

**Mechanics of Advanced Composite Structures** 

Journal homepage: https://macs.semnan.ac.ir/

ISSN: 2423-7043





# A Finite Element Formulation for Analyzing The Nonlinear Static Response of Bi-functionally Graded Microbeam Resting on Elastic Foundation Under Various Loads

## Van-Chinh Nguyen, Trung Thanh Tran\*

Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam

ABSTRACT

advanced microstructures.

## ARTICLE INFO

#### Article history:

 Received:
 2023-10-19

 Revised:
 2024-03-22

 Accepted:
 2024-05-12

#### Keywords:

Microbeam; 2DFG; Elastic foundation; Nonlinear bending. The main goal of this paper is to introduce a finite element formulation to investigate the nonlinear static response of the 2DFG-McrB resting on EF under four different loads. The governing equations are established using the principle of minimum potential energy, incorporating the RBT and geometric nonlinearity based on the von Kármán assumptions. A weak-form finite element method is developed and solved iteratively through the Newton-Raphson method. The proposed formulation is validated against benchmark results from the literature, demonstrating its accuracy and computational efficiency. Furthermore, a comprehensive parametric study is conducted to evaluate the effects of geometrical dimensions, material properties, foundation stiffness, length-scale parameters, and BCs on the nonlinear response of 2DFG-McrBs. The findings provide valuable insights for the design and analysis of McrBs in engineering applications and serve as a basis for future studies on

© 2025 The Author(s). Mechanics of Advanced Composite Structures published by Semnan University Press. This is an open access article under the CC-BY 4.0 license. (<u>https://creativecommons.org/licenses/by/4.0/</u>)

#### 1. Introduction

McrBs play a crucial role in various smallscale systems and devices, particularly in MEMS and NEMS [1]. Owing to the complexity of loading conditions, McrBs in these applications often undergo significant deformations. Studying their behavior under such conditions is essential for the effective design and operation of microdevices. This has driven extensive research on the nonlinear static response of microstructures in general and McrBs in particular.

Extensive research has been conducted to predict the behavior of McrBs under various mechanical and electrical loading conditions. Early investigations were primarily based on classical beam theories, which do not adequately capture size-dependent effects. To address large rotations, many of these studies employed the von Kármán nonlinear assumption, analyzing McrB responses using methods such as the shooting method [2] and exact solutions [3, 4].

To overcome the limitations of classical beam theories in capturing size-dependent effects in microscale structures, several advanced

\* Corresponding author.

E-mail address: tranthanh0212@gmail.com

Cite this article as:

Van Chinh Nguyen and Trung Thanh Tran, 2025. Title of article. *A finite element formulation for analyzing the nonlinear static response of bi-functionally graded microbeam resting on elastic foundation under various loads*, 12(1), pp. xx-xx https://doi.org/10.22075/MACS.2024.39315.2050

continuum theories have been developed, including SGET [5, 6] and MCST [7]. These theories introduce length-scale parameters, enhancing the accuracy of modeling the mechanical behavior of McrBs. Over the past few years, numerous studies have utilized these advanced models to examine the impact of microscale effects on the mechanical behavior of McrBs. For instance, Mohammadi and Mahzoon [8] formulated the governing equations for postbuckling analysis of Euler-Bernoulli McrBs, incorporating size effects through both SGET and MCST. Xia et al. [9] developed a nonlinear beam model with a length-scale parameter, facilitating size-dependent analyses of static bending, postcritical behavior, and vibration in McrBs. Likewise, Asghari et al. [10] introduced a Timoshenko McrB model for nonlinear vibration and bending analysis, integrating size effects using MCST and SGET. Pham et al. [11] used a finite element modeling based on SGET and the refined HSDT to examine the dynamic instability magnetically embedded FG of porous nanobeams.

Furthermore, Akgoz and Civalek [12] explored the buckling behavior of McrBs under various BCs using EBBT and MCST. Ramezani [13] integrated the TBT with SGET to investigate large-amplitude vibration of McrBs, the emphasizing the crucial role of geometric nonlinearity in increasing beam frequencies. Ansari et al. [14] utilized DQM along with MCST to examine the bending, stability, and vibration of FG-McrBs, focusing on how frequencies and critical loads depend on the length-scale parameter. Additionally, Wang et al. [15] applied EBBT with MCST to study the nonlinear bending and thermal post-buckling behavior of McrBs. accounting for the influence of Poisson's ratio. Their analysis employed the shooting method in combination with the Newton iterative method to determine deflections and post-critical paths. Belabed et al. [16-20] used finite element procedure as a primary computational approach to investigate the mechanical behavior of various beam structures under different loading and BCs. Their comprehensive studies focused on analyzing key mechanical responses, including static bending, free vibration, and stability. The numerical results obtained from these analyses are presented in a thorough and systematic manner, providing valuable insights into the performance and reliability of beam systems in engineering applications. In addition, Meftah et al. [21] introduced FEM to describe the nonlinear modelling of masonry walls under in-plane loading. Tounsi et al. [22] analyzed the forced dynamical responses of FG porous beams using FEM.

Incorporating FGs into microstructures further enhances their potential by leveraging the materials' adaptability and multifunctionality. According to Benmesssaoud and Nasreddine [23], these materials are increasingly investigated for applications in micro-sensors, actuators, and flexible electronics. As a result, accurate and efficient computational modeling approaches have become essential [24, 25]. Using various shear deformation theories and MCST, researchers have extensively studied the linear static bending, vibration, and buckling behaviors of microbeams, microplates, and microshells. Notable contributions in this area include works by Şimşek et al. [26], Thai et al. [27], Deyhoriy-Semnani et al. [28]Sheikholeslami et al. [29], Akbas [30], Karamanli et al. [31, 32], Hu et al. [33] and Attia and Mohamed [34]. The nonlinear bending, vibration, and stability of microstructures have also been investigated by Shafiei et al. [35, 36] Attia and Mohamed [37]. Recently, Shenas et al. [38] analyzed the large amplitude vibration of pre-twisted FG-McrBs using the Chebyshev-Ritz method, and in [39] they employed the Ritz method to study the postbuckling thermal load-deflection path of rotating pre-twisted FG-McrBs in a thermal environment. Besides. Malekzadeh and Moradi [40] amplitude investigated large vibrational characteristics of variable-section thin beams with edge rotations restrained by elastic torsional springs and supported on a cubic nonlinear EF using DQM. Pham et al. [41] used FEM to study free vibration of FG porous curved nanobeams resting on EF in hygro-thermomagnetic environment.

In this study, we further investigate the sizedependent nonlinear static response of McrBs using a finite element procedure. A nonlinear beam element is developed based on RBT and MCST to derive the equilibrium equations. The model incorporates the von Kármán nonlinear assumption, with transverse shear rotationrather than cross-sectional rotation-chosen as a variable to ensure a quadratic variation of moments along the beam length. Additionally, the nonlinear response of McrBs under various loading conditions is analyzed using the Newton-Raphson iterative method. This study also provides a comprehensive examination of the influence of geometrical parameters, material properties, foundation stiffness, length-scale parameters, and BCs on the nonlinear static response of 2DFG-McrB resting on an EF.

Beyond theoretical contributions, the findings of this study offer practical insights for the design and optimization of micro-scale devices, such as MEMS components, micro-sensors, actuators, etc. The proposed approach provides a valuable tool for engineers to predict structural performance more accurately, ensuring reliability and efficiency in real-world applications.

#### 2. The 2DFG-McrB Resting on EF

Consider a 2DFG-McrB resting on an EF, having dimensions L, b, h along the x, y, and z axes, respectively, as shown in Fig. 1. The 2DFG-McrB includes two constituent phases: ceramic (denoted as c) and metal (denoted as m). The volume of these materials varies smoothly and continuously along the x and z directions following a power-law distribution. A twoparameter foundation model is employed, characterized by the spring stiffness  $k_W$  and the shear stiffness  $k_G$ . The beam is supported at both ends (at coordinates x = 0 and x = L) and is under a distributed load q(x) along its length. Four types of load distributions are considered in this study: uniform load distribution (UL) q(x) = $q_0$ , linear distribution load (LL)  $q(x) = \frac{q_0 x}{t}$ parabolic distribution load (PL)  $q(x) = q_0 \left(\frac{x}{L}\right)^2$ , and sinusoidal distribution load (SL) q(x) = $q_0 \sin \frac{\pi x}{t}$  as shown in Fig. 2.



#### Fig. 1. The 2DFG-McrB model resting on EF





The mechanical properties of a 2DFG-McrB, including the elastic modulus E(x, z), Poisson's ratio  $\vartheta(x, z)$ , and the length-scale parameter  $\ell(x, z)$ , vary continuously along both directions. These properties are collectively denoted as  $\mathcal{F}(x, z)$  and are defined by the following expression:

$$\mathcal{F}(x,z) = V_c(x,z)\mathcal{F}_c + V_m(x,z)\mathcal{F}_m$$
(1)

Here,  $V_i$  represents the volume fraction of material i (i = c, m), which is defined by the following expression:

$$V_{c}(x,z) = \left(\frac{1}{2} + \frac{z}{h}\right)^{n_{z}} \left(1 - \frac{x}{2L}\right)^{n_{x}},$$

$$V_{m}(x,z) = 1 - V_{c}(x,z)$$
(2)

where,  $n_x$  and  $n_z$  are non-negative values representing the material distribution exponents (power-law index) along the x and z directions, respectively.

Figure 3 demonstrates variations in the volume fractions of phases, as well as the variation in effective elastic modulus along the *x* and *z* directions. The material properties of the components are listed in Table 2 with  $n_x = n_z = 2$ .





b) The effective elastic modulus Fig 3. The variation in volume fraction of phases and effective elastic modulus of 2D-McrBs

#### 3. Basis Formulations

The displacement field **u** in the beam includes two displacement components: the axial displacement u(x,z) and the transverse displacement w(x). It is defined by [42]:

$$\mathbf{u} = \begin{cases} u(x,z) \\ w(x) \end{cases} = \begin{cases} u_0 - zw_{b,x} - f(z)w_{s,x} \\ w_b + w_s \end{cases}$$
(3)

where  $u_0$  is the axial displacement component on the midplane of beams,  $w_b$  and  $w_s$  are the transverse displacement components on the midplane are due to bending deformation and shear deformation, respectively. The derivative components are given by  $w_{b,x} = \frac{\partial w_b}{\partial x}$ ,  $w_{s,x} = \frac{\partial w_s}{\partial x}$ và  $f(z) = \frac{4z^3}{3b^2}$ .

