as:

Tu(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s), u′(s))ds+ µ1(t)

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds (3.1)

+ µ2(t)
[ ∫ η

0

(η − s)αf(s, u(s), u′(s))ds−
∫ 1

0

(1− s)αf(s, u(s), u′(s))ds (3.2)

+
(1− ηα)

ηα−2

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds
]
. (3.3)

We confirm that, based on Theorem 2.2, the solutions to problem (1.1) precisely correspond to the fixed points of
the operator T .

4 Main results

We are prepared to demonstrate the central theorem. To enhance computational efficiency, we place

R =
1

Γ(α)
+

1

Γ(α+ 1)
+

ηα−1

α− 1
∥µ1∥+

(ηα+1 + 1

α+ 1
+

η|1− ηα|
α− 1

)
∥µ2∥.

Theorem 4.1. Given that the contraction condition described below is satisfied:
(H1) There exists Lf > 0 such that

|f(t, u, u)− f(t, v, v)| ≤ Lf

(
|u− v|+ |u− v|

)
,∀t ∈ [0, 1], u, v, u, v ∈ R. (4.1)

If LfR < 1, the boundary value problem (BVP) (1.1) possesses a singular solution within the confined region of

the ball Br = u ∈ C1[0, 1] : |u| ≤ r, where r ≥ NfR
1−LfR

. Here, Nf is defined as supt∈[0,1] |f(t, 0, 0)|.

Proof . Initially, we establish that T : Br → Br, implying that T (Br) ⊂ Br. Let’s consider u ∈ Br and t ∈ [0, 1],
indicating that |u| = |u|∞ + |u′|∞ ≤ r. Our objective is to demonstrate that ∥Tu∥ = ∥Tu∥∞ + ∥(Tu)′∥∞ ≤ r. It is
routine to see that

|Tu(t)| ≤ 1

Γ(α)

∫ t

0

|t− s|α−1|f(s, u(s), u′(s))|ds+ ∥µ1∥∞
∫ η

0

|η − s|α−2|f(s, u(s), u′(s))|ds

+∥µ2∥∞
[ ∫ η

0

|η − s|α|f(s, u(s), u′(s))|ds+
∫ 1

0

|1− s|α|f(s, u(s), u′(s))|ds

+|1− ηα

ηα−2
|
∫ η

0

|η − s|α−2|f(s, u(s), u′(s)|ds
]

(4.2)

≤ 1

Γ(α+ 1)
tα∥f∥∞ +

ηα−1

α− 1
∥µ1∥∞∥f∥∞ +

ηα+1

α+ 1
∥µ2∥∞∥f∥∞

+
1

α+ 1
∥µ2∥∞∥f∥∞ +

η|1− ηα|
α− 1

∥µ2∥∞∥f∥∞. (4.3)

But

|f(t, u(t), u′(t))| = |f(t, u(t), u′(t)) + f(t, 0, 0)− f(t, 0, 0)|
≤ |f(t, u(t), u′(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ Lf (|u(t)|+ |u′(t)|) + |f(t, 0, 0)|.

Take supremum of inequality above ∥f∥∞ ≤ Lf∥u∥+Nf ≤ Lfr +Nf . Therefore

∥Tu∥∞ ≤ (Lfr +Nf )
( 1

Γ(α+ 1)
+

ηα−1

α− 1
∥µ1∥∞ +

ηα+1 + 1

α+ 1
∥µ2∥∞ +

η|1− ηα|
α− 1

∥µ2∥∞
)
. (4.4)



Existence and uniqueness for nonlinear fractional equation 5

Also

(Tu)′(t) =
1− α

Γ(α)

∫ t

0

(t− s)α−2f(s, u(s), u′(s))ds+ µ′
1(t)

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds

+ µ′
2(t)

[ ∫ η

0

(η − s)αf(s, u(s), u′(s))ds−
∫ 1

0

(1− s)αf(s, u(s), u′(s))ds

+
(1− ηα)

ηα−2

∫ η

0

(η − s)α−2f(s, u(s), u′(s))ds
]
. (4.5)

So we have

|(Tu)′(t)| ≤ tα−1

Γ(α)
∥f∥∞ +

ηα−1

α− 1
|µ′

1∥∞∥f∥∞ +
(ηα+1 + 1

α+ 1
+

η|1− ηα|
α− 1

)
∥µ′

2∥∥f∥∞. (4.6)

This yields:

∥(Tu)′∥∞ ≤ (Lfr +Nf )
[ 1

Γ(α)
+

ηα−1

α− 1
∥µ′

1∥∞ +
(ηα+1 + 1

α+ 1
+

η|1− ηα|
α− 1

)
∥µ′

2∥∞
]
. (4.7)

Combining (4.4) and (4.7), we conclude

∥Tu∥ ≤(Lfr +Nf )
[ 1

Γ(α)
+

1

Γ(α+ 1)
+

ηα−1

α− 1
∥µ1∥+

(ηα+1 + 1

α+ 1
+

η|1− ηα|
α− 1

)
∥µ2∥

]
= (Lfr +Nf )R.

