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Abstract

In this paper, we model the spread of COVID-19 in a population of people travelling between two areas. New research
implies that traveling of the asymptomatic infectious individuals, (i.e., infected individuals who have no symptoms of
the disease and individuals with symptoms of the disease that are not detected by the healthcare system) can bring
disease from one region to other regions even if the infectious individuals who are detected by the healthcare system,
(i.e., confirmed cases), are inhibited from traveling among regions. We study the effect of travelling between two areas
on the dynamics of COVID-19. Our model is formulated as a system of ordinary differential equations, with terms
accounting for disease transmission, recovery, birth, death, and travel between two areas. We will give an explicit
formula for calculating the basic reproduction number, R0, in the quarantine mode of two areas and explicit bounds
on R0 for the case where the residents of both areas are in contact with each other. Our computations reveal the
relationship between the basic reproduction number, a crucial quantity in epidemic control, and travel and return
rates between areas. This suggests that it is essential to strengthen restrictions on passengers once infectious diseases
appear.
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1 Introduction

Some components of infectious diseases can make their modelling complex, for example, spatial heterogeneity,
which small household models can quantify. In [3], these stochastic models are briefly discussed. In [1], Arrigoni
and Pugliese, by using continuous-time Markov chains, give a more general model for households. The use of partial
differential equations is another approach to introduce spatial variation in epidemic models, [2]. Consider the specific
disease COVID-19, which occurs through person-to-person contact in the tissues between two areas and spreads well
through the transportation systems. The spread of transportation networks and the high speed of movement of
people between different regions can cause the spread of disease from one region to another. In this situation, the
travel of people between separate geographical regions plays a crucial role in the spread of the disease. Multi-area
spatial models with ordinary differential equations are rooted in mathematical ecology, competing, and predator-prey
metapopulations, [8, 9]. The problem with these models is the high number of equations; for example, a model with
n areas and p compartments has pn2 equations.

In mathematical epidemiology, several models have been used to separate geographical areas. In [10, 14] to study
the global spread of influenza through the airline network, discrete-time difference equations are considered in a
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continuous state space. In [15], Sattenspiel and Dietz, by identifying the parameters related to measles transmission,
investigated the spread of this disease by modelling travel between populations on the island of Dominica in the
Caribbean Sea. They studied the behaviour of this model numerically. In [17], they studied the same model for travel
between populations in the Canadian subarctic.

In this paper, we first formulate a mobility model for residents of two areas travelling between them. Note that
the demographic model here is adapted from [15]. Our approach in this paper is geographic. However, it should be
noted that there is an obvious connection to heterogeneous population modelling [17]. In the next step, we consider
the time evolution of the COVID-19 disease in this model, by adapting the COVID-19 model presented and analyzed
in [12]. We provide an exact derivation of the basic reproduction number R0 for each area in the quarantine mode of
two areas and explicit bounds on R0 for the case where the residents of both areas are in contact with each other.

2 The mobility model

In [15], authors assume no birth or natural death of individuals; they assume only intercity travel. In this model,
we assume birth and death occur at the same rate d > 0. In addition, we assume that birth occurs only in the area
where people live, and their death occurs in any area.

Suppose we have two areas, so that the residents of Area 1 are the people who were born and naturally live there,
and the travellers, who are the people not present in the area of their residence at the desired time. We use N1,2(t)
for the number of residents of area 1 who are present in area 2. Letting Nr

i be the resident population of area i at
time t for i = 1, 2, then the number of residents of areas 1 and 2 is respectively as follows,

Nr
1 =

2∑
j=1

N1j , and Nr
2 =

2∑
j=1

N2j . (2.1)

Furthermore, let Np
i (t) denotes the population of individuals who are physically present in area i at time t for

i = 1, 2, both residents and travelers.