The strain field  $\boldsymbol{\epsilon}$  is determined based on the displacement field using the Cauchy strain

relations and the nonlinear von Kármán straindisplacement equations as follows:

$$\boldsymbol{\varepsilon} = \left\{ \begin{matrix} \varepsilon_x \\ \gamma_{xz} \end{matrix} \right\}, \varepsilon_x = \frac{\partial u}{\partial x} + \frac{1}{2} \left( \frac{\partial w}{\partial x} \right)^2, \\ \gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \end{cases}$$
(4)

Substituting the displacement components u and w into the strain-displacement relations given in Eq. (4), we obtain:

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{L} + \boldsymbol{\varepsilon}_{NL},$$

$$\boldsymbol{\varepsilon}_{L} = \begin{pmatrix} u_{0,x} \\ 0 \end{pmatrix} - z \begin{pmatrix} w_{b,xx} \\ 0 \end{pmatrix} - f \begin{pmatrix} w_{s,xx} \\ 0 \end{pmatrix} + (1 - f') \begin{pmatrix} 0 \\ w_{s,x} \end{pmatrix},$$

$$\boldsymbol{\varepsilon}_{NL} = \frac{1}{2} \left( \frac{\partial w_{0}}{\partial x} \right)^{2} = \frac{1}{2} \left\{ \begin{pmatrix} w_{b,x} + w_{s,x} \end{pmatrix}^{2} \right\}$$
(5)

here,  $\boldsymbol{\varepsilon}_L$  and  $\boldsymbol{\varepsilon}_{NL}$  represent the linear and nonlinear strain components, respectively.

The stress field  $\sigma$  is determined from the strain field  $\epsilon$  using Hooke's law as follows:

$$\boldsymbol{\sigma} = \begin{cases} \sigma_x \\ \tau_{xz} \end{cases} = E(x, z) \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2[1 + \vartheta(x, z)]} \end{bmatrix} \boldsymbol{\varepsilon} = \mathbf{Q}\boldsymbol{\varepsilon} \qquad (6)$$

The curvature components  $\chi$  (curvature tensor) are defined as follows:

$$\boldsymbol{\chi} = \left\{ \begin{array}{c} \chi_{xy} \\ \chi_{yz} \end{array} \right\}, \, \chi_{xy} = \frac{1}{2} \frac{\partial \theta_y}{\partial x}, \, \chi_{yz} = \frac{1}{2} \frac{\partial \theta_y}{\partial z} \tag{7}$$

in which

$$\theta_y = \frac{1}{2} \left( \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) = -w_{b,x} - \frac{1}{2} (1 + f') w_{s,x} \quad (8)$$

Substituting the curvature expressions from Eq. (8) into Eq. (7), we obtain:

$$\boldsymbol{\chi} = -\frac{1}{2} {w_{b,xx} \choose 0} - \frac{1}{4} {(1+f')w_{s,xx} \choose f''w_{s,x}}$$
(9)

The vector of the deviatoric components of the symmetric couple stress tensor **m** is defined by the following expression:

$$\mathbf{m} = \mathcal{M}\boldsymbol{\chi} \text{ with } \mathcal{M} = \frac{E(x,z)\ell^2(x,z)}{1+\vartheta(x,z)}$$
(10)

where  $\ell(x, z)$  is a length-scale parameter.

11113

Based on MCST, the variational form of the elastic strain energy potential in the beam is given by the following expression. [7]:

$$\delta U = \int_{\Omega} \boldsymbol{\sigma}^{\mathrm{T}} \delta \boldsymbol{\varepsilon} \, d\Omega + \int_{\Omega} 2 \mathbf{m}^{\mathrm{T}} \delta \boldsymbol{\chi} \, d\Omega \tag{11}$$

The variational form of the elastic foundation potential energy can be expressed as

$$\delta U^f = \int_L [k_W w \delta w + k_G w_{,x} \delta w_{,x}] dx$$
(12)

The variational form of the work done by external forces acting on the McrB is given by

$$\delta W = \int_{L} q(x) \delta w dx \tag{13}$$

Based on the principle of minimum total potential energy, the equilibrium equations of the McrB are derived by

$$\delta U + \delta U^f - \delta W = 0 \tag{14}$$

### 4. Finite Element Procedure

Using a two-node beam element, where each node has five DOF, the displacement vector of the node  $\mathbf{d}_{e}$  of the beam element has the following form:

$$\mathbf{d}_{e}_{10\times1} = [\mathbf{d}_{m}^{\mathrm{T}} \quad \mathbf{d}_{b}^{\mathrm{T}} \quad \mathbf{d}_{s}^{\mathrm{T}}]^{\mathrm{T}}, 
 \mathbf{d}_{m} = \{u_{01} \quad u_{02}\}^{\mathrm{T}}, \mathbf{d}_{b}_{4\times1} 
 = \{w_{b1} \quad w_{b1,x} \quad w_{b2} \quad w_{b2,x}\}^{\mathrm{T}}, 
 \mathbf{d}_{s} = \{w_{s1} \quad w_{s1,x} \quad w_{s2} \quad w_{s2,x}\}^{\mathrm{T}}$$
(15)

The displacement variables on the midplane of the beam element are approximated by

$$u_0 = \mathbf{N}\mathbf{d}_m, w_b = \mathbf{H}\mathbf{d}_b, w_s = \mathbf{H}\mathbf{d}_s \tag{16}$$

in which **N** and **H** are the Lagrange and Hermitian function matrices, respectively, defined by the following formula:

$$\mathbf{N} = [N_1 \quad N_2], \mathbf{H} = [H_1 \quad H_2 \quad H_3 \quad H_4],$$
  

$$N_1 = 1 - \eta, N_2 = \eta, H_1 = 1 - 3\eta^2 + 2\eta^3,$$
  

$$H_2 = \bar{x}(1 - 2\eta + \eta^2), H_3 = 3\eta^2 - 2\eta^3, H_4 \qquad (17)$$
  

$$= \bar{x}(-\eta + \eta^2), \eta = \frac{\bar{x}}{L_e}.$$

Here,  $\bar{x}$  is the local coordinate following x direction, and  $L_e$  is the length of the beam element.

Substituting Eq. (16) into Eq. (3), the displacement field in an element is determined by

$$\mathbf{N}_{\mathbf{u}} = \begin{bmatrix} \mathbf{N}_{u} \\ \mathbf{N}_{w} \end{bmatrix} = \begin{bmatrix} \mathbf{N} & -z\mathbf{H}_{,x} & -f\mathbf{H}_{,x} \\ \mathbf{0} & \mathbf{H} & \mathbf{H} \end{bmatrix}$$
(18)

Substituting Eq. (16) into Eq. (5) and Eq. (9), the deformation field in the element is:

The linear strain vector  $\boldsymbol{\varepsilon}_L$ :

u - M d

$$\boldsymbol{\varepsilon}_{L} = \boldsymbol{B}_{L1} \boldsymbol{d}_{e}, \boldsymbol{B}_{L1} = \begin{bmatrix} \boldsymbol{N}_{,x} & -z \boldsymbol{H}_{,xx} & -f \boldsymbol{H}_{,xx} \\ \boldsymbol{0} & \boldsymbol{0} & (1-f') \boldsymbol{H}_{,x} \end{bmatrix}$$
(19)

The nonlinear strain vector  $\boldsymbol{\varepsilon}_{NL}$ :

$$\boldsymbol{\varepsilon}_{NL} = \frac{1}{2} \begin{cases} \boldsymbol{w}_{b,x} + \boldsymbol{w}_{s,x} \\ 0 \end{cases} \begin{pmatrix} \boldsymbol{w}_{b,x} + \boldsymbol{w}_{s,x} \end{pmatrix} = \frac{1}{2} \mathbf{B}_{NL} \mathbf{d}_{e},$$
  
$$\mathbf{B}_{NL} = \begin{bmatrix} \mathbf{G} \mathbf{d}_{e} \\ 0 \end{bmatrix} \mathbf{G}; \mathbf{G} = \begin{bmatrix} \mathbf{0} & \mathbf{H}_{,x} & \mathbf{H}_{,x} \end{bmatrix}$$
(20)

Curvature vector **\chi**:

$$\begin{aligned} \chi &= \mathbf{B}_{L2} \mathbf{d}_{e}, \mathbf{B}_{L2} \\ &= -\frac{1}{4} \begin{bmatrix} \mathbf{0} & 2\mathbf{H}_{,xx} & (1+f')\mathbf{H}_{,xx} \\ \mathbf{0} & \mathbf{0} & f''\mathbf{H}_{,x} \end{bmatrix} \end{aligned}$$
(21)

Substitute Eqs. (19) and (21) into Eq. (11) to get the variational potential energy of the elastic deformation of the beam element:  $\delta U_e = \delta \mathbf{d}_e^{\mathrm{T}} \mathbf{K}_e \mathbf{d}_e$ ,

$$\mathbf{K}_{e} = \int_{\Omega_{e}} (\mathbf{B}_{L1} + \mathbf{B}_{NL})^{\mathrm{T}} \mathbf{Q} \left( \mathbf{B}_{L1} + \frac{1}{2} \mathbf{B}_{NL} \right) d\Omega \qquad (22)$$
$$+ \int_{\Omega_{e}} 2\mathbf{B}_{L2}^{\mathrm{T}} \mathcal{M} \mathbf{B}_{L2} d\Omega$$

Substituting Eq. (16) into Eqs. (12) and (13), we get the variational expressions of the potential energy of the foundation element and the assignment of the external force as follows:  $U_e^f = \delta \mathbf{d}_e^T \mathbf{K}_e^f \mathbf{d}_e, \delta W_e = \delta \mathbf{d}_e^T \mathbf{F}_e,$ 

$$\mathbf{K}_{e}^{f} = \int_{L_{e}} \left[ k_{W} \mathbf{N}_{w_{0}}^{\mathrm{T}} \mathbf{N}_{w_{0}} + k_{G} \mathbf{N}_{w_{0},x}^{\mathrm{T}} \mathbf{N}_{w_{0},x} \right] dx , \mathbf{F}_{e}$$
(23)
$$= \int_{L_{e}} q(x) \mathbf{N}_{w_{0}}^{\mathrm{T}} dx$$

where  $\mathbf{K}_{e}^{f}$  is the foundation stiffness and  $\mathbf{F}_{e}$  is the nodal load of an element.

