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 The main goal of this paper is to introduce a finite element formulation to investigate the 

nonlinear static response of the 2DFG-McrB resting on EF under four different loads. The 

governing equations are established using the principle of minimum potential energy, 

incorporating the RBT and geometric nonlinearity based on the von Kármán assumptions. A 

weak-form finite element method is developed and solved iteratively through the Newton-

Raphson method. The proposed formulation is validated against benchmark results from the 

literature, demonstrating its accuracy and computational efficiency. Furthermore, a 

comprehensive parametric study is conducted to evaluate the effects of geometrical 

dimensions, material properties, foundation stiffness, length-scale parameters, and BCs on 

the nonlinear response of 2DFG-McrBs. The findings provide valuable insights for the design 

and analysis of McrBs in engineering applications and serve as a basis for future studies on 

advanced microstructures. 
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1. Introduction 

McrBs play a crucial role in various small-
scale systems and devices, particularly in MEMS 
and NEMS [1]. Owing to the complexity of loading 
conditions, McrBs in these applications often 
undergo significant deformations. Studying their 
behavior under such conditions is essential for 
the effective design and operation of 
microdevices. This has driven extensive research 
on the nonlinear static response of 
microstructures in general and McrBs in 
particular. 

Extensive research has been conducted to 
predict the behavior of McrBs under various 
mechanical and electrical loading conditions. 
Early investigations were primarily based on 
classical beam theories, which do not adequately 
capture size-dependent effects. To address large 
rotations, many of these studies employed the 
von Kármán nonlinear assumption, analyzing 
McrB responses using methods such as the 
shooting method [2] and exact solutions [3, 4]. 

To overcome the limitations of classical beam 
theories in capturing size-dependent effects in 
microscale structures, several advanced 
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continuum theories have been developed, 
including SGET [5, 6] and MCST [7]. These 
theories introduce length-scale parameters, 
enhancing the accuracy of modeling the 
mechanical behavior of McrBs. Over the past few 
years, numerous studies have utilized these 
advanced models to examine the impact of 
microscale effects on the mechanical behavior of 
McrBs. For instance, Mohammadi and Mahzoon 
[8] formulated the governing equations for post-
buckling analysis of Euler-Bernoulli McrBs, 
incorporating size effects through both SGET and 
MCST. Xia et al. [9] developed a nonlinear beam 
model with a length-scale parameter, facilitating 
size-dependent analyses of static bending, post-
critical behavior, and vibration in McrBs. 
Likewise, Asghari et al. [10] introduced a 
Timoshenko McrB model for nonlinear vibration 
and bending analysis, integrating size effects 
using MCST and SGET. Pham et al. [11] used 
a finite element modeling based on SGET and the 
refined HSDT to examine the dynamic instability 
of magnetically embedded FG porous 
nanobeams. 

Furthermore, Akgoz and Civalek [12] 
explored the buckling behavior of McrBs under 
various BCs using EBBT and MCST. Ramezani 
[13] integrated the TBT with SGET to investigate 
the large-amplitude vibration of McrBs, 
emphasizing the crucial role of geometric 
nonlinearity in increasing beam frequencies. 
Ansari et al. [14] utilized DQM along with MCST 
to examine the bending, stability, and vibration of 
FG-McrBs, focusing on how frequencies and 
critical loads depend on the length-scale 
parameter. Additionally, Wang et al. [15] applied 
EBBT with MCST to study the nonlinear bending 
and thermal post-buckling behavior of McrBs, 
accounting for the influence of Poisson’s ratio. 
Their analysis employed the shooting method in 
combination with the Newton iterative method to 
determine deflections and post-critical paths. 
Belabed et al. [16-20] used finite element 
procedure as a primary computational approach 
to investigate the mechanical behavior of various 
beam structures under different loading and BCs. 
Their comprehensive studies focused on 
analyzing key mechanical responses, including 
static bending, free vibration, and stability. The 
numerical results obtained from these analyses 
are presented in a thorough and systematic 
manner, providing valuable insights into the 
performance and reliability of beam systems in 
engineering applications. In addition, Meftah et 
al. [21] introduced FEM to describe the nonlinear 
modelling of masonry walls under in-plane 
loading. Tounsi et al. [22] analyzed the forced 
dynamical responses of FG porous beams using 
FEM. 

Incorporating FGs into microstructures 
further enhances their potential by leveraging 
the materials' adaptability and 
multifunctionality. According to Benmesssaoud 
and Nasreddine [23], these materials are 
increasingly investigated for applications in 
micro-sensors, actuators, and flexible electronics. 
As a result, accurate and efficient computational 
modeling approaches have become essential [24, 
25]. Using various shear deformation theories 
and MCST, researchers have extensively studied 
the linear static bending, vibration, and buckling 
behaviors of microbeams, microplates, and 
microshells. Notable contributions in this area 
include works by Şimşek et al. [26], Thai et al. 
[27], Deyhoriy-Semnani et al. [28]Sheikholeslami 
et al. [29], Akbas [30], Karamanli et al. [31, 32], 
Hu et al. [33] and Attia and Mohamed [34]. The 
nonlinear bending, vibration, and stability of 
microstructures have also been investigated by 
Shafiei et al.  [35, 36] Attia and Mohamed [37]. 
Recently, Shenas et al. [38] analyzed the large 
amplitude vibration of pre-twisted FG-McrBs 
using the Chebyshev-Ritz method, and in [39] 
they employed the Ritz method to study the post-
buckling thermal load–deflection path of rotating 
pre-twisted FG-McrBs in a thermal environment. 
Besides, Malekzadeh and Moradi [40] 
investigated large amplitude vibrational 
characteristics of variable-section thin beams 
with edge rotations restrained by elastic 
torsional springs and supported on a cubic non-
linear EF using DQM. Pham et al. [41] used FEM 
to study free vibration of FG porous curved 
nanobeams resting on EF in hygro-thermo-
magnetic environment. 

In this study, we further investigate the size-
dependent nonlinear static response of McrBs 
using a finite element procedure. A nonlinear 
beam element is developed based on RBT and 
MCST to derive the equilibrium equations. The 
model incorporates the von Kármán nonlinear 
assumption, with transverse shear rotation-
rather than cross-sectional rotation-chosen as a 
variable to ensure a quadratic variation of 
moments along the beam length. Additionally, the 
nonlinear response of McrBs under various 
loading conditions is analyzed using the Newton-
Raphson iterative method. This study also 
provides a comprehensive examination of the 
influence of geometrical parameters, material 
properties, foundation stiffness, length-scale 
parameters, and BCs on the nonlinear static 
response of 2DFG-McrB resting on an EF. 

Beyond theoretical contributions, the findings 
of this study offer practical insights for the design 
and optimization of micro-scale devices, such as 
MEMS components, micro-sensors, actuators, etc. 
The proposed approach provides a valuable tool 
for engineers to predict structural performance 
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more accurately, ensuring reliability and 
efficiency in real-world applications. 