Np
1 =

2∑
j=1

Nj1, and Np
2 =

2∑
j=1

Nj2. (2.2)

As in [2], residents of area i (i = 1, 2), leave the site at a per capita rate gi ≥ 0 per unit time. A fraction mji ≥ 0
of these outgoing individuals go to site j. Thus, if gi > 0 then

∑n
j=1 mji = 1, with mii = 0 and gimji is the travel rate

from area i to area j for i, j = 1, 2. Residents of area i who are in area j return to i with a per capita rate of rij ≥ 0,
with rii = 0. Now, with the above assumptions and a large enough population, ordinary differential equations for
population dynamics can be obtained.

dN11

dt
= d(Nr

1 −N11) +
∑2

j=1 r1jN1j − g1N11 = dN12 + r12N12 − g1N11

dN22

dt
= d(Nr

2 −N22) +
∑2

j=1 r2jN2j − g2N22 = dN21 + r21N21 − g2N22,

(2.3)

and, 
dN12

dt
= g1N11 − r12N12 − dN12

dN21

dt
= g2N22 − r21N21 − dN21.

(2.4)

From the combination of equations (2.3) and (2.4), the evolution of the resident population of area 1 is as follows,

dNr
1

dt
=

d

dt
(N11 +N12) = 0, (2.5)

and the change of people in area 1,

dNp
1

dt
=

d

dt
(N11 +N21) = dN12 + r12N12 − g1N11 + g2N22 − r21N21 − dN21. (2.6)
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Similarly, for area 2, the demographic changes are as follows,

dNr
2

dt
=

d

dt
(N22 +N21) = 0, (2.7)

and

dNp
2

dt
= dN21 + r12N12 − g2N22 + g1N11 − r12N12 − dN12. (2.8)

According to (2.5) and (2.7), the number of residents of areas 1 and 2 is a fixed quantity, but from (2.6) and (2.8),
the number of individuals present in areas 1 and 2 are variable. Finally, the total population in the 2-area system is
given by

N =

2∑
i=1

Nr
i =

2∑
i=1

Np
i =

2∑
i=1

2∑
i=1

Nij , (2.9)

N is constant because according to (2.5) and (2.7), the population of residents of both areas is constant. Equations
(2.3) and (2.4) have initial values Nij ≥ 0 at t = 0 with fixed Nr

i > 0 for i, j = 1, 2 at t = 0, and called the linear
mobility model. The model has the following unique equilibrium point because d > 0.

N̂11 =
(d+ r12)(N11 +N12)

d+ r12 + g1
, N̂22 =

(d+ r21)(N21 +N22)

d+ r21 + g2
, (2.10)

and

N̂12 =
g1(N11 +N12)

d+ r12 + g1
, N̂21 =

g2(N21 +N22)

d+ r21 + g2
. (2.11)

3 COVID-19 model

In each of these two areas, an epidemic model can be created. In nature, the most abundant species are viruses
and parasites, because they reproduce quickly. This high-scale reproduction causes infectious diseases in humans
or animals, so these species are important in the social, economic, and medical fields. One of these species is the
coronavirus. According to the experience gained in China, using strict isolation measures can rapidly and significantly
affect the dynamic of the epidemic, [6].

The beginning of working with mathematical models in epidemiology dates back to the 18th century. In [4],
Bernnoli used a mathematical model to investigate the effectiveness of a technique against smallpox with the aim
of influencing public health policies. Most of the models are compartmental models that divide the population into
different classes, and these classes are transferred to each other with certain assumptions [5].

We use the model introduced in [12] by the author and its compartments, the class S for susceptible individuals;
class A consists of two groups of individuals in the community, asymptomatic infectious individuals, i.e., infected
individuals who have no symptoms of the disease and individuals with symptoms of the disease that are not detected
by the healthcare system; the class D for infectious individuals who are detected by the healthcare system, i.e.,
confirmed cases; and the class of recovered individuals R.

Let Sij , Aij , and Rij denote the number of susceptible, asymptomatic, and recovered individuals resident in area
i who are present in area j at time t; thus, Nij = Sij +Aij +Rij +Dj for all i, j = 1, 2.

In each area, there are seven equations. Since there are two areas, there is a total of 14 equations. The dynamics
of the number of susceptibles, asymptomatics, confirmed cases, and recovered individuals originating from site i (with
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S11 A11 D1 R11

S12 A12 D2 R12

β11S11(A11+A21)

β
′
12S12(A12+A22)

−−→
dNr

1

↓dS11 ↓(d+m)A11 ↓(d+m)D1 ↓dR11

↑dS12 ↑(d+m)A12 ↑(d+m)D2 ↑dR12

r12S12g1S11

ρ1R11

r12A12g1A11

δ
′
1A12

ν
′
1A12

δ1A11

ν1A11

γ
′
1D2

γ1D1

r12R12g1R11

ρ
′
1R12

ϵ
′
1A12

ϵ1A11

Figure 1: The flowchart of the model 3.1

S22 A22 D2 R22

S21 A21 D1 R21

β22S11(A11+A21)