Substituting Eqs. (22) and (23) into Eq. (14), the system of nonlinear static equilibrium equations of the beam element is:

$$\left(\mathbf{K}_{e}+\mathbf{K}_{e}^{f}\right)\mathbf{d}_{e}-\mathbf{F}_{e}=\mathbf{0}$$
(24)

Eq. (24) is rewritten as  $\mathbf{R}(\mathbf{d}_e) = \mathbf{F}_e^{in}(\mathbf{d}_e) - \mathbf{F}_e^{out} = \mathbf{0},$ 

$$\mathbf{F}_{e}^{in}(\mathbf{d}_{e}) = \left(\mathbf{K}_{e} + \mathbf{K}_{e}^{f}\right)\mathbf{d}_{e}, \mathbf{F}_{e}^{out} = \mathbf{F}_{e}$$

where,  $\mathbf{R}(\mathbf{d}_e)$  is called the residual force vector,  $\mathbf{F}_e^{in}(\mathbf{d}_e)$  and  $\mathbf{F}_e^{out}$  are the internal force vector and external force vector of the element, respectively

The nonlinear static equilibrium equation system of the McrB is obtained after assembling the elements, as follows

$$\mathbf{R}(\mathbf{D},\lambda) = \mathbf{F}^{in}(\mathbf{D}) - \lambda \mathbf{F}^{out} = \mathbf{0}$$
(26)

where,  $\mathbf{R}(\mathbf{D}, \lambda)$  is the overall residual force vector, **D** is the overall nodal displacement vector,  $\mathbf{F}^{in}$ and  $\mathbf{F}^{out}$  are the overall internal and external force vectors collected from  $\mathbf{F}_{e}^{in}$  and  $\mathbf{F}_{e}^{out}$  respectively, and  $\lambda \in [0; 1]$  is the load parameter.

The nonlinear Eq. (26) is solved based on the use of the Newton-Raphson iteration algorithm for each load level. [43], the load levels are divided according to the parameter  $\lambda_n$  (n = 1; 2; 3...). Accordingly, the node displacement vector in the i + 1 iteration step is determined as follows:

$$\mathbf{D}_n^{i+1} = \mathbf{D}_n^i + \Delta \mathbf{D}_n^{i+1} \tag{27}$$

where  $\Delta D_n^{i+1}$  is the displacement increment, defined by the expression:

$$\Delta \mathbf{D}_n^{i+1} = -[\mathbf{K}_T(\mathbf{D}_n^i)]^{-1} \mathbf{R}(\mathbf{D}_n^i, \lambda_n)$$
(28)

where  $\mathbf{K}_T$  is the overall tangent stiffness matrix, which is collected from the element tangent stiffness matrix  $\mathbf{K}_{eT}$ . The  $\mathbf{K}_{eT}$  matrix has the following expression:

$$\mathbf{K}_{eT} = \frac{\partial \mathbf{R}(\mathbf{d}_{e})}{\partial \mathbf{d}_{e}} = \frac{\partial \mathbf{F}_{e}^{in}(\mathbf{d}_{e})}{\partial \mathbf{d}_{e}}$$
  
$$= \mathbf{K}_{e}^{L} + \mathbf{K}_{e}^{NL} + \mathbf{K}_{e}^{f} + \mathbf{K}_{e}^{\sigma},$$
  
$$\mathbf{K}_{e}^{L} = \int_{\Omega_{e}} \mathbf{B}_{L_{1}}^{T} \mathbf{Q} \mathbf{B}_{L_{1}} d\Omega + \int_{\Omega_{e}} 2\mathbf{B}_{L_{2}}^{T} \mathcal{M} \mathbf{B}_{L_{2}} d\Omega, \mathbf{K}_{e}^{\sigma}$$
  
$$= \int_{\Omega_{e}} \mathbf{G}^{T} \sigma_{x} \mathbf{G} d\Omega,$$
  
$$\mathbf{K}_{e}^{NL} = \int_{\Omega_{e}} (\mathbf{B}_{L_{1}}^{T} \mathbf{Q} \mathbf{B}_{NL} + \mathbf{B}_{NL}^{T} \mathbf{Q} \mathbf{B}_{L_{1}} + \mathbf{B}_{NL}^{T} \mathbf{Q} \mathbf{B}_{NL}) d\Omega$$
(29)

and the residual force vector  $\mathbf{R}(\mathbf{D}_n^i, \lambda_n)$  is determined by Eq. (26).

Note that the element matrices and element node load vectors in formulas (23) and (29) are calculated by Gauss quadrature numerical integration method.

To solve Eq. (28), it is necessary to have the initial value of the displacement in each load level, specifically in this paper,  $\mathbf{D}_{1}^{0} = \mathbf{0}$  and  $\mathbf{D}_{n}^{0} = \mathbf{D}_{n-1}$ . The convergence condition is checked after each loop according to the following expression:

$$\left\|\mathbf{R}(\mathbf{D}_{n}^{i},\lambda_{n})\right\| \leq \psi \|\lambda_{n}\mathbf{F}^{out}\|$$
(30)

where  $\psi$  is the error, chosen to be  $10^{-4}$ .

The Eq. (28) is solved with the given BCs. In this paper, BCs are shown in Table 1.

|     | Table 1. Boundary conditions of McrBs       |                                             |  |  |  |  |  |  |
|-----|---------------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| BCs | At $x = 0$                                  | At $x = L$                                  |  |  |  |  |  |  |
| CF  | $u_0 = w_b = w_s$ $= w_{b,x} = w_{s,x} = 0$ | freedom                                     |  |  |  |  |  |  |
| SS  | $u_0=w_b=w_s=0$                             | $u_0=w_b=w_s=0$                             |  |  |  |  |  |  |
| CS  | $u_0 = w_b = w_s$ $= w_{b,x} = w_{s,x} = 0$ | $u_0=w_b=w_s=0$                             |  |  |  |  |  |  |
| СС  | $u_0 = w_b = w_s$ $= w_{b,x} = w_{s,x} = 0$ | $u_0 = w_b = w_s$ $= w_{b,x} = w_{s,x} = 0$ |  |  |  |  |  |  |

#### 5. Numerical Results and Discussion

In the following sections, except for the comparative verification results, material components for 2DFG-McrBs are composed of two component material phases: the ceramic phase (SiC) and the metal phase (Al), with the properties given in Table 2. The results for the case  $\bar{h} = \infty$  are calculated for normal beams (macrobeams).

**Table 2.** Material properties of the componentmaterials [44]

| Componentes | Symbol | E (GPa) | θ    | ℓ(µm) |
|-------------|--------|---------|------|-------|
| SiC         | С      | 427     | 0.17 | 22.5  |
| Al          | m      | 70      | 0.3  | 15    |

Some dimensionless quantities used in the paper are defined by the following expressions:

$$w^{*} = \frac{100E_{m}I}{q_{0}L^{4}} w\left(\frac{L}{2}\right),$$

$$\sigma_{x}^{*}(z) = \frac{bh}{q_{0}L} \sigma\left(\frac{L}{2}, z\right),$$

$$\sigma_{xz}^{*}(z) = \frac{bh}{q_{0}L} \tau(0, z),$$

$$h^{*} = \frac{h}{\ell_{c}}, \bar{Q} = \frac{q_{0}L^{4}}{E_{m}bh^{4}},$$

$$K_{W} = \frac{k_{W}L^{4}}{E_{m}I}, K_{G} = \frac{k_{G}L^{2}}{E_{m}I}, I = \frac{bh^{3}}{12}$$
(31)

#### 5.1. Verification

Firstly, Table 3 lists the comparison result of linear static displacement parameter  $\hat{W} = \frac{100E_mbh^3}{q_0L^4} W\left(\frac{L}{2}\right)$  and linear static stress parameters for SS 2DFG macrobeams under uniformly distributed force  $(q_0)$  between the present method and those of Karamali [45] using an exact solution based on Quasi-3D. In which the beam is made of ceramic  $(Al_2O_3)$  and metal (Al) with characteristics  $E_c = 380GPa, \vartheta_c = 0.3$  và  $E_m = 70GPa, \vartheta_m = 0.3$ . The result is calculated with  $n_z = 0.5$ . It can be seen that the results converge at a uniform mesh size of nE = 18 and are close to the results of Karamali [45] with an error of approximately 1%.

Secondly, Table 4 shows the result of nonlinear displacement comparing the  $w^{**} = \frac{100Ebh^3}{12L^4} w\left(\frac{L}{2}\right)$ of parameter SS homogeneous **McrBs** under uniformly distributed force  $(q_0)$  with geometric dimensions:  $L = 250 \mu m$ ,  $h = 3 \mu m$ ,  $b = 50 \mu m$ , and material properties as E = 169MPa,  $\vartheta =$ 0,06. Observing that the obtained results also converge at a uniform mesh size of nE = 18 and are in good agreement with the results of Dang et al. [46] with an error of nearly 1%. From the above two examples, the accuracy and reliability of the proposed algorithm and calculation program can be confirmed. To ensure the smoothness of the deformation field, we use a uniform mesh size of nE = 20 for further studies.

#### 5.2. Nonlinear Static Response

First, Figure 4 illustrates the influence of different load types on the static response of SS 2DFG-McrBs, given the following input parameters:  $\ell_c = 22.5 \mu m$ ,  $\ell_m = 15 \mu m$ ,  $h = 4 \ell_c$ ,  $b = h, L = 20h, K_W = 50$ , and  $K_G = 10$ . Using the same input parameters, Figure 5 presents the static response of CC 2DFG-McrBs. The results indicate that the 2DFG-McrB under UL exhibits the largest displacement response, followed by beams under SL, LL, and PL. Moreover, for 2DFG-McrBs under LL and PL, the displacement curve is asymmetric, with the maximum displacement shifting toward the region experiencing the higher distributed force. Besides, the transverse shear stress  $\sigma_{xz}^*$  distribution follows a parabolic profile, reaching zero at the top and bottom surfaces for SS 2DFG-McrBs. For CC 2DFG-McrB, the shear stress is theoretically predicted to be zero across the entire edge thickness at the clamped boundary (Fig. 5d).

Second, Tables 5, 6, and 7 illustrate the effects of the power-law indexes in the x and z directions  $(n_x, n_z)$  on the displacement, normal stress, and shear stress of SS 2DFG-McrBs for different values of the parameter  $h^*$ . It can be observed that increasing  $n_r$  and/or  $n_z$  results in a higher beam displacement, as these parameters reduce the ceramic volume fraction, thereby decreasing the beam's stiffness. Furthermore, an increase in  $h^*$  leads to a larger displacement of the 2DFG-This occurs McrB. because a higher  $h^*$  corresponds to a decrease in the length scale, which in turn reduces the total elastic energy and, consequently, the beam's stiffness. As  $h^*$ approaches infinity, the beam displacement increases significantly, corresponding to the macroscopic case mentioned earlier.