2. The 2DFG-McrB Resting on EF 

Consider a 2DFG-McrB resting on an EF, 
having dimensions 𝐿, 𝑏, ℎ along the 𝑥, 𝑦, and 
𝑧 axes, respectively, as shown in Fig. 1. The 2DFG-
McrB includes two constituent phases: ceramic 
(denoted as c) and metal (denoted as m). The 
volume of these materials varies smoothly and 
continuously along the 𝑥 and 𝑧 directions 
following a power-law distribution. A two-
parameter foundation model is employed, 
characterized by the spring stiffness 𝑘𝑊 and the 
shear stiffness 𝑘𝐺 . The beam is supported at both 
ends (at coordinates 𝑥 = 0 and 𝑥 = 𝐿) and is 
under a distributed load 𝑞(𝑥) along its length. 
Four types of load distributions are considered in 
this study: uniform load distribution (UL) 𝑞(𝑥) =

𝑞0, linear distribution load (LL) 𝑞(𝑥) =
𝑞0𝑥

𝐿
, 

parabolic distribution load (PL) 𝑞(𝑥) = 𝑞0 (
𝑥

𝐿
)

2

, 

and sinusoidal distribution load (SL) 𝑞(𝑥) =

𝑞0 sin
𝜋𝑥

𝐿
 as shown in Fig. 2. 

 
Fig. 1. The 2DFG-McrB model resting on EF 

 
Fig. 2. Various types of loads 

The mechanical properties of a 2DFG-McrB, 
including the elastic modulus 𝐸(𝑥, 𝑧), Poisson’s 
ratio 𝜗(𝑥, 𝑧), and the length-scale parameter 
ℓ(𝑥, 𝑧), vary continuously along both directions. 
These properties are collectively denoted as 
ℱ(𝑥, 𝑧) and are defined by the following 
expression: 

ℱ(𝑥, 𝑧) = 𝑉𝑐(𝑥, 𝑧)ℱ𝑐 + 𝑉𝑚(𝑥, 𝑧)ℱ𝑚 (1) 

Here, 𝑉𝑖  represents the volume fraction of 
material 𝑖 (𝑖 = 𝑐, 𝑚), which is defined by the 
following expression: 

𝑉𝑐(𝑥, 𝑧) = (
1

2
+

𝑧

ℎ
)

𝑛𝑧

(1 −
𝑥

2𝐿
)

𝑛𝑥

, 

 𝑉𝑚(𝑥, 𝑧) = 1 − 𝑉𝑐(𝑥, 𝑧) 

(2) 

where, 𝑛𝑥 and 𝑛𝑧 are non-negative values 
representing the material distribution exponents 

(power-law index) along the 𝑥 and 𝑧 directions, 
respectively. 

Figure 3 demonstrates variations in the 
volume fractions of phases, as well as the 
variation in effective elastic modulus along the 𝑥 
and 𝑧 directions. The material properties of the 
components are listed in Table 2 with 𝑛𝑥 = 𝑛𝑧 =
2. 

 
a) The volume fraction of phases 

 
b) The effective elastic modulus 

Fig 3. The variation in volume fraction of phases and 
effective elastic modulus of 2D-McrBs 

3. Basis Formulations 

The displacement field 𝐮 in the beam includes 
two displacement components: the axial 
displacement 𝑢(𝑥, 𝑧) and the transverse 
displacement 𝑤(𝑥). It is defined by [42]: 

𝐮 = {
𝑢(𝑥, 𝑧)

𝑤(𝑥)
} = {

𝑢0 − 𝑧𝑤𝑏,𝑥 − 𝑓(𝑧)𝑤𝑠,𝑥

𝑤𝑏 + 𝑤𝑠
} (3) 

where 𝑢0 is the axial displacement component on 
the midplane of beams, 𝑤𝑏  and 𝑤𝑠 are the 
transverse displacement components on the 
midplane are due to bending deformation and 
shear deformation, respectively. The derivative 

components are given by 𝑤𝑏,𝑥 =
𝜕𝑤𝑏

𝜕𝑥
, 𝑤𝑠,𝑥 =

𝜕𝑤𝑠

𝜕𝑥
 

và 𝑓(𝑧) =
4𝑧3

3ℎ2. 

The strain field 𝛆 is determined based on the 
displacement field using the Cauchy strain 
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relations and the nonlinear von Kármán strain-
displacement equations as follows: 

𝛆 = {
𝜀𝑥

𝛾𝑥𝑧
} , 𝜀𝑥 =

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

, 

 𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
 

(4) 

Substituting the displacement components 𝑢 
and 𝑤 into the strain-displacement relations 
given in Eq. (4), we obtain: 

𝛆 = 𝛆𝐿 + 𝛆𝑁𝐿, 

𝛆𝐿 = {
𝑢0,𝑥

0
} − 𝑧 {

𝑤𝑏,𝑥𝑥

0
} − 𝑓 {

𝑤𝑠,𝑥𝑥

0
}

+ (1 − 𝑓′) {
0

𝑤𝑠,𝑥
}, 

𝛆𝑁𝐿 =
1

2
(

𝜕𝑤0

𝜕𝑥
)

2

=
1

2
{(𝑤𝑏,𝑥 + 𝑤𝑠,𝑥)

2

0
} 

(5) 

here, 𝛆𝐿 and 𝛆𝑁𝐿 represent the linear and 
nonlinear strain components, respectively. 

The stress field 𝛔 is determined from the 
strain field 𝛆 using Hooke’s law as follows: 

𝛔 = {
𝜎𝑥

𝜏𝑥𝑧
} = 𝐸(𝑥, 𝑧) [

1 0

0
1

2[1 + 𝜗(𝑥, 𝑧)]
] 𝛆 = 𝐐𝛆 (6) 

The curvature components 𝛘 (curvature 
tensor) are defined as follows: 

𝛘 = {
𝜒𝑥𝑦

𝜒𝑦𝑧
} , 𝜒𝑥𝑦 =

1

2

𝜕𝜃𝑦

𝜕𝑥
, 𝜒𝑦𝑧 =

1

2

𝜕𝜃𝑦

𝜕𝑧
 (7) 

in which 

𝜃𝑦 =
1

2
(

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) = −𝑤𝑏,𝑥 −

1

2
(1 + 𝑓′)𝑤𝑠,𝑥 (8) 

Substituting the curvature expressions from 
Eq. (8) into Eq. (7), we obtain: 

𝛘 = −
1

2
{
𝑤𝑏,𝑥𝑥

0
} −

1

4
{
(1 + 𝑓′)𝑤𝑠,𝑥𝑥

𝑓′′𝑤𝑠,𝑥
} (9) 

The vector of the deviatoric components of 
the symmetric couple stress tensor 𝐦 is defined 
by the following expression: 

𝐦 = ℳ𝛘 with ℳ =
𝐸(𝑥, 𝑧)ℓ2(𝑥, 𝑧)

1 + 𝜗(𝑥, 𝑧)
 (10) 

where ℓ(𝑥, 𝑧) is a length-scale parameter. 