β
′
21S12(A12+A22)

−−→
dNr

2

↓dS22 ↓(d+m)A22 ↓(d+m)D2 ↓dR22

↑dS21 ↑(d+m)A21 ↑(d+m)D1 ↑dR21

r21S21g2S22

ρ2R22

r21A21g2A22

δ
′
2A21

ν
′
2A21

δ1A22

ν2A22

γ
′
2D1

γ2D2

r21R21g2R22

ρ
′
2R21

ϵ
′
2A21

ϵ2A22

Figure 2: The flowchart of the model 3.2

= 1, 2) are given by the following system.

dS11

dt
= d(Nr

1 − S11) + r12S12 − g1S11 − β11S11(A11 +A21) + ρ1R11,

dA11

dt
= r12A12 − g1A11 + β11S11(A11 +A21)− (δ1 + ν1 + ϵ1)A11 − (d+m)A11,

dR11

dt
= r12R12 − g1R11 + γ1D1 − (d+ ρ1)R11 + ϵ1A11,

dS22

dt
= d(Nr

2 − S22) + r21S21 − g2S21 − β22S221(A22 +A12) + ρ2R22,

dA22

dt
= r21A21 − g2A22 + β22S22(A22 +A12)− (δ2 + ν2 + ϵ2)A22 − (d+m)A22,

dR22

dt
= r21R21 − g2R22 + γ2D2 − (d+ ρ2)R22 + ϵ2A22,

dD1

dt
= (δ1 + ν1)A11 + (δ

′

2 + ν
′

2)A21 − (γ
′

2 + γ1 + d+m)D1,

(3.1)
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and for j ̸= i, 

dS12

dt
= g1S11 − r12S12 − β

′

12S12(A12 +A22) + ρ
′

1R12 − dS12,

dA12

dt
= g1A11 − r12A12 + β

′

12S12(A12 +A22)− (δ
′

1 + ν
′

1 + ϵ
′

1)A12 − (d+m)A12,

dR12

dt
= g1R11 − r12R12 + γ

′

1D2 − (d+ ρ
′

1)R12 + ϵ
′

1A12,

dS21

dt
= g2S22 − r21S21 − β

′

21S21(A21 +A11) + ρ
′

2R21 − dS21,

dA21

dt
= g2A22 − r21A21 + β

′

21S21(A21 +A11)− (δ
′

2 + ν
′

2 + ϵ
′

2)A21 − (d+m)A21,

dR21

dt
= g2R22 − r21R21 + γ

′

2D1 − (d+ ρ
′

2)R21 + ϵ
′

2A21,

dD2

dt
= (δ2 + ν2)A22 + (δ

′

1 + ν
′

1)A12 − (γ
′

1 + γ2 + d+m)D2.

(3.2)

The mobility scheme in Figures 1 and 2 describes the inward and outward commuting individuals who travel
between areas in the multiarea system. The parameters are defined in Table 1.

Equations (3.1) and (3.2) for all i, j = 1, 2 describe the evolution of the number of susceptible, asymptomatic,
confirmed cases, and recovered individuals according to the assumptions of the mobility model.

Proposition 3.1. The nonnegative orthant R8
≥0 is positively invariant under the flow of (3.1) and (3.2), and for all

t > 0 and i, j = 1, 2, Sii > 0, and Sij > 0 provided that gimji > 0. Furthermore, solutions of (3.1) and (3.2) are
bounded.

Proof . All solutions of the system are smooth. And if all components of the solution of the system have nonnegative
initial conditions, and any of the compartments are zero at time t = ti ≥ 0, then the derivatives are nonnegative. For
example, if S11(t1) = 0 and X(t1) ≥ 0 for all other components of the solution, we get

dS11(t1)

dt
= dNr

1 + r12S12(t1) + ρ1R11(t1) ≥ 0,

which implies S11(t
+
1 ) ≥ 0, and hence S11(t) is nonnegative for all times t ≥ 0. By similar arguments, we can prove

that all compartments are nonnegative at all times t ≥ 0.