Third, Figure 6 illustrates the influence of foundation stiffness  $(K_W, K_G)$  on the displacement of SS 2DFG-McrBs under different loading conditions and various values of the parameter  $h^*$  (which is related to the length-scale parameter). It can be observed that an increase in foundation stiffness reduces the beam's displacement, as expected. This is because the EF contributes to the total energy of the system, making the beam "stiffer." Furthermore, an increase in  $h^*$  (corresponding to a decrease in the length scale) leads to greater beam displacement, with the maximum displacement occurring in the macroscopic beam case  $(h^* \rightarrow \infty)$ . Additionally, the shear layer provides more effective support than the spring layer, as anticipated.

Next, Figure 7 provides a more detailed illustration of how the length-scale parameter on the static response of CC 2DFG-McrBs under PL, through the dimensionless parameter  $h^*$ . From the results, it is evident that incorporating the length-scale parameter, particularly at higher

values of  $h^*$ , significantly enhances the overall stiffness of the McrBs. Physically, this can be attributed to the size-dependent effects captured by the SGET, which become increasingly prominent at micro- and nano-scales, where classical theories tend to underestimate structural rigidity. As the effective stiffness the beam's ability to resist increases, deformation under external loading improves, thereby reducing the observed deflections. Furthermore, the displacement evolution across different load steps exhibits smooth and continuous curve profiles, aligning with theoretical expectations for such micro-scale structures. This consistency reaffirms the validity of the applied model in capturing the essential mechanical behaviors of FG-McrBs.

Furthermore, Figures. 8 and 9 respectively depict the effects of the material gradation indices  $n_r$  and/or  $n_z$  on the static response of 2DFG-McrBs under CC and CS boundaries. As anticipated, increasing the values of  $n_r$  and/or  $n_z$ results in larger beam displacements. This phenomenon is fundamentally linked to the material distribution across the beam's length and thickness: higher values of  $n_r$  and/or  $n_z$ correspond to a reduced volume fraction of the stiffer ceramic phase, leading to a more metalrich composition. Since metals generally possess lower elastic moduli compared to ceramics, the overall stiffness of the beam diminishes as the gradation indices increase. Consequently, the beam exhibits a more compliant (flexible) response under applied loading. Another physically meaningful observation lies in the load-load-displacement behavior. Specifically, for cases involving the CC boundary, the displacement-load step curves tend to maintain a

nearly linear relationship, resembling straight lines. This characteristic reflects the dominance of linear elastic bending behavior in the regime of small deformations, where geometric nonlinearity remains negligible.

Finally, Figure 10 presents a comprehensive comparison of how different BCs affect the static response of 2DFG-McrBs subjected to UL. As theoretically anticipated. the maximum displacement of the beam exhibits a clear increasing trend following the order of boundary constraint severity: CC, CS, SS, CF boundaries. This behavior is fundamentally governed by the degree of kinematic restrictions imposed at the beam ends. Specifically, the CC boundary provides the most rigid constraint by restraining both translations and rotations, thereby minimizing deflection. Conversely, the CF boundary, commonly referred to as a cantilever beam, allows for maximal deformation due to the absence of support at the free end. An important physical insight is revealed through the symmetry (or asymmetry) of the displacement profiles. For beams with symmetric BCs, such as CC and SS boundaries, the displacement response curves maintain geometric symmetry about the beam's midspan. This is a direct consequence of the uniform distribution of constraints and loading, which enforces a balanced deformation pattern. On the other hand, in configurations where BCs are asymmetric (e.g., CS and CF boundaries), the displacement curves exhibit noticeable asymmetry, with the deformation profile skewing towards the less restrictive (weaker) boundary. This deviation reflects the beam's natural tendency to bend more freely where constraints are minimal, highlighting the critical role of BCs in dictating the mode shapes.

| 1    | able 5. Company    | son results of the s | Ĩ         |             | crobeams with t | interent mesh | sizes     |
|------|--------------------|----------------------|-----------|-------------|-----------------|---------------|-----------|
| L/h  | Parameters         | Methods              | Power-law | r index     |                 |               |           |
| L/II | r al allietel S    | Methous              | $n_x = 0$ | $n_x = 0.1$ | $n_x = 0.5$     | $n_x = 1$     | $n_x = 2$ |
| 10   | $w^*$              | Karamali [45]        | 4.5015    | 4.5957      | 4.9843          | 5.4912        | 6.5521    |
|      |                    | Present              |           |             | 1915            |               |           |
|      |                    | nE = 12              | 4.5304    | 4.6244      | 5.0125          | 5.5224        | 6.6008    |
|      |                    | nE = 14              | 4.5308    | 4.6248      | 5.0130          | 5.5229        | 6.6013    |
|      |                    | nE = 16              | 4.5311    | 4.6251      | 5.0133          | 5.5232        | 6.6016    |
|      |                    | nE = 18              | 4.5315    | 4.6255      | 5.0137          | 5.5235        | 6.6018    |
|      |                    | nE = 20              | 4.5315    | 4.6255      | 5.0137          | 5.5235        | 6.6019    |
|      |                    | Error (%)            | 0.6664    | 0.6484      | 0.5899          | 0.5882        | 0.7601    |
|      | $\sigma_x^*(h/2)$  | Karamali [45]        | 9.8766    | 9.5863      | 9.7674          | 9.6417        | 9.3574    |
|      | aP                 | Present              |           |             |                 |               |           |
|      |                    | nE = 12              | 9.9270    | 9.9046      | 9.8133          | 9.6963        | 9.4573    |
| 5    | IN                 | nE = 14              | 9.9116    | 9.8893      | 9.7987          | 9.6824        | 9.4439    |
| 14   |                    | nE = 16              | 9.9016    | 9.8795      | 9.7894          | 9.6735        | 9.4354    |
|      |                    | nE = 18              | 9.8898    | 9.8679      | 9.7785          | 9.6633        | 9.4257    |
|      |                    | nE = 20              | 9.8898    | 9.8679      | 9.7785          | 9.6634        | 9.4258    |
|      |                    | Error (%)            | 0.1336    | 2.9375      | 0.1136          | 0.2251        | 0.7310    |
|      | $\sigma_{xz}^*(0)$ | Karamali [45]        | 0.7532    | 0.7598      | 0.7852          | 0.8143        | 0.8617    |
|      |                    | Present              |           |             |                 |               |           |
|      |                    | nE = 12              | 0.7655    | 0.7721      | 0.7975          | 0.8265        | 0.8733    |
|      |                    | nE = 14              | 0.7648    | 0.7714      | 0.7969          | 0.8259        | 0.8729    |
|      |                    | nE = 16              | 0.7642    | 0.7708      | 0.7963          | 0.8254        | 0.8725    |

 Table 3. Comparison results of the static response of SS 2DFG macroheams with different mesh sizes

|    |                    | nE = 18              | 0.7632          | 0.7697           | 0.7952         | 0.8244  | 0.8716  |
|----|--------------------|----------------------|-----------------|------------------|----------------|---------|---------|
|    |                    | nE = 20              | 0.7632          | 0.7698           | 0.7953         | 0.8245  | 0.8717  |
|    |                    | Error (%)            | 1.3277          | 1.3161           | 1.2863         | 1.2526  | 1.1605  |
| 20 | $w^*$              | Karamali [45]        | 4.4347          | 4.5274           | 4.9092         | 5.4076  | 6.4513  |
|    |                    | Present              |                 |                  |                |         |         |
|    |                    | nE = 12              | 4.4575          | 4.5498           | 4.9309         | 5.4319  | 6.4931  |
|    |                    | nE = 14              | 4.4580          | 4.5502           | 4.9314         | 5.4324  | 6.4936  |
|    |                    | nE = 16              | 4.4583          | 4.5505           | 4.9317         | 5.4327  | 6.4939  |
|    |                    | nE = 18              | 4.4586          | 4.5508           | 4.9320         | 5.4329  | 6.4941  |
|    |                    | nE = 20              | 4.4586          | 4.5509           | 4.9321         | 5.4330  | 6.4942  |
|    |                    | Error (%)            | 0.5389          | 0.5191           | 0.4665         | 0.4697  | 0.6650  |
|    | $\sigma_x^*(h/2)$  | Karamali [45]        | 19.7048         | 19.6642          | 19.4863        | 19.2343 | 18.6648 |
|    |                    | Present              |                 |                  | 1 P D          |         |         |
|    |                    | nE = 12              | 19.8006         | 19.7559          | 19.5738        | 19.3410 | 18.8663 |
|    |                    | nE = 14              | 19.7697         | 19.7253          | 19.5446        | 19.3131 | 18.8394 |
|    |                    | nE = 16              | 19.7497         | 19.7055          | 19.5259        | 19.2953 | 18.8224 |
|    |                    | nE = 18              | 19.7260         | 19.6822          | 19.5040        | 19.2749 | 18.8029 |
|    |                    | nE = 20              | 19.7261         | 19.6823          | 19.5041        | 19.2750 | 18.8031 |
|    |                    | Error (%)            | 0.1081          | 0.0920           | 0.0913         | 0.2116  | 0.7410  |
|    | $\sigma_{xz}^*(0)$ | Karamali [45]        | 0.7599          | 0.7667           | 0.7933         | 0.8240  | 0.8750  |
|    | ALG                | Present              |                 |                  |                |         |         |
| 11 | 11210              | nE = 12              | 0.7688          | 0.7754           | 0.8006         | 0.8293  | 0.8755  |
| 10 | 00-                | nE = 14              | 0.7687          | 0.7752           | 0.8004         | 0.8292  | 0.8754  |
| 0  |                    | nE = 16              | 0.7685          | 0.7750           | 0.8002         | 0.8290  | 0.8753  |
|    |                    | nE = 18              | 0.7680          | 0.7745           | 0.7998         | 0.8285  | 0.8749  |
|    |                    | nE = 20              | 0.7681          | 0.7746           | 0.7999         | 0.8286  | 0.8750  |
|    |                    | Error (%)            | 1.0791          | 1.0304           | 0.8320         | 0.5583  | 0.0000  |
|    | Т                  | able 1. Comparison r | esults of the n | onlinear display | coment of SS M | crBs    |         |