Selecting r such that r ≥ (Lfr +Nf )R is enough to ensure TBr ⊂ Br. Moving forward, let’s demonstrate that T
is a contraction. It’s worth noting that, for any arbitrary u, v ∈ C1[0, 1], we have:

|(Tu)(t)− (Tv)(t)| ≤ 1

Γ(α)

∫ t

0

|t− s|α−1|f(s, u(s), u′(s))− f(s, v(s), v′(s))|ds

+∥µ1∥∞
∫ η

0

|η − s|α−2|f(s, u(s), u′(s))− f(s, v(s), v′(s))|ds

+∥µ2∥∞
[ ∫ η

0

|η − s|α|f(s, u(s), u′(s))− f(s, v(s), v′(s))|ds

+

∫ 1

0

|1− s|α|f(s, u(s), u′(s))− f(s, v(s), v′(s))|ds

+
|1− ηα|
ηα−2

∫ η

0

|η − s|α−2|f(s, u(s), u′(s)− f(s, v(s), v′(s))|ds
]

≤ Lf∥u− v∥
[ 1

Γ(α+ 1)
+

ηα−1

α− 1
∥µ1∥∞ +

(ηα+1 + 1

α+ 1
+

η|1− ηα|
α− 1

)
∥µ2∥∞

]
.

Similarly

|(Tu)′(t)− (Tv)′(t)| ≤ Lf∥u− v∥
[ 1

Γ(α)
+

ηα−1

α− 1
∥µ′

1∥∞ +
(ηα+1 + 1

α+ 1
+

η|1− ηα|
α− 1

)
∥µ′

2∥∞
]
. (4.8)

Form (4.8) and (4.8) we obtain: ∥Tu− Tv∥ ≤ Lf∥u− v∥R. Applying the Banach Contraction Mapping Theorem,
the equation referenced by (1.1) possesses a sole solution within the interval [0, 1]. □

5 Illustrative example

Consider the following fractional differential equation 0D
2.5
t u+ ρ

(
u(t)

2+u(t) + sin (u′(t)) + cos(t)
)
= 0, t ∈ (0, 1), ρ > 0

u(0) = u′(0) = 0, u′( 12 ) +
∫ 1

1
2
u(s)ds = 0.

(5.1)
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Figure 1: : Diagram of f versus u and u′ for the Example.

As it is seen, α = 5
2 , η = 1

2 and f(t, u(t), u′(t)) = ρ
(

u(t)
2+u(t) + sin (u′(t)) + cos(t)

)
. It is obviously observed that

|f(t, u(t), u′(t))− f(t, v(t), v′(t))| =
∣∣∣∣ρ( u(t)

2 + u(t)
+ sin (u′(t)) + cos(t)

)
− ρ

(
v(t)

2 + v(t)
+ sin (v′(t)) + cos(t)

)∣∣∣∣
=

∣∣∣∣ρ( u(t)

2 + u(t)
− v(t)

2 + v(t)

)
− ρ (sin(u′(t)− sin(v′(t))

∣∣∣∣
≤ρ

(∣∣∣∣ |u(t)|
2 + |u(t)|

− |v(t)|
2 + |v(t)|

∣∣∣∣)+ ρ |sin(u′(t)− sin(v′(t)|

≤ρ |u(t)− v(t)|+ ρ |u′(t)− v′(t)|
=ρ (|u(t)− v(t)|+ |u′(t)− v′(t)|) . (5.2)

On the other hand, routine calculation implies the following results:

µ1(t) =
4

3

√
2

π
t3/2, µ2(t) =

4t3/2

3
(
2
√
2− 1

)√
π
, (5.3)

∥µ1(t)∥ = ∥µ1(t)∥∞ + ∥µ′
1(t)∥∞ = 2.6596152026762176, (5.4)

∥µ2(t)∥ = ∥µ2(t)∥∞ + ∥µ′
2(t)∥∞ = 1.0285517643588031, (5.5)

Nf = sup
t∈[0,1]

|f(t, 0, 0)| = 1, (5.6)

R = 2.2821205857367284. (5.7)

Hence, by selecting a value for ρ such that ρR < 1, we ensure that the conditions outlined in Theorem 4.1
are satisfied. Consequently, we establish the existence of a unique solution within the confines of the ball Br =
u ∈ C1[0, 1] : |u| ≤ r, where r ≥ R

1−ρR . The feasibility of the function f for the singular solution at t = 0 is

illustrated in Fig. 1, with the chosen parameter ρ = 1
3 .
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