From (3.1), for i = 1, 2 if Sii = 0 at t = 0, then

dSii

dt
= dNr

i + rijSij + ρiRii > 0, i, j = 1, 2, i ̸= j,

and thus Sii > 0 for t > 0. Similarly, from (3.2) we have

dSij

dt
= giSii + ρ

′

iRij > 0 i, j = 1, 2, i ̸= j.

Thus for t > 0, Sij > 0 for i ̸= j. Furthermore the positive invariance of R8
≥0 and the constant population property

implies boundedness of the solutions. □

Theorem 3.1. Suppose that systems (3.1) and (3.2) are at equilibrium and that a given area 1 is at the DFE. Then,
area 2 is at the DFE.

Proof . According to the assumption, suppose that area 1 is at DFE, i.e., A11 = 0 and A21 = 0. Consider The second
equation of (3.1),

dA11

dt
= r12A12.

As area 1 is at the DFE, so
dA11

dt
= 0, and thus, since r12 > 0, it follows that A12 = 0. Now we consider the

second equation of (3.2), so we have
dA12

dt
= β

′

12S12A22.
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Since β
′

12 > 0, Proposition 3.1 implies S12 > 0 for t > 0, hence A22 = 0, and area 2 is at the DFE. □

According to the above theorem, area 1 is at the DFE if

S11 = N̂11, A11 = 0, D1 = 0, R11 = 0, S21 = N̂21, A21 = 0, R21 = 0.

So, the DFE equilibrium point in area 1 is as follows.

DFE1 = (N̂11, 0, 0, 0, N̂21, 0, 0) ∈ R
7
+.

Similarly, the DFE equilibrium point in area 2 is given below:

DFE2 = (N̂22, 0, 0, 0, N̂12, 0, 0) ∈ R
7
+.

Theorem 3.2. Suppose systems (3.1) and (3.2) are at equilibrium, and COVID-19 is endemic in area 1. Then the
disease is endemic in area 2.

Proof . The endemicity of the disease in area 1, means that for some q ∈ {1, 2}, Aq1 > 0. To continue the proof, we
must show that if the disease is endemic in area 1, we have A11 > 0. If q ̸= 1, and A11 = 0. Since the system is at
equilibrium, from (3.1),

0 =
dA11

dt
= r12A12 + β11S11A21.

Since for t > 0, β11S11 > 0, we have A21 = 0, which contradicts A21 > 0. Hence, A11 > 0 if the disease is endemic
in area 1. Now consider the second equation of (3.2) and assume A12 = 0. Since the system is at equilibrium, we have

0 =
dA12

dt
= g1A11 + β

′

12S12A22,

this implies that A11 = 0, which is a contradiction. Thus A12 > 0 and A22 > 0. Hence, the disease is endemic in area
2. □

4 The Basic Reproduction Number

The basic reproduction number, R0, is a crucial quantity in epidemic models. There are several methods for
computation of R0, see [11]. We use the next-generation matrix method. We apply this method for the evaluation of
the basic reproduction of the model.

First, note that if area 1 is isolated from area 2, i.e. r12 = g1 = g2 = r21 = 0, the equilibrium points in the mobility
model in area 1 are N̂11 = Nr

1 and N̂21 = 0. Also, when area 1 is isolated due to the refusal of travel between the two
areas, the population of residents and the physical population will equalize. According to these assumptions, we will
calculate the Basic Reproduction Number in area 1. We use the next-generation matrix [7] and the method of [18].
By ordering the infectious variables as

A11, D1, A21,

we form the F and V matrices as follows.

F =

 β11S11(A11 +A21)

(δ1 + ν1)A11 + (δ
′

2 + ν
′

2)A21

β
′

21S21(A21 +A21)

 , and V =

 (δ1 + ν1 + ϵ1)A11 + (d+m)A11

(γ
′

2 + γ1 + d+m)D1

(δ
′

2 + ν
′

2 + ϵ
′

2)A21 + (d+m)A21

 .

By linearizing the F and V at the DFE point, we have

F1 =

 β11N
r
1 0 β11N

r
1

(δ1 + ν1) 0 (δ
′

2 + ν
′

2)
0 0 0

 , and V1 =

 δ1 + ν1 + ϵ1 + d+m 0 0

0 γ
′

2 + γ1 + d+m 0

0 0 δ
′

2 + ν
′

2 + ϵ
′

2 + d+m

 .