 Table 4. Comparison results of the nonlinear displacement of SS McrBs

| DC  |       |                  |        |        | ℓ/h    |        |        |
|-----|-------|------------------|--------|--------|--------|--------|--------|
| BCs | $q_0$ | Methods —        | 0.1    | 0.2    | 0.4    | 0.6    | 0.9    |
| СС  | 5     | Dang et al. [46] | 0.9545 | 0.8764 | 0.6374 | 0.4204 | 0.2324 |
|     |       | Present          | AC     |        |        |        |        |
|     |       | nE = 12          | 0.9475 | 0.8711 | 0.6358 | 0.4203 | 0.2325 |
|     |       | nE = 14          | 0.9490 | 0.8722 | 0.6362 | 0.4204 | 0.2325 |
|     |       | nE = 16          | 0.9500 | 0.8730 | 0.6365 | 0.4204 | 0.2325 |
|     | - 6   | nE = 18          | 0.9511 | 0.8738 | 0.6367 | 0.4205 | 0.2324 |
|     | 200   | nE = 20          | 0.9512 | 0.8739 | 0.6368 | 0.4205 | 0.2325 |
| 10  | 1 RIV | Error (%)        | 0.3457 | 0.2853 | 0.0941 | 0.0238 | 0.0430 |
| U   | 10    | Dang et al. [46] | 1.4633 | 1.3877 | 1.1185 | 0.8003 | 0.4604 |
|     |       | Present          |        |        |        |        | -      |
|     |       | nE = 12          | 1.4483 | 1.3744 | 1.1114 | 0.7982 | 0.4604 |
|     |       | nE = 14          | 1.4516 | 1.3773 | 1.1129 | 0.7987 | 0.4604 |
|     |       | nE = 16          | 1.4538 | 1.3792 | 1.1139 | 0.7991 | 0.4605 |
|     |       | nE = 18          | 1.4562 | 1.3813 | 1.1150 | 0.7994 | 0.4604 |
|     |       | nE = 20          | 1.4563 | 1.3814 | 1.1151 | 0.7995 | 0.4605 |
|     |       | Error (%)        | 0.4784 | 0.4540 | 0.3040 | 0.1000 | 0.0217 |
| SS  | 5     | Dang et al. [46] | 1.5142 | 1.4917 | 1.4000 | 1.2492 | 0.9517 |
|     |       | Present          | P      | 119-   |        |        |        |
|     |       | nE = 12          | 1.4970 | 1.4749 | 1.3854 | 1.2383 | 0.9467 |
|     |       | nE = 14          | 1.4980 | 1.4759 | 1.3864 | 1.2391 | 0.9471 |
|     |       | nE = 16          | 1.4986 | 1.4766 | 1.3870 | 1.2396 | 0.9474 |
|     |       | nE = 18          | 1.4993 | 1.4773 | 1.3878 | 1.2402 | 0.9476 |
|     | 00    | nE = 20          | 1.4994 | 1.4774 | 1.3878 | 1.2402 | 0.9477 |
|     | NIC   | Error (%)        | 0.9774 | 0.9586 | 0.8714 | 0.7205 | 0.4203 |
| 117 | 10    | Dang et al. [46] | 1.9704 | 1.9538 | 1.8837 | 1.7624 | 1.4965 |
| P   | 1     | Present          |        |        |        |        |        |
|     |       | nE = 12          | 1.9481 | 1.9315 | 1.8626 | 1.7442 | 1.4845 |
|     |       | nE = 14          | 1.9492 | 1.9327 | 1.8638 | 1.7454 | 1.4854 |
|     |       | nE = 16          | 1.9499 | 1.9334 | 1.8646 | 1.7462 | 1.4860 |
|     |       | nE = 18          | 1.9507 | 1.9342 | 1.8655 | 1.7472 | 1.4866 |
|     |       | nE = 20          | 1.9508 | 1.9343 | 1.8656 | 1.7472 | 1.4866 |
|     |       | Error (%)        | 0.9947 | 0.9981 | 0.9609 | 0.8625 | 0.6615 |





c) Normal stress  $\sigma_{\chi}^{*}(z)$ d) Shear stress  $\sigma_{xz}^*(z)$ Fig. 5. Effect of load types on the nonlinear static response of CC 2DFG-McrBs **Table 5.** Nonlinear displacement  $w^*$  of SS 2DFG-McrB under UL (Input parameters:  $\overline{Q} = 300$ ; L = 30h;  $K_W = 75$ ;  $K_G = 15$ )

| 1 *                                                                       |        | COF       | arameters. ę –               | Power-la          |        |        |        |
|---------------------------------------------------------------------------|--------|-----------|------------------------------|-------------------|--------|--------|--------|
| h*                                                                        | nz     | $n_x = 0$ | 0.5                          | 1                 | 2      | 5      | 10     |
| 1                                                                         | 0      | 0.2904    | 0.3247                       | 0.3570            | 0.4160 | 0.5495 | 0.6517 |
| 0                                                                         | 0.5    | 0.3544    | 0.3837                       | 0.4116            | 0.4633 | 0.5792 | 0.6652 |
|                                                                           |        | 0.3920    | 0.4194                       | 0.4456            | 0.4939 | 0.5988 | 0.6747 |
|                                                                           | 1<br>2 | 0.4427    | 0.4682                       | 0.4922            | 0.5355 | 0.6253 | 0.6879 |
|                                                                           | 5      | 0.5271    | 0.5484                       | 0.5679            | 0.6015 | 0.6659 | 0.7078 |
|                                                                           | 10     | 0.5936    | 0.6102                       | 0.6249            | 0.6494 | 0.6935 | 0.7207 |
| 2                                                                         | 0      | 0.3816    | 0.4053                       | 0.4286            | 0.4742 | 0.5869 | 0.6743 |
|                                                                           | 0.5    | 0.4189    | 0.4415                       | 0.464             | 0.5074 | 0.6091 | 0.6854 |
|                                                                           | 1      | 0.4467    | 0.4689                       | 0.4907            | 0.5322 | 0.6255 | 0.6942 |
|                                                                           | 2      | 0.4887    | 0.51                         | 0.5305            | 0.5684 | 0.6493 | 0.7071 |
|                                                                           | 5      | 0.5629    | 0.5812                       | 0.5982            | 0.6282 | 0.6873 | 0.7268 |
|                                                                           | 10     | 0.6228    | 0.6373                       | 0.6504            | 0.6726 | 0.7135 | 0.7393 |
| 4                                                                         | 0      | 0.4052    | 0.4256                       | 0.4465            | 0.4885 | 0.5956 | 0.6788 |
|                                                                           | 0.5    | 0.4353    | 0.456                        | 0.4769            | 0.5181 | 0.6157 | 0.6894 |
|                                                                           | 1      | 0.4609    | 0.4815                       | 0.502             | 0.5416 | 0.6315 | 0.6982 |
|                                                                           | 2      | 0.501     | 0.5209                       | 0.5403            | 0.5765 | 0.6547 | 0.7113 |
|                                                                           | 5      | 0.5723    | 0.5896                       | 0.6058            | 0.6347 | 0.6922 | 0.731  |
| 57                                                                        | 10     | 0.6299    | 0.6438                       | 0.6565            | 0.678  | 0.7179 | 0.7434 |
| 8                                                                         | 0      | 0.4109    | 0.4305                       | 0.4507            | 0.4919 | 0.5975 | 0.6797 |
|                                                                           | 0.5    | 0.4393    | 0.4595                       | 0.4801            | 0.5206 | 0.6172 | 0.6902 |
|                                                                           | 1      | 0.4645    | 0.4847                       | 0.5049            | 0.5438 | 0.6328 | 0.6991 |
|                                                                           | 2      | 0.5042    | 0.5237                       | 0.5428            | 0.5785 | 0.656  | 0.7123 |
|                                                                           | 5      | 0.5747    | 0.5917                       | 0.6077            | 0.6363 | 0.6934 | 0.7321 |
|                                                                           | 10     | 0.6317    | 0.6455                       | 0.658             | 0.6793 | 0.719  | 0.7444 |
| $\infty$                                                                  | 0      | 0.4127    | 0.4321                       | 0.4521            | 0.493  | 0.5982 | 0.68   |
|                                                                           | 0.5    | 0.4406    | 0.4607                       | 0.4811            | 0.5215 | 0.6177 | 0.6905 |
|                                                                           | 1      | 0.4657    | 0.4857                       | 0.5058            | 0.5446 | 0.6333 | 0.6994 |
|                                                                           | 2      | 0.5053    | 0.5247                       | 0.5436            | 0.5792 | 0.6565 | 0.7127 |
|                                                                           | 5      | 0.5755    | 0.5924                       | 0.6084            | 0.6368 | 0.6938 | 0.7324 |
|                                                                           | 10     | 0.6323    | 0.646                        | 0.6585            | 0.6797 | 0.7194 | 0.7447 |
| <b>Table 6</b> . Normal stress $\sigma_r^*(h/2)$ of SS 2DFG-McrB under UL |        |           |                              |                   |        |        |        |
| 6                                                                         | -      |           |                              |                   |        |        |        |
|                                                                           |        | (input    | parameters: $\overline{Q}$ = | = 300; L = 30h; L |        | 15]    |        |
|                                                                           |        |           |                              |                   |        |        |        |

**Table 6**. Normal stress  $\sigma_x^*(h/2)$  of SS 2DFG-McrB under UL (Input parameters:  $\bar{Q} = 300; L = 30h; K_W = 75; K_G = 15$ )

| h* | 22    |           |        | Power-la | aw index |        |        |  |  |
|----|-------|-----------|--------|----------|----------|--------|--------|--|--|
| п  | $n_z$ | $n_x = 0$ | 0.5    | 1        | 2        | 5      | 10     |  |  |
| 1  | 0     | 3.6627    | 3.7622 | 3.7975   | 3.7398   | 3.2622 | 2.68   |  |  |
|    | 0.5   | 4.6257    | 4.577  | 4.4898   | 4.2526   | 3.4968 | 2.7282 |  |  |
|    | 1     | 5.2187    | 5.0969 | 4.9478   | 4.6125   | 3.6704 | 2.7611 |  |  |
|    | 2     | 6.0923    | 5.8737 | 5.6394   | 5.16     | 3.9204 | 2.8012 |  |  |
|    | 5     | 7.8139    | 7.3903 | 6.9706   | 6.1726   | 4.3105 | 2.8466 |  |  |