Based on MCST, the variational form of the 
elastic strain energy potential in the beam is 
given by the following expression. [7]: 

𝛿𝑈 = ∫ 𝛔T𝛿𝛆
Ω

𝑑Ω + ∫ 2𝐦T𝛿𝛘
Ω

𝑑Ω (11) 

The variational form of the elastic foundation 
potential energy can be expressed as 

𝛿𝑈𝑓 = ∫[𝑘𝑊𝑤𝛿𝑤 + 𝑘𝐺𝑤,𝑥𝛿𝑤,𝑥]𝑑𝑥
𝐿

 (12) 

The variational form of the work done by 
external forces acting on the McrB is given by 

𝛿𝑊 = ∫𝑞(𝑥)𝛿𝑤𝑑𝑥
𝐿

 (13) 

Based on the principle of minimum total 
potential energy, the equilibrium equations of the 
McrB are derived by 

𝛿𝑈 + 𝛿𝑈𝑓 − 𝛿𝑊 = 0 (14) 

4. Finite Element Procedure 

Using a two-node beam element, where each 
node has five DOF, the displacement vector of the 
node 𝐝𝒆 of the beam element has the following 
form: 

𝐝𝒆
10×1

= [𝐝𝑚
T 𝐝𝑏

T 𝐝𝑠
T]T, 

𝐝𝑚
2×1

= {𝑢01 𝑢02}T, 𝐝𝑏
4×1

= {𝑤𝑏1 𝑤𝑏1,𝑥 𝑤𝑏2 𝑤𝑏2,𝑥}T,  

𝐝𝑠
4×1

= {𝑤𝑠1 𝑤𝑠1,𝑥 𝑤𝑠2 𝑤𝑠2,𝑥}T 

(15) 

The displacement variables on the midplane 
of the beam element are approximated by 

𝑢0 = 𝐍𝐝𝑚, 𝑤𝑏 = 𝐇𝐝𝑏 , 𝑤𝑠 = 𝐇𝐝𝑠 (16) 

in which 𝐍 and 𝐇 are the Lagrange and Hermitian 
function matrices, respectively, defined by the 
following formula: 

𝐍 = [𝑁1 𝑁2], 𝐇 = [𝐻1 𝐻2 𝐻3 𝐻4], 

𝑁1 = 1 − 𝜂, 𝑁2 = 𝜂, 𝐻1 = 1 − 3𝜂2 + 2𝜂3, 

𝐻2 = �̅�(1 − 2𝜂 + 𝜂2), 𝐻3 = 3𝜂2 − 2𝜂3, 𝐻4

= �̅�(−𝜂 + 𝜂2), 𝜂 =
�̅�

𝐿𝑒

. 

(17) 

Here, �̅� is the local coordinate following 𝑥 
direction, and 𝐿𝑒  is the length of the beam 
element. 

Substituting Eq. (16) into Eq. (3), the 
displacement field in an element is determined by 

𝐮 = 𝐍𝐮𝐝𝑒, 

𝐍𝐮 = [
𝐍𝑢

𝐍𝑤
] = [

𝐍 −𝑧𝐇,𝑥 −𝑓𝐇,𝑥

𝟎 𝐇 𝐇
] 

(18) 

Substituting Eq. (16)  into Eq. (5) and Eq. (9), 
the deformation field in the element is: 

The linear strain vector 𝛆𝐿: 
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𝛆𝐿 = 𝐁𝐿1𝐝𝑒 , 𝐁𝐿1
10×2

= [
𝐍,𝑥 −𝑧𝐇,𝑥𝑥 −𝑓𝐇,𝑥𝑥

𝟎 𝟎 (1 − 𝑓′)𝐇,𝑥
] 

(19) 

The nonlinear strain vector 𝛆𝑁𝐿: 

𝛆𝑁𝐿 =
1

2
{
𝑤𝑏,𝑥 + 𝑤𝑠,𝑥

0
} (𝑤𝑏,𝑥 + 𝑤𝑠,𝑥) =

1

2
𝐁𝑁𝐿𝐝𝑒 , 

𝐁𝑁𝐿 = [
𝐆𝐝𝑒

0
] 𝐆; 𝐆 = [𝟎 𝐇,𝑥 𝐇,𝑥] 

(20) 

Curvature vector 𝛘: 

𝛘 = 𝐁𝐿2𝐝𝑒 , 𝐁𝐿2
10×2

= −
1

4
[
𝟎 2𝐇,𝑥𝑥 (1 + 𝑓′)𝐇,𝑥𝑥

𝟎 𝟎 𝑓′′𝐇,𝑥
] 

(21) 

Substitute Eqs. (19) and (21) into Eq. (11) to 
get the variational potential energy of the elastic 
deformation of the beam element: 

𝛿𝑈𝑒 = 𝛿𝐝𝑒
T𝐊𝑒𝐝𝑒 , 

𝐊𝑒 = ∫ (𝐁𝐿1 + 𝐁𝑁𝐿)T𝐐 (𝐁𝐿1 +
1

2
𝐁𝑁𝐿) 𝑑Ω

Ω𝑒

+ ∫ 2𝐁𝐿2
T ℳ𝐁𝐿2𝑑Ω

Ω𝑒

 

(22) 

Substituting Eq. (16) into Eqs. (12) and (13), 
we get the variational expressions of the 
potential energy of the foundation element and 
the assignment of the external force as follows: 

𝑈𝑒
𝑓

= 𝛿𝐝𝑒
T𝐊𝑒

𝑓
𝐝𝑒 , 𝛿𝑊𝑒 = 𝛿𝐝𝑒

T𝐅𝑒 , 

𝐊𝑒
𝑓

= ∫ [𝑘𝑊𝐍𝑤0
T 𝐍𝑤0

+ 𝑘𝐺𝐍𝑤0,𝑥
T 𝐍𝑤0,𝑥]𝑑𝑥

𝐿𝑒

, 𝐅𝑒

= ∫ 𝑞(𝑥)𝐍𝑤0
T 𝑑𝑥

𝐿𝑒

 

(23) 

where 𝐊𝑒
𝑓

 is the foundation stiffness and 𝐅𝑒  is the 
nodal load of an element. 

Substituting Eqs. (22) and (23) into Eq. (14), 
the system of nonlinear static equilibrium 
equations of the beam element is: 

(𝐊𝑒 + 𝐊𝑒
𝑓

)𝐝𝑒 − 𝐅𝑒 = 𝟎 (24) 

Eq. (24) is rewritten as 

𝐑(𝐝𝑒) = 𝐅𝑒
𝑖𝑛(𝐝𝑒) − 𝐅𝑒

𝑜𝑢𝑡 = 𝟎, 

 𝐅𝑒
𝑖𝑛(𝐝𝑒) = (𝐊𝑒 + 𝐊𝑒

𝑓
)𝐝𝑒 , 𝐅𝑒

𝑜𝑢𝑡 = 𝐅𝑒  
(25) 

where, 𝐑(𝐝𝑒) is called the residual force vector, 
𝐅𝑒

𝑖𝑛(𝐝𝑒) and 𝐅𝑒
𝑜𝑢𝑡  are the internal force vector and 

external force vector of the element, respectively 
The nonlinear static equilibrium equation 

system of the McrB is obtained after assembling 
the elements, as follows 

𝐑(𝐃, λ) = 𝐅𝑖𝑛(𝐃) − 𝜆𝐅𝑜𝑢𝑡 = 𝟎 (26) 

where, 𝐑(𝐃, λ) is the overall residual force vector, 
𝐃 is the overall nodal displacement vector, 𝐅𝑖𝑛 
and 𝐅𝑜𝑢𝑡  are the overall internal and external 

force vectors collected from 𝐅𝑒
𝑖𝑛 and 𝐅𝑒

𝑜𝑢𝑡  
respectively, and 𝜆 ∈ [0; 1] is the load parameter. 