Since V −1
1 is diagonal, by [18], the basic reproduction number for the system (3.1) is

R0 = ρ(F1V
−1
1 ),



A two-area epidemic model for the spread of COVID-19 7

where ρ(.) is the spectral radius; hence the basic reproduction number of area 1 is as follows

R1
0 =

β11N
r
1

δ1 + ν1 + ϵ1 + d+m
, (4.1)

Similarly, the basic reproduction number of area 2 when, r12 = g1 = g2 = r21 = 0, i.e., area 1 is isolated from area
2, is as follows,

R2
0 =

β22N
r
2

δ2 + ν2 + ϵ2 + d+m
. (4.2)

The DFE is locally asymptotically stable in area i, i = 1, 2, if Ri
0 < 1, and unstable if Ri

0 > 1. We summarize this
result in the following theorem.

Theorem 4.1. Let Ri
0 be defined in (4.1) and (4.2). If Ri

0 < 1, then the DFE of area i, is locally asymptotically
stable. If Ri

0 > 1, then the DFE is unstable.

Suppose the systems (3.1) and (3.2) are at DFE. The DFE point in this model in both areas is as follows,

DFE = (N̂11, N̂12, N̂21, N̂22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ R
14
+ .

In this case, we check the local stability of DFE in both areas, again using the next-generation method. We
arranged the infected areas as follows,

A11, A12 , A21 , A22 , D1 , D2.

We form the F and V matrices as follows,

F =



β11S11(A11 +A21)

β
′

12S12(A12 +A22)

β
′

21S21(A21 +A11)
β22S22(A22 +A12)

(δ1 + ν1)A11 + (δ
′

2 + ν
′

2)A21

(δ2 + ν2)A22 + (δ
′

1 + ν
′

1)A12

 , and V =



−r12A12 + g1A11 + (δ1 + ν1 + ϵ1)A11 + (d+m)A11

−g1A11 + r12A12 + (δ
′

1 + ν
′

1 + ϵ
′

1)A12 + (d+m)A12

−g2A22 + r21A21 + (δ
′

2 + ν
′

2 + ϵ
′

2)A21 + (d+m)A21

−r21A21 + g2A22 + (δ2 + ν2 + ϵ2)A22 + (d+m)A22

(γ
′

2 + γ1 + d+m)D1

(γ
′

1 + γ2 + d+m)D2

 .

By linearizing the F and V at the DFE point, we have

F =

 F11 F11 0
F21 F21 0
F31 F32 0

 ,

in which F11 =

[
β11N̂11 0

0 β
′

12N̂12

]
, F21 =

[
β

′

21N̂21 0

0 β22N̂22

]
,

F31 =

[
(δ1 + ν1) 0

0 (δ
′

1 + ν
′

1)

]
and F32 =

[
(δ

′

2 + ν
′

2) 0
0 (δ2 + ν2)

]
.

Matrix V is a block diagonal matrix with three blocks in the form of V = diag(V1, V2, V3). Where

V1 =

[
g1 + (δ1 + ν1 + ϵ1) + (d+m) −r12

−g1 r12 + (δ
′

1 + ν
′

1 + ϵ
′

1) + (d+m)

]
,

V2 =

[
r21 + (δ

′

2 + ν
′

2 + ϵ
′

2) + (d+m) −g2
−r21 g2 + (δ2 + ν2 + ϵ2) + (d+m)

]
,

and

V3 =

[
γ

′

2 + γ1 + d+m 0

0 γ
′

1 + γ2 + d+m

]
.

Furthermore, V −1 is block diagonal and

FV −1 =

 F11V
−1
1 F11V

−1
2 02×2

F21V
−1
1 F21V

−1
2 02×2

F31V
−1
1 F32V

−1
2 02×2

 . (4.3)
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Theorem 4.2. We have:
min{ci : i = 1, ..., 4} ≤ R0 ≤ max{ci : i = 1, ..., 4}, (4.4)

in which:

c1 = β11N̂11v
−1
11 (1) + β

′

12N̂12v
−1
21 (1) + β

′

21N̂21v
−1
11 (1) + β22N̂22v

−1
21 (1)

c2 = β11N̂11v
−1
12 (1) + β

′

12N̂12v
−1
22 (1) + β

′

21N̂21v
−1
12 (1) + β22N̂22v

−1
22 (1)

c3 = β11N̂11v
−1
11 (2) + β

′

12N̂12v
−1
21 (2) + β

′

21N̂21v
−1
11 (2) + β22N̂22v

−1
21 (2)

c4 = β11N̂11v
−1
12 (2) + β

′

12N̂12v
−1
22 (2) + β

′

21N̂21v
−1
12 (2) + β22N̂22v

−1
22 (2).