|                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.425                                                                                                                                                                                                                                                                                                                | 8.762                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1324                                                                                                                                                                                                                                                                                     | 6.9923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5624                                                                                                                                                                                                                                                                          | 2.8653                                                                                                                                                                                                                                                                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2085                                                                                                                                                                                                                                                                                                               | 5.0154                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.8166                                                                                                                                                                                                                                                                                     | 4.4308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5212                                                                                                                                                                                                                                                                          | 2.7602                                                                                                                                                                                                                                                                   |
|                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7821                                                                                                                                                                                                                                                                                                               | 5.5189                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.263                                                                                                                                                                                                                                                                                      | 4.7868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7048                                                                                                                                                                                                                                                                          | 2.8091                                                                                                                                                                                                                                                                   |
|                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.2282                                                                                                                                                                                                                                                                                                               | 5.9216                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6271                                                                                                                                                                                                                                                                                     | 5.0841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8592                                                                                                                                                                                                                                                                          | 2.8445                                                                                                                                                                                                                                                                   |
|                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.9657                                                                                                                                                                                                                                                                                                               | 6.5895                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.2308                                                                                                                                                                                                                                                                                     | 5.5737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0953                                                                                                                                                                                                                                                                          | 2.888                                                                                                                                                                                                                                                                    |
|                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.5404                                                                                                                                                                                                                                                                                                               | 7.9894                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.4695                                                                                                                                                                                                                                                                                     | 6.5285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4761                                                                                                                                                                                                                                                                          | 2.9356                                                                                                                                                                                                                                                                   |
|                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.0619                                                                                                                                                                                                                                                                                                              | 9.2911                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.5768                                                                                                                                                                                                                                                                                     | 7.3161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7229                                                                                                                                                                                                                                                                          | 2.9535                                                                                                                                                                                                                                                                   |
| 4                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5961                                                                                                                                                                                                                                                                                                               | 5.3108                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0448                                                                                                                                                                                                                                                                                     | 4.5708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5540                                                                                                                                                                                                                                                                          | 2.7619                                                                                                                                                                                                                                                                   |
| -                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0641                                                                                                                                                                                                                                                                                                               | 5.7383                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4348                                                                                                                                                                                                                                                                                     | 4.8931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7308                                                                                                                                                                                                                                                                          | 2.8162                                                                                                                                                                                                                                                                   |
|                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.4737                                                                                                                                                                                                                                                                                                               | 6.1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.7774                                                                                                                                                                                                                                                                                     | 5.1770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8839                                                                                                                                                                                                                                                                          | 2.8546                                                                                                                                                                                                                                                                   |
|                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1740                                                                                                                                                                                                                                                                                                               | 6.7533                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3601                                                                                                                                                                                                                                                                                     | 5.6549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1210                                                                                                                                                                                                                                                                          | 2.9012                                                                                                                                                                                                                                                                   |
|                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7068                                                                                                                                                                                                                                                                                                               | 8.1226                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.5766                                                                                                                                                                                                                                                                                     | 6.5993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5048                                                                                                                                                                                                                                                                          | 2.9512                                                                                                                                                                                                                                                                   |
|                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2041                                                                                                                                                                                                                                                                                                              | 9.4064                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6709                                                                                                                                                                                                                                                                                     | 7.3809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7525                                                                                                                                                                                                                                                                          | 2.9694                                                                                                                                                                                                                                                                   |
| 8                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.6795                                                                                                                                                                                                                                                                                                               | 5.3732                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0917                                                                                                                                                                                                                                                                                     | 4.5972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.557                                                                                                                                                                                                                                                                           | 2.9694                                                                                                                                                                                                                                                                   |
| 0                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      | 5.7872                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4714                                                                                                                                                                                                                                                                                     | 4.9131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7328                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1288                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 | 2.8165                                                                                                                                                                                                                                                                   |
|                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5314                                                                                                                                                                                                                                                                                                               | 6.1568                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8097                                                                                                                                                                                                                                                                                     | 5.1943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8861                                                                                                                                                                                                                                                                          | 2.856                                                                                                                                                                                                                                                                    |
|                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.2232                                                                                                                                                                                                                                                                                                               | 6.7906                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3881                                                                                                                                                                                                                                                                                     | 5.6703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1244                                                                                                                                                                                                                                                                          | 2.9035                                                                                                                                                                                                                                                                   |
|                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7466                                                                                                                                                                                                                                                                                                               | 8.1535                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.6005                                                                                                                                                                                                                                                                                     | 6.6138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5101                                                                                                                                                                                                                                                                          | 2.9544                                                                                                                                                                                                                                                                   |
|                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2386                                                                                                                                                                                                                                                                                                              | 9.4336                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6924                                                                                                                                                                                                                                                                                     | 7.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7586                                                                                                                                                                                                                                                                          | 2.9728                                                                                                                                                                                                                                                                   |
| $\infty$         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7050                                                                                                                                                                                                                                                                                                               | 5.3922                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1058                                                                                                                                                                                                                                                                                     | 4.6048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5574                                                                                                                                                                                                                                                                          | 2.7597                                                                                                                                                                                                                                                                   |
|                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.1498                                                                                                                                                                                                                                                                                                               | 5.8026                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4826                                                                                                                                                                                                                                                                                     | 4.9186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7328                                                                                                                                                                                                                                                                          | 2.8165                                                                                                                                                                                                                                                                   |
| -                | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5505                                                                                                                                                                                                                                                                                                               | 6.1707                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8196                                                                                                                                                                                                                                                                                     | 5.1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8862                                                                                                                                                                                                                                                                          | 2.8563                                                                                                                                                                                                                                                                   |
| 11               | 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2397                                                                                                                                                                                                                                                                                                               | 6.8026                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3967                                                                                                                                                                                                                                                                                     | 5.6745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1250                                                                                                                                                                                                                                                                          | 2.9042                                                                                                                                                                                                                                                                   |
| 10               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7602                                                                                                                                                                                                                                                                                                               | 8.1637                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.6080                                                                                                                                                                                                                                                                                     | 6.6180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5115                                                                                                                                                                                                                                                                          | 2.9553                                                                                                                                                                                                                                                                   |
| -                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2506                                                                                                                                                                                                                                                                                                              | 9.4426                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6994                                                                                                                                                                                                                                                                                     | 7.3993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7604                                                                                                                                                                                                                                                                          | 2.9738                                                                                                                                                                                                                                                                   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Table                                                                                                                                                                                                                                                                                                                | e 7. Shear stress                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma_{xz}^*(0)$ of SS 2DF                                                                                                                                                                                                                                                               | G-McrB under U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IL                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Input                                                                                                                                                                                                                                                                                                               | parameters: $\overline{O}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 300; L = 30h; L                                                                                                                                                                                                                                                                          | $K_W = 75; K_G = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15) 🦳 🦳                                                                                                                                                                                                                                                                         | 1P                                                                                                                                                                                                                                                                       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                                                                                                                                                                                                                                                                | ι v                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          |
| h*               | <i>n</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Power-la                                                                                                                                                                                                                                                                                   | w index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                       |
| h*               | n <sub>z</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $n_x = 0$                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power-la<br>1                                                                                                                                                                                                                                                                              | aw index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                       |
| h*<br>1          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{n_x = 0}{0.0804}$                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power-la<br>1<br>0.0801                                                                                                                                                                                                                                                                    | w index<br>2<br>0.0764                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0619                                                                                                                                                                                                                                                                          | 0.0456                                                                                                                                                                                                                                                                   |
|                  | 0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $n_x = 0$<br>0.0804<br>0.1926                                                                                                                                                                                                                                                                                        | 0.5<br>0.0808<br>0.1970                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power-la<br>1<br>0.0801<br>0.1991                                                                                                                                                                                                                                                          | aw index<br>2<br>0.0764<br>0.1984                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0619<br>0.1847                                                                                                                                                                                                                                                                | 0.0456<br>0.1703                                                                                                                                                                                                                                                         |