The nonlinear Eq. (26) is solved based on the 
use of the Newton-Raphson iteration algorithm 
for each load level. [43], the load levels are 
divided according to the parameter 𝜆𝑛 (𝑛 =
1; 2; 3 … ). Accordingly, the node displacement 
vector in the 𝑖 + 1 iteration step is determined as 
follows: 

𝐃𝑛
𝑖+1 = 𝐃𝑛

𝑖 + ∆𝐃𝑛
𝑖+1 (27) 

where ∆𝐃𝑛
𝑖+1 is the displacement increment, 

defined by the expression: 

∆𝐃𝑛
𝑖+1 = −[𝐊𝑇(𝐃𝑛

𝑖 )]−1𝐑(𝐃𝑛
𝑖 , 𝜆𝑛) (28) 

where 𝐊𝑇 is the overall tangent stiffness matrix, 
which is collected from the element tangent 
stiffness matrix 𝐊𝑒𝑇 . The 𝐊𝑒𝑇  matrix has the 
following expression: 

𝐊𝑒𝑇 =
𝜕𝐑(𝐝𝑒)

𝜕𝐝𝑒
=

𝜕𝐅𝑒
𝑖𝑛(𝐝𝑒)

𝜕𝐝𝑒

= 𝐊𝑒
𝐿 + 𝐊𝑒

𝑁𝐿 + 𝐊𝑒
𝑓

+ 𝐊𝑒
𝜎 , 

𝐊𝑒
𝐿 = ∫ 𝐁𝐿1

T 𝐐𝐁𝐿1
𝑑Ω

Ω𝑒

+ ∫ 2𝐁𝐿2
T ℳ𝐁𝐿2𝑑Ω

Ω𝑒

, 𝐊𝑒
𝜎

= ∫ 𝐆T𝜎𝑥𝐆𝑑Ω
Ω𝑒

, 

𝐊𝑒
𝑁𝐿 = ∫ (𝐁𝐿1

T 𝐐𝐁𝑁𝐿 + 𝐁𝑁𝐿
T 𝐐𝐁𝐿1

+ 𝐁𝑁𝐿
T 𝐐𝐁𝑁𝐿)𝑑Ω

Ω𝑒

 

(29) 

and the residual force vector 𝐑(𝐃𝑛
𝑖 , 𝜆𝑛) is 

determined by Eq. (26). 
Note that the element matrices and element 

node load vectors in formulas (23) and (29) are 
calculated by Gauss quadrature numerical 
integration method. 

To solve Eq. (28), it is necessary to have the 
initial value of the displacement in each load 
level, specifically in this paper, 𝐃1

0 = 𝟎 and 𝐃𝑛
0 =

𝐃𝑛−1. The convergence condition is checked after 
each loop according to the following expression: 

‖𝐑(𝐃𝑛
𝑖 , 𝜆𝑛)‖ ≤ 𝜓‖𝜆𝑛𝐅𝑜𝑢𝑡  ‖ (30) 

where 𝜓 is the error, chosen to be 10−4. 
The Eq. (28) is solved with the given BCs. In 

this paper, BCs are shown in Table 1. 
Table 1. Boundary conditions of McrBs 

BCs At 𝑥 = 0 At 𝑥 = 𝐿 

CF 𝑢0 = 𝑤𝑏 = 𝑤𝑠

= 𝑤𝑏,𝑥 = 𝑤𝑠,𝑥 = 0 

freedom 

SS 𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 0 𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 0 

CS 𝑢0 = 𝑤𝑏 = 𝑤𝑠

= 𝑤𝑏,𝑥 = 𝑤𝑠,𝑥 = 0 

𝑢0 = 𝑤𝑏 = 𝑤𝑠 = 0 

CC 𝑢0 = 𝑤𝑏 = 𝑤𝑠

= 𝑤𝑏,𝑥 = 𝑤𝑠,𝑥 = 0 

𝑢0 = 𝑤𝑏 = 𝑤𝑠

= 𝑤𝑏,𝑥 = 𝑤𝑠,𝑥 = 0 

5. Numerical Results and Discussion 



 

6 

In the following sections, except for the 
comparative verification results, material 
components for 2DFG-McrBs are composed of 
two component material phases: the ceramic 
phase (SiC) and the metal phase (Al), with the 
properties given in Table 2. The results for the 
case ℎ̅ = ∞ are calculated for normal beams 
(macrobeams). 
Table 2. Material properties of the component 
materials [44] 

Componentes Symbol 𝐸 (GPa) 𝜗 ℓ(μm) 
SiC c 427 0.17 22.5 
Al m 70 0.3 15 

Some dimensionless quantities used in the 
paper are defined by the following expressions: 

𝑤∗ =
100𝐸𝑚𝐼

𝑞0𝐿4
𝑤 (

𝐿

2
), 

𝜎𝑥
∗(𝑧) =

𝑏ℎ

𝑞0𝐿
𝜎 (

𝐿

2
, 𝑧), 

𝜎𝑥𝑧
∗ (𝑧) =

𝑏ℎ

𝑞0𝐿
𝜏(0, 𝑧), 

ℎ∗ =
ℎ

ℓ𝑐

, �̅� =
𝑞0𝐿4

𝐸𝑚𝑏ℎ4
, 

𝐾𝑊 =
𝑘𝑊𝐿4

𝐸𝑚𝐼
, 𝐾𝐺 =

𝑘𝐺𝐿2

𝐸𝑚𝐼
, 𝐼 =

𝑏ℎ3

12
 

(31) 

5.1. Verification 

Firstly, Table 3 lists the comparison result of 
linear static displacement parameter �̂� =
100𝐸𝑚𝑏ℎ3

𝑞0𝐿4 𝑤 (
𝐿

2
) and linear static stress parameters 

for SS 2DFG macrobeams under uniformly 
distributed force (𝑞0) between the present 
method and those of Karamali [45] using an exact 
solution based on Quasi-3D. In which the beam is 
made of ceramic (𝐴𝑙2𝑂3) and metal (𝐴𝑙) with 
characteristics 𝐸𝑐 = 380𝐺𝑃𝑎, 𝜗𝑐 = 0.3 và 𝐸𝑚 =
70𝐺𝑃𝑎, 𝜗𝑚 = 0.3. The result is calculated with 
𝑛𝑧 = 0.5. It can be seen that the results converge 
at a uniform mesh size of 𝑛𝐸 = 18 and are close 
to the results of Karamali [45] with an error of 
approximately 1%. 

Secondly, Table 4 shows the result of 
comparing the nonlinear displacement 

parameter 𝑤∗∗ =
100𝐸𝑏ℎ3

12𝐿4 𝑤 (
𝐿

2
) of SS 

homogeneous McrBs under uniformly 
distributed force (𝑞0) with geometric 
dimensions: 𝐿 = 250𝜇𝑚, ℎ = 3𝜇𝑚, 𝑏 = 50𝜇𝑚, 
and material properties as 𝐸 = 169𝑀𝑃𝑎, 𝜗 =
0,06. Observing that the obtained results also 
converge at a uniform mesh size of 𝑛𝐸 = 18 and 
are in good agreement with the results of Dang et 
al. [46] with an error of nearly 1%.  From the 
above two examples, the accuracy and reliability 
of the proposed algorithm and calculation 
program can be confirmed. To ensure the 
smoothness of the deformation field, we use a 
uniform mesh size of 𝑛𝐸 = 20 for further studies. 