Proof .The matrix 4.3 is 6×6, and we can not compute the exact value of the spectral radius of it, i.e., R0 = ρ(FV −1).
The last two columns show that 0 is an eigne value with algebraic multiplicity two. The other eigenvalues are those
of the following 4× 4 matrix: [

F11V
−1
1 F11V

−1
2

F21V
−1
1 F21V

−1
2

]
. (4.5)

We can compute upper and lower bounds for this quantity. For this purpose, we use the Ferobenius theorem, which
states that in a nonnegative matrix, the spectral radius lies between the minimum and maximum of all column sums
(row sums) of the matrix, see [13]. The column sums of the nonnegative matrix FV −1 are ci’s, i = 1, .., 4. Hence, by
using the Ferobenius theorem, we obtain 4.4 as bounds for the basic reproduction number of the system. □

Theorem 4.3. We have:
min{ri : i = 1, ..., 4} ≤ R0 ≤ max{ri : i = 1, ..., 4}, (4.6)

in which:

r1 =β11N̂11v
−1
11 (1) + β11N̂11v

−1
12 (1) + β11N̂11v

−1
11 (2) + β11N̂11v

−1
12 (2)

r2 =β
′

12N̂12v
−1
21 (1) + β

′

12N̂12v
−1
22 (1) + β

′

12N̂12v
−1
21 (2) + β

′

12N̂12v
−1
22 (2)

r3 =β
′

21N̂21v
−1
11 (1) + β

′

21N̂21v
−1
12 (1) + β

′

21N̂21v
−1
11 (2) + β

′

21N̂21v
−1
12 (2)

r4 =β22N̂22v
−1
21 (1) + β22N̂22v

−1
22 (1) + β22N̂22v

−1
21 (2) + β22N̂22v

−1
22 (2).

Proof .Now we use the column version of the Ferobenius theorem. Row sums of FV −1 are ri’s, i = 1, ..., 4 . And by
using the Ferobenius theorem, we obtain 4.6 as bounds for the basic reproduction number of the system. □

Theorem 4.4. Suppose that βii = β
′

ij = βi for all i, j = 1, 2 and i ̸= j and R1
0 ≤ R2

0. Also, suppose that parameters

δ, ν and ϵ are equivalent in two areas. Then R1
0 ≤ R0 ≤ R2

0.

Proof .We consider the following two blocks of matrix F

F11 =

[
β1N̂11 0

0 β1N̂12

]
and F21 =

[
β2N̂21 0

0 β2N̂22

]
.

Therefore, for each i, j = 1, 2, Fij = Fi1 and block matrix FV −1 is equivalent to Fi1V
−1
jj . Since F11 and F21 are

diagonals, their multiplication by V −1
11 is equal to the multiplication of row l of V −1

11 by βlN̂il for l = 1, 2 and i = 1, 2.
Thus, we consider the first column of Fi1V

−1
11 for i = 1, 2 and assume that [1TFi1V

−1
11 ]1 is the sum of the entries in

the first column of Fi1V
−1
11 with condition 1

T = (1, 1, · · · , 1). So

[1TFi1V
−1
11 ]1 = β1N̂11v

−1
11 (1) + β2N̂12v

−1
21 (1) + β1N̂21v

−1
11 (1) + β2N̂22v

−1
21 (1). (4.7)

We also have by assumption, R1
0 ≤ R2

0 ⇒ β1(N̂11 + N̂12) ≤ β2(N̂22 + N̂21). By applying the above inequality in
equation 4.7, we have