|                  | 0<br>0.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r} n_x = 0 \\         0.0804 \\         0.1926 \\         0.2422 \end{array} $                                                                                                                                                                                                                   | 0.5<br>0.0808<br>0.1970<br>0.2456                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468                                                                                                                                                                                                                                                | 2<br>0.0764<br>0.1984<br>0.2448                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0619<br>0.1847<br>0.2312                                                                                                                                                                                                                                                      | 0.0456<br>0.1703<br>0.2200                                                                                                                                                                                                                                               |
|                  | 0<br>0.5<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n_x = 0$<br>0.0804<br>0.1926                                                                                                                                                                                                                                                                                        | 0.5<br>0.0808<br>0.1970                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379                                                                                                                                                                                                                                      | aw index<br>2<br>0.0764<br>0.1984                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0619<br>0.1847<br>0.2312<br>0.2240                                                                                                                                                                                                                                            | 0.0456<br>0.1703                                                                                                                                                                                                                                                         |
|                  | 0<br>0.5<br>1<br>2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \begin{array}{r} n_x = 0 \\         0.0804 \\         0.1926 \\         0.2422 \end{array} $                                                                                                                                                                                                                   | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578                                                                                                                                                                                                                                                                                                                                                                                                                         | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572                                                                                                                                                                                                                            | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0619<br>0.1847<br>0.2312                                                                                                                                                                                                                                                      | 0.0456<br>0.1703<br>0.2200                                                                                                                                                                                                                                               |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r} n_x = 0 \\         0.0804 \\         0.1926 \\         0.2422 \\         0.2369 \end{array} $                                                                                                                                                                                                 | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381                                                                                                                                                                                                                                                                                                                                                                                                                                   | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379                                                                                                                                                                                                                                      | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0619<br>0.1847<br>0.2312<br>0.2240                                                                                                                                                                                                                                            | 0.0456<br>0.1703<br>0.2200<br>0.2169                                                                                                                                                                                                                                     |
|                  | 0<br>0.5<br>1<br>2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $n_x = 0$ 0.0804 0.1926 0.2422 0.2369 0.1579                                                                                                                                                                                                                                                                         | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578                                                                                                                                                                                                                                                                                                                                                                                                                         | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572                                                                                                                                                                                                                            | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499                                                                                                                                                                                                                                  | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461                                                                                                                                                                                                                           |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $n_x = 0$ 0.0804 0.1926 0.2422 0.2369 0.1579 0.1320                                                                                                                                                                                                                                                                  | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319                                                                                                                                                                                                                                                                                                                                                                                                               | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315                                                                                                                                                                                                                  | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264                                                                                                                                                                                                                        | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229                                                                                                                                                                                                                 |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \end{array}$                                                                                                                                                                                                         | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305                                                                                                                                                                                                                                                                                                                                                                                                     | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293                                                                                                                                                                                                        | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301<br>0.1251                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055                                                                                                                                                                                                              | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766                                                                                                                                                                                                       |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \end{array}$                                                                                                                                                                                     | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181                                                                                                                                                                                                                                                                                                                                                                                 | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129                                                                                                                                                                                    | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301<br>0.1251<br>0.3216<br>0.4002                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663                                                                                                                                                                                            | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388                                                                                                                                                                                    |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \end{array}$                                                                                                                                                                           | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109                                                                                                                                                                                                                                                                                                                                                                       | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054                                                                                                                                                                          | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301<br>0.1251<br>0.3216<br>0.4002<br>0.3935                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.0619\\ 0.1847\\ 0.2312\\ 0.2240\\ 0.1499\\ 0.1264\\ 0.1055\\ 0.29\\ 0.3663\\ 0.3659\end{array}$                                                                                                                                                             | $\begin{array}{c} 0.0456\\ 0.1703\\ 0.2200\\ 0.2169\\ 0.1461\\ 0.1229\\ 0.0766\\ 0.259\\ 0.3388\\ 0.3457\end{array}$                                                                                                                                                     |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \end{array}$                                                                                                                                                                 | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694                                                                                                                                                                                                                                                                                                                                                             | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665                                                                                                                                                                | 2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301<br>0.1251<br>0.3216<br>0.4002<br>0.3935<br>0.2605                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.0619\\ 0.1847\\ 0.2312\\ 0.2240\\ 0.1499\\ 0.1264\\ 0.1055\\ 0.29\\ 0.3663\\ 0.3659\\ 0.247\\ \end{array}$                                                                                                                                                  | $\begin{array}{c} 0.0456\\ 0.1703\\ 0.2200\\ 0.2169\\ 0.1461\\ 0.1229\\ 0.0766\\ 0.259\\ 0.3388\\ 0.3457\\ 0.2356\end{array}$                                                                                                                                            |
| 2                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \end{array}$                                                                                                                                                       | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694<br>0.2143                                                                                                                                                                                                                                                                                                                                                   | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125                                                                                                                                                      | xw index<br>2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301<br>0.1251<br>0.3216<br>0.4002<br>0.3935<br>0.2605<br>0.2087                                                                                                                                                                                                                                                                                                                                                           | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996                                                                                                                                                               | $\begin{array}{c} 0.0456\\ 0.1703\\ 0.2200\\ 0.2169\\ 0.1461\\ 0.1229\\ 0.0766\\ 0.259\\ 0.3388\\ 0.3457\\ 0.2356\\ 0.1899\end{array}$                                                                                                                                   |
| 1                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \end{array}$                                                                                                                                             | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694<br>0.2143<br>0.164                                                                                                                                                                                                                                                                                                                                          | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633                                                                                                                                            | xw index<br>2<br>0.0764<br>0.1984<br>0.2448<br>0.2348<br>0.1552<br>0.1301<br>0.1251<br>0.3216<br>0.4002<br>0.3935<br>0.2605<br>0.2087<br>0.1588                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.0619\\ 0.1847\\ 0.2312\\ 0.2240\\ 0.1499\\ 0.1264\\ 0.1055\\ 0.29\\ 0.3663\\ 0.3659\\ 0.247\\ 0.1996\\ 0.1332 \end{array}$                                                                                                                                  | $\begin{array}{c} 0.0456\\ 0.1703\\ 0.2200\\ 0.2169\\ 0.1461\\ 0.1229\\ 0.0766\\ 0.259\\ 0.3388\\ 0.3457\\ 0.2356\\ 0.1899\\ 0.0893\\ \end{array}$                                                                                                                       |
| 2                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \end{array}$                                                                                                                         | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694<br>0.2143<br>0.164<br>0.3376                                                                                                                                                                                                                                                                                                                                | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344                                                                                                                                  | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252                                                                                                                                                                                                                              | $\begin{array}{c} 0.0619\\ 0.1847\\ 0.2312\\ 0.2240\\ 0.1499\\ 0.1264\\ 0.1055\\ 0.29\\ 0.3663\\ 0.3659\\ 0.247\\ 0.1996\\ 0.1332\\ 0.2924\\ \end{array}$                                                                                                                       | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519                                                                                                                                  |
| 2                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>0<br>0<br>0.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \end{array}$                                                                                                               | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694<br>0.2143<br>0.164<br>0.3376<br>0.4203                                                                                                                                                                                                                                                                                                                      | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154                                                                                                                        | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037                                                                                                                                                                                                             | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699                                                                                                                                 | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335                                                                                                                         |
| 2                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>12<br>5<br>10<br>0<br>0<br>5<br>1<br>2<br>5<br>10<br>0<br>0<br>5<br>1<br>2<br>5<br>10<br>0<br>0<br>5<br>1<br>2<br>5<br>10<br>0<br>0<br>5<br>1<br>2<br>5<br>10<br>0<br>0<br>5<br>10<br>0<br>0<br>5<br>10<br>10<br>0<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \end{array}$                                                                                                     | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694<br>0.2143<br>0.164<br>0.3376<br>0.4203<br>0.4309                                                                                                                                                                                                                                                                                                            | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254                                                                                                              | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138                                                                                                                                                                                            | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852                                                                                                                       | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587                                                                                                               |
| 2                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>1<br>2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \end{array}$                                                                                           | 0.5<br>0.0808<br>0.1970<br>0.2456<br>0.2381<br>0.1578<br>0.1319<br>0.1305<br>0.3345<br>0.4181<br>0.4109<br>0.2694<br>0.2143<br>0.164<br>0.3376<br>0.4203<br>0.4309<br>0.3002                                                                                                                                                                                                                                                                                                  | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297                                                                                                     | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903                                                                                                                                                                           | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745                                                                                                             | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577                                                                                                     |
| 1<br>2<br>4      | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \end{array}$                                                                                           | $\begin{array}{r} 0.5\\ 0.0808\\ 0.1970\\ 0.2456\\ 0.2381\\ 0.1578\\ 0.1319\\ 0.1305\\ 0.3345\\ 0.3345\\ 0.4181\\ 0.4109\\ 0.2694\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.4309\\ 0.3002\\ 0.2369\end{array}$                                                                                                                                                                                                                                                                   | Power-la<br>1<br>0.0801<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346                                                                                                     | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299                                                                                                                                                          | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218                                                                                                    | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032                                                                                           |
| 2                | 0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0.5<br>1<br>2<br>5<br>10<br>0<br>0<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \end{array}$                                                                                 | $\begin{array}{c} 0.5\\ 0.0808\\ 0.1970\\ 0.2456\\ 0.2381\\ 0.1578\\ 0.1319\\ 0.1305\\ 0.3345\\ 0.3345\\ 0.4181\\ 0.4109\\ 0.2694\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.4309\\ 0.3002\\ 0.2369\\ 0.1751\\ \end{array}$                                                                                                                                                                                                                                                       | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740                                                                                 | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682                                                                                                                                         | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.218<br>0.1368                                                                                 | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828                                                              |
| 1<br>2<br>4      | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \end{array}$                                                                       | $\begin{array}{r} 0.5\\ 0.0808\\ 0.1970\\ 0.2456\\ 0.2381\\ 0.1578\\ 0.1319\\ 0.1305\\ 0.3345\\ 0.4181\\ 0.4109\\ 0.2694\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.4309\\ 0.3002\\ 0.2369\\ 0.1751\\ 0.2995\\ \end{array}$                                                                                                                                                                                                                                                       | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978                                                                       | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915                                                                                                                        | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.218<br>0.1368<br>0.2624                                                                       | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187                                                    |
| 1<br>2<br>4      | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 1\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \end{array}$                                                             | $\begin{array}{c} 0.5\\ 0.0808\\ 0.1970\\ 0.2456\\ 0.2381\\ 0.1578\\ 0.1319\\ 0.1305\\ 0.3345\\ 0.4181\\ 0.4109\\ 0.2694\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.4309\\ 0.3002\\ 0.2369\\ 0.1751\\ 0.2995\\ 0.3739\\ \end{array}$                                                                                                                                                                                                                                              | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712                                                             | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635                                                                                                       | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.1368<br>0.2624<br>0.3356                                                   | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992                                          |
| 1<br>2<br>4      | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$ | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \end{array}$                                                   | $\begin{array}{c} 0.5\\ 0.0808\\ 0.1970\\ 0.2456\\ 0.2381\\ 0.1578\\ 0.1319\\ 0.1305\\ 0.3345\\ 0.3345\\ 0.4181\\ 0.4109\\ 0.2694\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.4309\\ 0.3002\\ 0.2369\\ 0.1751\\ 0.2995\\ 0.3739\\ 0.3980\\ \end{array}$                                                                                                                                                                                         | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943                                                   | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859                                                                                      | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.218<br>0.2624<br>0.3356<br>0.3616                                          | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340                                                   |
| 1<br>2<br>4      | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 5\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$                                                                        | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \end{array}$                                         | $\begin{array}{c} 0.5\\ \hline 0.0808\\ 0.1970\\ 0.2456\\ 0.2381\\ 0.1578\\ 0.1319\\ 0.1305\\ 0.3345\\ 0.4181\\ 0.4109\\ 0.2694\\ 0.2143\\ 0.164\\ 0.3376\\ 0.4203\\ 0.4309\\ 0.3002\\ 0.2369\\ 0.1751\\ 0.2995\\ 0.3739\\ 0.3980\\ 0.2930\\ \end{array}$                                                                                                                                                                                                                     | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902                                         | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843                                                                     | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.1368<br>0.2624<br>0.3356<br>0.3616<br>0.2690                               | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503                                         |
| 1<br>2<br>4      | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \\ 0.2345 \end{array}$                               | 0.5           0.0808           0.1970           0.2456           0.2381           0.1578           0.1319           0.1305           0.3345           0.4181           0.4109           0.2694           0.2143           0.164           0.3376           0.4203           0.4309           0.3002           0.2369           0.1751           0.2995           0.3739           0.3980           0.2930           0.2322                                                    | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902<br>0.2299                               | aw index           2           0.0764           0.1984           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843           0.2252                                                                     | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.2624<br>0.3356<br>0.3616<br>0.2690<br>0.2126                               | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503<br>0.1957                               |
| 1<br>2<br>4      | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \\ 0.2345 \\ 0.1784 \end{array}$                     | 0.5           0.0808           0.1970           0.2456           0.2381           0.1578           0.1319           0.1305           0.3345           0.4181           0.4109           0.2694           0.2143           0.164           0.3376           0.4203           0.4309           0.3002           0.2369           0.1751           0.2995           0.3739           0.3980           0.2930           0.2322           0.1780                                   | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902<br>0.2299<br>0.1764                     | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843                                                                     | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.1368<br>0.2624<br>0.3356<br>0.3616<br>0.2690<br>0.2126<br>0.1345           | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503<br>0.1957<br>0.0754                     |
| 1<br>2<br>4<br>8 | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \\ 0.2345 \end{array}$                               | 0.5           0.0808           0.1970           0.2456           0.2381           0.1578           0.1319           0.1305           0.3345           0.4181           0.4109           0.2694           0.2143           0.164           0.3376           0.4203           0.4309           0.3002           0.2369           0.1751           0.2995           0.3739           0.3980           0.2930           0.2322                                                    | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902<br>0.2299                               | aw index           2           0.0764           0.1984           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843           0.2252                                                                     | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.2624<br>0.3356<br>0.3616<br>0.2690<br>0.2126                               | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503<br>0.1957                               |
| 1<br>2<br>4<br>8 | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \\ 0.2345 \\ 0.1784 \end{array}$                     | 0.5           0.0808           0.1970           0.2456           0.2381           0.1578           0.1319           0.1305           0.3345           0.4181           0.4109           0.2694           0.2143           0.164           0.3376           0.4203           0.4309           0.3002           0.2369           0.1751           0.2995           0.3739           0.3980           0.2930           0.2322           0.1780                                   | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902<br>0.2299<br>0.1764                     | aw index           2           0.0764           0.1984           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843           0.2252           0.1697                                                    | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.1368<br>0.2624<br>0.3356<br>0.3616<br>0.2690<br>0.2126<br>0.1345           | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503<br>0.1957<br>0.0754                     |
| 1<br>2<br>4<br>8 | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \\ 0.2345 \\ 0.1784 \\ 0.2733 \end{array}$           | 0.5           0.0808           0.1970           0.2456           0.2381           0.1578           0.1319           0.1305           0.3345           0.4181           0.4109           0.2694           0.2143           0.164           0.3376           0.4203           0.4309           0.3002           0.2369           0.1751           0.2995           0.3739           0.3980           0.2930           0.2322           0.1780           0.2739                  | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902<br>0.2299<br>0.1764<br>0.2732           | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843           0.2252           0.1697           0.2687                  | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.2624<br>0.3356<br>0.3616<br>0.2690<br>0.2126<br>0.1345<br>0.2420           | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503<br>0.1957<br>0.0754<br>0.1973           |
| 1<br>2<br>4<br>8 | $\begin{array}{c} 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 2\\ 5\\ 10\\ 0\\ 0\\ 0.5\\ 1\\ 0\\ 0\\ 0\\ 0.5\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} n_x = 0 \\ 0.0804 \\ 0.1926 \\ 0.2422 \\ 0.2369 \\ 0.1579 \\ 0.1320 \\ 0.1307 \\ 0.3361 \\ 0.4219 \\ 0.4157 \\ 0.2719 \\ 0.2158 \\ 0.1636 \\ 0.3396 \\ 0.4243 \\ 0.4358 \\ 0.3032 \\ 0.2391 \\ 0.1751 \\ 0.2999 \\ 0.3756 \\ 0.4010 \\ 0.2955 \\ 0.2345 \\ 0.1784 \\ 0.2733 \\ 0.3441 \end{array}$ | 0.5           0.0808           0.1970           0.2456           0.2381           0.1578           0.1319           0.1305           0.3345           0.4181           0.4109           0.2694           0.2143           0.164           0.3376           0.4203           0.4309           0.3002           0.2369           0.1751           0.2995           0.3739           0.3980           0.2930           0.2322           0.1780           0.2739           0.3438 | Power-la<br>1<br>0.0801<br>0.1991<br>0.2468<br>0.2379<br>0.1572<br>0.1315<br>0.1293<br>0.3313<br>0.4129<br>0.4054<br>0.2665<br>0.2125<br>0.1633<br>0.3344<br>0.4154<br>0.4254<br>0.297<br>0.2346<br>0.1740<br>0.2978<br>0.3712<br>0.3943<br>0.2902<br>0.2299<br>0.1764<br>0.2732<br>0.3425 | aw index           2           0.0764           0.1984           0.2448           0.2348           0.1552           0.1301           0.1251           0.3216           0.4002           0.3935           0.2605           0.2087           0.1588           0.3252           0.4037           0.4138           0.2903           0.2299           0.1682           0.2915           0.3635           0.3859           0.2843           0.2252           0.1697           0.2687           0.3374 | 0.0619<br>0.1847<br>0.2312<br>0.2240<br>0.1499<br>0.1264<br>0.1055<br>0.29<br>0.3663<br>0.3659<br>0.247<br>0.1996<br>0.1332<br>0.2924<br>0.3699<br>0.3852<br>0.2745<br>0.218<br>0.2745<br>0.218<br>0.2624<br>0.3356<br>0.3616<br>0.2690<br>0.2126<br>0.1345<br>0.2420<br>0.3132 | 0.0456<br>0.1703<br>0.2200<br>0.2169<br>0.1461<br>0.1229<br>0.0766<br>0.259<br>0.3388<br>0.3457<br>0.2356<br>0.1899<br>0.0893<br>0.2519<br>0.335<br>0.3587<br>0.2577<br>0.2032<br>0.0828<br>0.2187<br>0.2992<br>0.3340<br>0.2503<br>0.1957<br>0.0754<br>0.1973<br>0.2767 |