5.2. Nonlinear Static Response 

First, Figure 4 illustrates the influence of 
different load types on the static response of SS 
2DFG-McrBs, given the following input 
parameters: ℓ𝑐 = 22.5𝜇𝑚, ℓ𝑚 = 15𝜇𝑚, ℎ = 4ℓ𝑐, 
𝑏 = ℎ, 𝐿 = 20ℎ, 𝐾𝑊 = 50, and 𝐾𝐺 = 10. Using the 
same input parameters, Figure 5 presents the 
static response of CC 2DFG-McrBs. The results 
indicate that the 2DFG-McrB under UL exhibits 
the largest displacement response, followed by 
beams under SL, LL, and PL. Moreover, for 2DFG-
McrBs under LL and PL, the displacement curve 
is asymmetric, with the maximum displacement 
shifting toward the region experiencing the 
higher distributed force. Besides, the transverse 
shear stress 𝜎𝑥𝑧

∗  distribution follows a parabolic 
profile, reaching zero at the top and bottom 
surfaces for SS 2DFG-McrBs. For CC 2DFG-McrB, 
the shear stress is theoretically predicted to be 
zero across the entire edge thickness at the 
clamped boundary (Fig. 5d). 

Second, Tables 5, 6, and 7 illustrate the effects 
of the power-law indexes in the 𝑥 and 𝑧 directions 
(𝑛𝑥, 𝑛𝑧) on the displacement, normal stress, and 
shear stress of SS 2DFG-McrBs for different 
values of the parameter ℎ∗. It can be observed 
that increasing 𝑛𝑥 and/or 𝑛𝑧 results in a higher 
beam displacement, as these parameters reduce 
the ceramic volume fraction, thereby decreasing 
the beam’s stiffness. Furthermore, an increase in 
ℎ∗ leads to a larger displacement of the 2DFG-
McrB. This occurs because a higher 
ℎ∗ corresponds to a decrease in the length scale, 
which in turn reduces the total elastic energy and, 
consequently, the beam’s stiffness. As ℎ∗ 
approaches infinity, the beam displacement 
increases significantly, corresponding to the 
macroscopic case mentioned earlier. 

Third, Figure 6 illustrates the influence of 
foundation stiffness (𝐾𝑊 , 𝐾𝐺) on the 
displacement of SS 2DFG-McrBs under different 
loading conditions and various values of the 
parameter ℎ∗ (which is related to the length-scale 
parameter). It can be observed that an increase in 
foundation stiffness reduces the beam’s 
displacement, as expected. This is because the EF 
contributes to the total energy of the system, 
making the beam "stiffer." Furthermore, an 
increase in ℎ∗ (corresponding to a decrease in the 
length scale) leads to greater beam displacement, 
with the maximum displacement occurring in the 
macroscopic beam case (ℎ∗ → ∞). Additionally, 
the shear layer provides more effective support 
than the spring layer, as anticipated. 

Next, Figure 7 provides a more detailed 
illustration of how the length-scale parameter on 
the static response of CC 2DFG-McrBs under PL, 
through the dimensionless parameter ℎ∗. From 
the results, it is evident that incorporating the 
length-scale parameter, particularly at higher 
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values of ℎ∗, significantly enhances the overall 
stiffness of the McrBs. Physically, this can be 
attributed to the size-dependent effects captured 
by the SGET, which become increasingly 
prominent at micro- and nano-scales, where 
classical theories tend to underestimate 
structural rigidity. As the effective stiffness 
increases, the beam's ability to resist 
deformation under external loading improves, 
thereby reducing the observed deflections. 
Furthermore, the displacement evolution across 
different load steps exhibits smooth and 
continuous curve profiles, aligning with 
theoretical expectations for such micro-scale 
structures. This consistency reaffirms the validity 
of the applied model in capturing the essential 
mechanical behaviors of FG-McrBs. 

Furthermore, Figures. 8 and 9 respectively 
depict the effects of the material gradation 
indices 𝑛𝑥 and/or 𝑛𝑧 on the static response of 
2DFG-McrBs under CC and CS boundaries. As 
anticipated, increasing the values of 𝑛𝑥 and/or 𝑛𝑧 
results in larger beam displacements. This 
phenomenon is fundamentally linked to the 
material distribution across the beam's length 
and thickness: higher values of 𝑛𝑥 and/or 𝑛𝑧 
correspond to a reduced volume fraction of the 
stiffer ceramic phase, leading to a more metal-
rich composition. Since metals generally possess 
lower elastic moduli compared to ceramics, the 
overall stiffness of the beam diminishes as the 
gradation indices increase. Consequently, the 
beam exhibits a more compliant (flexible) 
response under applied loading. Another 
physically meaningful observation lies in the 
load–load-displacement behavior. Specifically, 
for cases involving the CC boundary, the 
displacement-load step curves tend to maintain a 

nearly linear relationship, resembling straight 
lines. This characteristic reflects the dominance 
of linear elastic bending behavior in the regime of 
small deformations, where geometric 
nonlinearity remains negligible. 

Finally, Figure 10 presents a comprehensive 
comparison of how different BCs affect the static 
response of 2DFG-McrBs subjected to UL. As 
theoretically anticipated, the maximum 
displacement of the beam exhibits a clear 
increasing trend following the order of boundary 
constraint severity: CC, CS, SS, CF boundaries. 
This behavior is fundamentally governed by the 
degree of kinematic restrictions imposed at the 
beam ends. Specifically, the CC boundary 
provides the most rigid constraint by restraining 
both translations and rotations, thereby 
minimizing deflection. Conversely, the CF 
boundary, commonly referred to as a cantilever 
beam, allows for maximal deformation due to the 
absence of support at the free end. An important 
physical insight is revealed through the 
symmetry (or asymmetry) of the displacement 
profiles. For beams with symmetric BCs, such as 
CC and SS boundaries, the displacement response 
curves maintain geometric symmetry about the 
beam's midspan. This is a direct consequence of 
the uniform distribution of constraints and 
loading, which enforces a balanced deformation 
pattern. On the other hand, in configurations 
where BCs are asymmetric (e.g., CS and CF 
boundaries), the displacement curves exhibit 
noticeable asymmetry, with the deformation 
profile skewing towards the less restrictive 
(weaker) boundary. This deviation reflects the 
beam's natural tendency to bend more freely 
where constraints are minimal, highlighting the 
critical role of BCs in dictating the mode shapes.