β1(N̂11 + N̂12)(v
−1
11 (1) + v−1

21 (1)) ≤ [1TFi1V
−1
11 ]1 ≤ β2(N̂22 + N̂21)(v

−1
11 (1) + v−1

21 (1)).
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Table 1: Description of Parameters of the models 3.1 and 3.2
Notation Description of Parameter
Sii (i = 1, 2) Susceptible individuals residents of area i who are present in area i
Sij (i = 1, 2), i ̸= j Susceptible individuals residents of area i who are present in area j
Aii (i = 1, 2) Asymptomatic individuals residents of area i who are present in area i
Aij (i = 1, 2), i ̸= j Asymptomatic individuals residents of area i who are present in area j
D1 Identified individuals residents in area 1 and area 2 who are present in area 1
D2 Identified individuals residents in area 1 and area 2 who are present in area 2
Rii (i = 1, 2) Recovered individuals residents of area i who are present in area i
Rij (i = 1, 2), i ̸= j Recovered individuals residents of area i who are present in area j
d Natural death and birth rate
m Infectious death rate
rij (i = 1, 2) i ̸= j Return rate from area i to area j
gi (i = 1, 2) Travel rate from area i to area j (j ̸= i)
βii (i = 1, 2) Transmission rate from susceptible to Asymptomatic individuals residents

of area i who are present in area i

β
′
ij (i = 1, 2), i ̸= j Transmission rate from susceptible to Asymptomatic individuals residents

of area i who are present in area j
δii (i = 1, 2) The rate of identification of Infected individuals residents

of area i who are present in area i by the government

δ
′
ij (i = 1, 2), i ̸= j The rate of identification of Infected individuals residents

of area i who are present in area j by the government
νii (i = 1, 2) Referral rate of Infected individuals residents

of area i who are present in area i to identification centers

ν
′
ij (i = 1, 2), i ̸= j Referral rate of Infected individuals residents

of area i who are present in area j to identification centers
γi (i = 1, 2) Transmission rate from Identification center i to recover individuals residents

of area i who are present in area i

γ
′
i (i = 1, 2) Transmission rate from Identification center j (j ̸= i) to recover individuals residents

of area i who are present in area j (j ̸= i) to identification centers
ϵi (i = 1, 2) Transmission rate from Asymptomatic to recover individuals residents

of area i who are present in area i

ϵ
′
i (i = 1, 2) Transmission rate from Asymptomatic to recover individuals residents

of area i who are present in area j (j ̸= i)
ρi (i = 1, 2) Transmission rate from recovered to susceptible individuals residents

of area i who are present in area i

ρ
′
i (i = 1, 2) Transmission rate from recovered to susceptible individuals residents

of area i who are present in area j (j ̸= i)

Each diagonal block Vii for i = 1, 2 of V has a column sum (δ + ν + ϵ) + (d +m) (assuming the parameters are
equivalent in the two areas), i.e., 1TV = (δ + ν + ϵ) + (d+m)1T . Hence 1TV −1 = 1

(δ+ν+ϵ)+(d+m)1
T . Therefore,

R1
0 =

β1N
r
1

(δ + ν + ϵ) + (d+m)
≤ [1TFi1V

−1
11 ]1 ≤ β2N

r
2

(δ + ν + ϵ) + (d+m)
= R2

0.

By a similar argument, it can be shown that this inequality is true for every column of FV −1. □

Theorem 4.5. If R0 < 1, then the DFE of (3.1) and (3.2) is locally asymptotically stable. If R0 > 1, then the DFE
of (3.1) and (3.2) is unstable.

5 Discussion

The SAR epidemic model formulated in (3.1) and (3.2) describes the movement between the two areas. The
mobility (travel) component of the system in equations (2.3) and (2.4) has a single stable equilibrium, as shown in
(2.10) to (2.11), which represents the DFE equilibrium of model (3.1) and (3.2). If the system is at an equilibrium
and area i is at the DFE (or endemic) equilibrium, or for i = 1, 2, then area j ̸= i, is also at the DFE (or endemic)
equilibrium.

With the beginning of a COVID-19 outbreak in one of the areas (or both areas), the number of infected in both
areas can be determined as a function of time by numerically solving systems (3.1) and (3.2). The basic reproduction
number R0 is derived. Our computations reveal the relationship between the basic reproduction number, a crucial
quantity in epidemic control, and travel and return rates between areas. This suggests that it is essential to strengthen
restrictions on passengers once we know infectious diseases have appeared.
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