Table 3. Comparison results of the static response of SS 2DFG macrobeams with different mesh sizes 

𝐿/ℎ Parameters Methods 
Power-law index 

𝑛𝑥 = 0 𝑛𝑥 = 0.1 𝑛𝑥 = 0.5 𝑛𝑥 = 1 𝑛𝑥 = 2 
10 𝑤∗ Karamali [45] 4.5015 4.5957 4.9843 5.4912 6.5521 

Present 
𝑛𝐸 = 12 4.5304 4.6244 5.0125 5.5224 6.6008 
𝑛𝐸 = 14 4.5308 4.6248 5.0130 5.5229 6.6013 
𝑛𝐸 = 16 4.5311 4.6251 5.0133 5.5232 6.6016 
𝑛𝐸 = 18 4.5315 4.6255 5.0137 5.5235 6.6018 
𝑛𝐸 = 20 4.5315 4.6255 5.0137 5.5235 6.6019 

Error (%) 0.6664 0.6484 0.5899 0.5882 0.7601 
𝜎𝑥

∗(ℎ/2) Karamali [45] 9.8766 9.5863 9.7674 9.6417 9.3574 
Present 

𝑛𝐸 = 12 9.9270 9.9046 9.8133 9.6963 9.4573 
𝑛𝐸 = 14 9.9116 9.8893 9.7987 9.6824 9.4439 
𝑛𝐸 = 16 9.9016 9.8795 9.7894 9.6735 9.4354 
𝑛𝐸 = 18 9.8898 9.8679 9.7785 9.6633 9.4257 
𝑛𝐸 = 20 9.8898 9.8679 9.7785 9.6634 9.4258 

Error (%) 0.1336 2.9375 0.1136 0.2251 0.7310 
𝜎𝑥𝑧

∗ (0) Karamali [45] 0.7532 0.7598 0.7852 0.8143 0.8617 
Present 

𝑛𝐸 = 12 0.7655 0.7721 0.7975 0.8265 0.8733 
𝑛𝐸 = 14 0.7648 0.7714 0.7969 0.8259 0.8729 
𝑛𝐸 = 16 0.7642 0.7708 0.7963 0.8254 0.8725 
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𝑛𝐸 = 18 0.7632 0.7697 0.7952 0.8244 0.8716 
𝑛𝐸 = 20 0.7632 0.7698 0.7953 0.8245 0.8717 

Error (%) 1.3277 1.3161 1.2863 1.2526 1.1605 
20 𝑤∗ Karamali [45] 4.4347 4.5274 4.9092 5.4076 6.4513 

Present 
𝑛𝐸 = 12 4.4575 4.5498 4.9309 5.4319 6.4931 
𝑛𝐸 = 14 4.4580 4.5502 4.9314 5.4324 6.4936 
𝑛𝐸 = 16 4.4583 4.5505 4.9317 5.4327 6.4939 
𝑛𝐸 = 18 4.4586 4.5508 4.9320 5.4329 6.4941 
𝑛𝐸 = 20 4.4586 4.5509 4.9321 5.4330 6.4942 

Error (%) 0.5389 0.5191 0.4665 0.4697 0.6650 
𝜎𝑥

∗(ℎ/2) Karamali [45] 19.7048 19.6642 19.4863 19.2343 18.6648 
Present 

𝑛𝐸 = 12 19.8006 19.7559 19.5738 19.3410 18.8663 
𝑛𝐸 = 14 19.7697 19.7253 19.5446 19.3131 18.8394 
𝑛𝐸 = 16 19.7497 19.7055 19.5259 19.2953 18.8224 
𝑛𝐸 = 18 19.7260 19.6822 19.5040 19.2749 18.8029 
𝑛𝐸 = 20 19.7261 19.6823 19.5041 19.2750 18.8031 

Error (%) 0.1081 0.0920 0.0913 0.2116 0.7410 
𝜎𝑥𝑧

∗ (0) Karamali [45] 0.7599 0.7667 0.7933 0.8240 0.8750 
Present 

𝑛𝐸 = 12 0.7688 0.7754 0.8006 0.8293 0.8755 
𝑛𝐸 = 14 0.7687 0.7752 0.8004 0.8292 0.8754 
𝑛𝐸 = 16 0.7685 0.7750 0.8002 0.8290 0.8753 
𝑛𝐸 = 18 0.7680 0.7745 0.7998 0.8285 0.8749 
𝑛𝐸 = 20 0.7681 0.7746 0.7999 0.8286 0.8750 

Error (%) 1.0791 1.0304 0.8320 0.5583 0.0000 

Table 4. Comparison results of the nonlinear displacement of SS McrBs 

BCs 𝑞0 Methods 
ℓ/ℎ 

0.1 0.2 0.4 0.6 0.9 
CC 5 Dang  et al. [46] 0.9545 0.8764 0.6374 0.4204 0.2324 

Present 
𝑛𝐸 = 12 0.9475 0.8711 0.6358 0.4203 0.2325 
𝑛𝐸 = 14 0.9490 0.8722 0.6362 0.4204 0.2325 
𝑛𝐸 = 16 0.9500 0.8730 0.6365 0.4204 0.2325 
𝑛𝐸 = 18 0.9511 0.8738 0.6367 0.4205 0.2324 
𝑛𝐸 = 20 0.9512 0.8739 0.6368 0.4205 0.2325 

Error (%) 0.3457 0.2853 0.0941 0.0238 0.0430 
10 Dang  et al. [46] 1.4633 1.3877 1.1185 0.8003 0.4604 

Present 
𝑛𝐸 = 12 1.4483 1.3744 1.1114 0.7982 0.4604 
𝑛𝐸 = 14 1.4516 1.3773 1.1129 0.7987 0.4604 
𝑛𝐸 = 16 1.4538 1.3792 1.1139 0.7991 0.4605 
𝑛𝐸 = 18 1.4562 1.3813 1.1150 0.7994 0.4604 
𝑛𝐸 = 20 1.4563 1.3814 1.1151 0.7995 0.4605 

Error (%) 0.4784 0.4540 0.3040 0.1000 0.0217 
SS 5 Dang  et al. [46] 1.5142 1.4917 1.4000 1.2492 0.9517 

Present 
𝑛𝐸 = 12 1.4970 1.4749 1.3854 1.2383 0.9467 
𝑛𝐸 = 14 1.4980 1.4759 1.3864 1.2391 0.9471 
𝑛𝐸 = 16 1.4986 1.4766 1.3870 1.2396 0.9474 
𝑛𝐸 = 18 1.4993 1.4773 1.3878 1.2402 0.9476 
𝑛𝐸 = 20 1.4994 1.4774 1.3878 1.2402 0.9477 

Error (%) 0.9774 0.9586 0.8714 0.7205 0.4203 
10 Dang  et al. [46] 1.9704 1.9538 1.8837 1.7624 1.4965 

Present 
𝑛𝐸 = 12 1.9481 1.9315 1.8626 1.7442 1.4845 
𝑛𝐸 = 14 1.9492 1.9327 1.8638 1.7454 1.4854 
𝑛𝐸 = 16 1.9499 1.9334 1.8646 1.7462 1.4860 
𝑛𝐸 = 18 1.9507 1.9342 1.8655 1.7472 1.4866 
𝑛𝐸 = 20 1.9508 1.9343 1.8656 1.7472 1.4866 

Error (%) 0.9947 0.9981 0.9609 0.8625 0.6615 
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a) The displacement field 

 
b) Displacement by load step 

 
c) Normal stress 𝜎𝑥

∗(𝑧) 
 

d) Shear stress 𝜎𝑥𝑧
∗ (𝑧) 

Fig. 4. Effect of load types on the nonlinear static response of SS 2DFG-McrBs 

 
a) The displacement field 

 
b) Displacement by load step 
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c) Normal stress 𝜎𝑥

∗(𝑧) 
 

d) Shear stress 𝜎𝑥𝑧
∗ (𝑧) 

Fig. 5. Effect of load types on the nonlinear static response of CC 2DFG-McrBs 

Table 5. Nonlinear displacement 𝑤∗ of SS 2DFG-McrB under UL 
(Input parameters: �̅� = 300; 𝐿 = 30ℎ; 𝐾𝑊 = 75; 𝐾𝐺 = 15) 

ℎ∗ 𝑛𝑧 
Power-law index 

𝑛𝑥 = 0 0.5 1 2 5 10 
1 0 0.2904 0.3247 0.3570 0.4160 0.5495 0.6517 

0.5 0.3544 0.3837 0.4116 0.4633 0.5792 0.6652 
1 0.3920 0.4194 0.4456 0.4939 0.5988 0.6747 
2 0.4427 0.4682 0.4922 0.5355 0.6253 0.6879 
5 0.5271 0.5484 0.5679 0.6015 0.6659 0.7078 

10 0.5936 0.6102 0.6249 0.6494 0.6935 0.7207 
2 0 0.3816 0.4053 0.4286 0.4742 0.5869 0.6743 

0.5 0.4189 0.4415 0.464 0.5074 0.6091 0.6854 
1 0.4467 0.4689 0.4907 0.5322 0.6255 0.6942 
2 0.4887 0.51 0.5305 0.5684 0.6493 0.7071 
5 0.5629 0.5812 0.5982 0.6282 0.6873 0.7268 

10 0.6228 0.6373 0.6504 0.6726 0.7135 0.7393 
4 0 0.4052 0.4256 0.4465 0.4885 0.5956 0.6788 

0.5 0.4353 0.456 0.4769 0.5181 0.6157 0.6894 
1 0.4609 0.4815 0.502 0.5416 0.6315 0.6982 
2 0.501 0.5209 0.5403 0.5765 0.6547 0.7113 
5 0.5723 0.5896 0.6058 0.6347 0.6922 0.731 

10 0.6299 0.6438 0.6565 0.678 0.7179 0.7434 
8 0 0.4109 0.4305 0.4507 0.4919 0.5975 0.6797 

0.5 0.4393 0.4595 0.4801 0.5206 0.6172 0.6902 
1 0.4645 0.4847 0.5049 0.5438 0.6328 0.6991 
2 0.5042 0.5237 0.5428 0.5785 0.656 0.7123 
5 0.5747 0.5917 0.6077 0.6363 0.6934 0.7321 

10 0.6317 0.6455 0.658 0.6793 0.719 0.7444 
∞ 0 0.4127 0.4321 0.4521 0.493 0.5982 0.68 

0.5 0.4406 0.4607 0.4811 0.5215 0.6177 0.6905 
1 0.4657 0.4857 0.5058 0.5446 0.6333 0.6994 
2 0.5053 0.5247 0.5436 0.5792 0.6565 0.7127 
5 0.5755 0.5924 0.6084 0.6368 0.6938 0.7324 

10 0.6323 0.646 0.6585 0.6797 0.7194 0.7447 
 
 
 
 
 

Table 6. Normal stress 𝜎𝑥
∗(ℎ/2) of SS 2DFG-McrB under UL 

(Input parameters: �̅� = 300; 𝐿 = 30ℎ; 𝐾𝑊 = 75; 𝐾𝐺 = 15) 

ℎ∗ 𝑛𝑧 
Power-law index 

𝑛𝑥 = 0 0.5 1 2 5 10 
1 0 3.6627 3.7622 3.7975 3.7398 3.2622 2.68 

0.5 4.6257 4.577 4.4898 4.2526 3.4968 2.7282 
1 5.2187 5.0969 4.9478 4.6125 3.6704 2.7611 
2 6.0923 5.8737 5.6394 5.16 3.9204 2.8012 
5 7.8139 7.3903 6.9706 6.1726 4.3105 2.8466 
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10 9.425 8.762 8.1324 6.9923 4.5624 2.8653 
2 0 5.2085 5.0154 4.8166 4.4308 3.5212 2.7602 

0.5 5.7821 5.5189 5.263 4.7868 3.7048 2.8091 
1 6.2282 5.9216 5.6271 5.0841 3.8592 2.8445 
2 6.9657 6.5895 6.2308 5.5737 4.0953 2.888 
5 8.5404 7.9894 7.4695 6.5285 4.4761 2.9356 

10 10.0619 9.2911 8.5768 7.3161 4.7229 2.9535 
4 0 5.5961 5.3108 5.0448 4.5708 3.5540 2.7619 

0.5 6.0641 5.7383 5.4348 4.8931 3.7308 2.8162 
1 6.4737 6.1134 5.7774 5.1770 3.8839 2.8546 
2 7.1740 6.7533 6.3601 5.6549 4.1210 2.9012 
5 8.7068 8.1226 7.5766 6.5993 4.5048 2.9512 

10 10.2041 9.4064 8.6709 7.3809 4.7525 2.9694 
8 0 5.6795 5.3732 5.0917 4.5972 3.557 2.7604 

0.5 6.1288 5.7872 5.4714 4.9131 3.7328 2.8165 
1 6.5314 6.1568 5.8097 5.1943 3.8861 2.856 
2 7.2232 6.7906 6.3881 5.6703 4.1244 2.9035 
5 8.7466 8.1535 7.6005 6.6138 4.5101 2.9544 

10 10.2386 9.4336 8.6924 7.395 4.7586 2.9728 
∞ 0 5.7050 5.3922 5.1058 4.6048 3.5574 2.7597 

0.5 6.1498 5.8026 5.4826 4.9186 3.7328 2.8165 
1 6.5505 6.1707 5.8196 5.1990 3.8862 2.8563 
2 7.2397 6.8026 6.3967 5.6745 4.1250 2.9042 
5 8.7602 8.1637 7.6080 6.6180 4.5115 2.9553 

10 10.2506 9.4426 8.6994 7.3993 4.7604 2.9738 
Table 7. Shear stress 𝜎𝑥𝑧

∗ (0) of SS 2DFG-McrB under UL 
(Input parameters: �̅� = 300; 𝐿 = 30ℎ; 𝐾𝑊 = 75; 𝐾𝐺 = 15) 

ℎ∗ 𝑛𝑧 
Power-law index 

𝑛𝑥 = 0 0.5 1 2 5 10 
1 0 0.0804 0.0808 0.0801 0.0764 0.0619 0.0456 

0.5 0.1926 0.1970 0.1991 0.1984 0.1847 0.1703 
1 0.2422 0.2456 0.2468 0.2448 0.2312 0.2200 
2 0.2369 0.2381 0.2379 0.2348 0.2240 0.2169 
5 0.1579 0.1578 0.1572 0.1552 0.1499 0.1461 

10 0.1320 0.1319 0.1315 0.1301 0.1264 0.1229 
2 0 0.1307 0.1305 0.1293 0.1251 0.1055 0.0766 

0.5 0.3361 0.3345 0.3313 0.3216 0.29 0.259 
1 0.4219 0.4181 0.4129 0.4002 0.3663 0.3388 
2 0.4157 0.4109 0.4054 0.3935 0.3659 0.3457 
5 0.2719 0.2694 0.2665 0.2605 0.247 0.2356 

10 0.2158 0.2143 0.2125 0.2087 0.1996 0.1899 
4 0 0.1636 0.164 0.1633 0.1588 0.1332 0.0893 

0.5 0.3396 0.3376 0.3344 0.3252 0.2924 0.2519 
1 0.4243 0.4203 0.4154 0.4037 0.3699 0.335 
2 0.4358 0.4309 0.4254 0.4138 0.3852 0.3587 
5 0.3032 0.3002 0.297 0.2903 0.2745 0.2577 

10 0.2391 0.2369 0.2346 0.2299 0.218 0.2032 
8 0 0.1751 0.1751 0.1740 0.1682 0.1368 0.0828 

0.5 0.2999 0.2995 0.2978 0.2915 0.2624 0.2187 
1 0.3756 0.3739 0.3712 0.3635 0.3356 0.2992 
2 0.4010 0.3980 0.3943 0.3859 0.3616 0.3340 
5 0.2955 0.2930 0.2902 0.2843 0.2690 0.2503 

10 0.2345 0.2322 0.2299 0.2252 0.2126 0.1957 
∞ 0 0.1784 0.1780 0.1764 0.1697 0.1345 0.0754 

0.5 0.2733 0.2739 0.2732 0.2687 0.2420 0.1973 
1 0.3441 0.3438 0.3425 0.3374 0.3132 0.2767 
2 0.3768 0.3750 0.3726 0.3661 0.3447 0.3170 
5 0.2872 0.2851 0.2826 0.2773 0.2626 0.2432 

10 0.2290 0.2267 0.2244 0.2199 0.2072 0.1895 
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a) The McrB under UL 

 
b) The McrB under LL 

 
c) The McrB under PL 

 
d) The McrB under SL 

Fig. 6. Effect of the foundation stiffness (𝐾𝑊 , 𝐾𝐺) on the nonlinear displacement of SS 2DFG-McrBs 
under LL (Input parameter: �̅� = 250; 𝐿 = 30ℎ; 𝑛𝑥 = 𝑛𝑧 = 1) 

 
a) The displacement field 

 
b) Displacement by load step 
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c) Normal stress 𝜎𝑥

∗(𝑧) 
 

d) Shear stress 𝜎𝑥𝑧
∗ (𝑧) 

Fig. 7. Effect of the parameter ℎ∗ on the nonlinear static response of SS 2DFG-McrBs under PL 
(Input parameter: �̅� = 250; 𝐿 = 25ℎ; 𝑛𝑥 = 𝑛𝑧 = 0.5; 𝐾𝑊 = 𝐾𝐺 = 50) 

 
a) The displacement field 

 
b) Displacement by load step 

 
c) Normal stress 𝜎𝑥

∗(𝑧) 

 
d) Shear stress 𝜎𝑥𝑧

∗ (𝑧) at 𝑥 = 𝐿/3 

Fig. 8. Effect of the parameter 𝑛𝑧 on the nonlinear static response of CC 2DFG-McrBs under SL 
(Input parameter: �̅� = 300; 𝐿 = 20ℎ; 𝑛𝑥 = 1; 𝐾𝑊 = 75; 𝐾𝐺 = 50; ℎ∗ = 2) 
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a) The displacement field 

 
b) Displacement by load step 

 
c) Normal stress 𝜎𝑥

∗(𝑧) 
 

d) Shear stress 𝜎𝑥𝑧
∗ (𝑧) at 𝑥 = 𝐿/2 

Fig. 9. Effect of the parameter 𝑛𝑥 on the nonlinear static response of CS 2DFG-McrBs under UL 
(Input parameter: �̅� = 300; 𝐿 = 20ℎ; 𝑛𝑧 = 1; 𝐾𝑊 =  𝐾𝐺 = 75; ℎ∗ = 3) 

 
a) The displacement field 

 
b) Displacement by load step 
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c) Normal stress 𝜎𝑥

∗(𝑧) 
 

d) Shear stress 𝜎𝑥𝑧
∗ (𝑧) at 𝑥 = 𝐿/2 

Fig. 10. Effect of BCs on the nonlinear static response of 2DFG-McrBs under UL 
(Input parameter: �̅� = 300; 𝐿 = 20ℎ; 𝑛𝑥 = 𝑛𝑧 = 2; 𝐾𝑊 =  𝐾𝐺 = 25; ℎ∗ = 1) 

6. Conclusions 

This study presents a finite element 
framework for analyzing the nonlinear static 
response of 2DFG-McrBs under various loads 
while resting on an EF. The influence of 
microstructural size effects on the nonlinear 
response is captured using the MCST. 
Geometrical nonlinearity due to mid-plane 
stretching of the beam is modeled based on the 
von Kármán assumption. The resulting 
discretized nonlinear equilibrium equations are 
solved using the Newton-Raphson iterative 
method. The reliability and accuracy of the 
proposed solution methods are validated by 
comparing the obtained results with previously 
published data. Furthermore, the effects of 
geometric parameters, material properties, four 
different loads, and BCs on the static nonlinear 
response of 2DFG-McrBs are thoroughly 
examined. 
Based on the obtained results, for all the load 
cases and boundary conditions, several key 
conclusions are drawn as follows: 
• The length-scale parameters contribute to 

increasing the rigidity of 2DFG-McrBs 
compared to macrobeams. 

• EFs play a crucial role in the mechanical 
response of 2DFG-McrBs. They enhance the 
beam stiffness, leading to a reduction in 
displacement. Additionally, the shear layer 
provides better support than the spring layer. 

• As the power-law index increases, the McrB 
stiffness decreases. Consequently, the 
displacement of 2DFG-McrBs increases, as 
expected. 

• The proposed algorithm and computational 
program can be applied to analyze other 
microstructures with complex geometries 
embedded in multi-physical environments. 
This serves as a powerful tool for testing, 

designing, manufacturing, and optimizing 
microstructures. 
In addition, the developed methodology 

demonstrates clear advantages in terms of 
flexibility, accuracy, and computational 
efficiency. By incorporating microstructural size 
effects and geometric nonlinearity within a finite 
element framework, the approach offers a 
reliable and versatile tool for analyzing 
microscale structures under realistic loading and 
boundary conditions. The model's capability to 
adapt to various design scenarios ensures its 
potential application in advanced MEMS/NEMS 
devices and microstructural optimization tasks. 

Nomenclature 

FG Functionally graded material 

2DFG Bi-directional functionally graded 
material 

McrB Microbeam 

SGET Strain gradient elasticity theory 

MCST Modified couple stress theory 

FEM Finite element method 

DQM Differential quadrature method 

RBT Refined beam theory 

TBT Timoshenko beam theory 

EBBT Euler–Bernoulli beam theory 

MEMS Microelectromechanical systems 

NEMS Nanoelectromechanical systems 

BC Boundary condition 

DOF Degree of freedom 

EF Elastic foundation 
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