c) Normal stress  $\sigma_x^*(z)$  d) Shear stress  $\sigma_{xz}^*(z)$  at x = L/2**Fig. 10**. Effect of BCs on the nonlinear static response of 2DFG-McrBs under UL (Input parameter:  $\overline{Q} = 300$ ; L = 20h;  $n_x = n_z = 2$ ;  $K_W = K_G = 25$ ;  $h^* = 1$ )

### 6. Conclusions

This study presents a finite element framework for analyzing the nonlinear static response of 2DFG-McrBs under various loads while resting on an EF. The influence of microstructural size effects on the nonlinear response is captured using the MCST. Geometrical nonlinearity due to mid-plane stretching of the beam is modeled based on the von Kármán assumption. The resulting discretized nonlinear equilibrium equations are solved using the Newton-Raphson iterative method. The reliability and accuracy of the proposed solution methods are validated by comparing the obtained results with previously published data. Furthermore, the effects of geometric parameters, material properties, four different loads, and BCs on the static nonlinear response of 2DFG-McrBs are thoroughly examined.

Based on the obtained results, for all the load cases and boundary conditions, several key conclusions are drawn as follows:

- The length-scale parameters contribute to increasing the rigidity of 2DFG-McrBs compared to macrobeams.
- EFs play a crucial role in the mechanical response of 2DFG-McrBs. They enhance the beam stiffness, leading to a reduction in displacement. Additionally, the shear layer provides better support than the spring layer.
- As the power-law index increases, the McrB stiffness decreases. Consequently, the displacement of 2DFG-McrBs increases, as expected.
- The proposed algorithm and computational program can be applied to analyze other microstructures with complex geometries embedded in multi-physical environments. This serves as a powerful tool for testing,

designing, manufacturing, and optimizing microstructures.

In addition, the developed methodology demonstrates clear advantages in terms of flexibility, accuracy, and computational efficiency. By incorporating microstructural size effects and geometric nonlinearity within a finite element framework, the approach offers a reliable and versatile tool for analyzing microscale structures under realistic loading and boundary conditions. The model's capability to adapt to various design scenarios ensures its potential application in advanced MEMS/NEMS devices and microstructural optimization tasks.

#### Nomenclature

|   | FG   | Functionally graded material                  |
|---|------|-----------------------------------------------|
|   | 2DFG | Bi-directional functionally graded material   |
|   | McrB | Microbeam                                     |
|   | SGET | Strain gradient elasticity theory             |
|   | MCST | Modified couple stre <mark>ss</mark> theory   |
|   | FEM  | Finite el <mark>ement meth</mark> od          |
|   | DQM  | Dif <mark>ferential quad</mark> rature method |
|   | RBT  | Refined beam theory                           |
| 3 | TBT  | Timoshenko beam theory                        |
| 1 | EBBT | Euler–Bernoulli beam theory                   |
|   | MEMS | Microelectromechanical systems                |
|   | NEMS | Nanoelectromechanical systems                 |
|   | BC   | Boundary condition                            |
|   | DOF  | Degree of freedom                             |
|   | EF   | Elastic foundation                            |
|   |      |                                               |

### **Funding Statement**

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

## **Conflicts of Interest**

The author declares that there is no conflict of interest regarding the publication of this article.

## References

- [1] Younis, M.I., 2011. *MEMS linear and nonlinear statics and dynamics*. Springer Science & Business Media.
- [2] Choi, B. & Lovell, E.G., 1997. Improved analysis of mcrbs under mechanical and electrostatic loads. *Journal of Micromechanics and Microengineering*, 7 (1).
- [3] Chaterjee, S. & Pohit, G., 2009. A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. *Journal of Sound and Vibration, 322* (4-5), pp.969–986.
- [4] Abdel-Rahman, E.M. & Nayfeh, A.H., 2003. Secondary resonances of electrically actuated resonant microsensors. *Journal of Micromechanics and Microengineering*, 13 (3).
- [5] Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. & Ahmadian, M.T., 2011. A nonlinear strain gradient beam formulation. *International Journal of Engineering Science*, 49 (11), pp.1256–1267.
- [6] Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. & Tong, P., 2003. Experiments and theory in strain gradient elasticity. *Journal of the Mechanics and Physics of Solids*, 51 (8), pp.1477–1508.
- [7] Yang, F.a.C.M., Chong, A.C.M., Lam, D.C.C. & Tong, P., 2002. Couple stress based strain gradient theory for elasticity. *International Journal of Solids and Structures, 39* (10), pp.2731–2743.
- [8] Mohammadi, H. & Mahzoon, M., 2013. Thermal effects on postbuckling of nonlinear mcrbs based on the modified strain gradient theory. *Composite Structures*, 106, pp.764–776.
- [9] Xia, W., Wang, L. & Yin, L., 2010. Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration. *International Journal of Engineering Science*, 48 (12), pp.2044–2053.
- [10] Asghari, M., Kahrobaiyan, M.H. & Ahmadian, M.T., 2010. A nonlinear timoshenko beam

formulation based on the modified couple stress theory. *International Journal of Engineering Science, 48* (12), pp.1749–1761.

- [11] Pham, Q.-H., Tran, V.K., Tran, T.T., Nguyen, P.-C. & Malekzadeh, P., 2022. Dynamic instability of magnetically embedded functionally graded porous nanobeams using the strain gradient theory. *Alexandria Engineering Journal*, 61 (12), pp.10025-10044.
- [12] Akgoz, B. & Civalek, O., 2013. Buckling analysis of functionally graded mcrbs based on the strain gradient theory. *Acta Mechanica*, 224 (9), pp.2185–2201.
- [13] Ramezani, S., 2012. A micro scale geometrically non-linear timoshenko beam model based on strain gradient elasticity theory. *International Journal of Non-Linear Mechanics*, *47* (8), pp.863–873.
- [14] Ansari, R., Shojaei, M.F. & Gholami, R., 2016. Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded mcrbs using the variational differential quadrature method. *Composite Structures, 136*, pp.669–683.
- [15] Wang, Y.G., Lin, W.H. & Liu, N., 2015. Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. *Applied Mathematical Modelling, 39* (1), pp.117– 127.
- [16] Belabed, Z., Tounsi, A., Bousahla, A.A., Tounsi, A. & Yaylacı, M., 2024. Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: A finite element assessment. *Mechanics Based Design of Structures and Machines, 52* (11), pp.9144-9177.
- [17] Belabed, Z., Bousahla, A.A. & Tounsi, A., 2024. Vibrational and elastic stability responses of functionally graded carbon nanotube reinforced nanocomposite beams via a new quasi-3d finite element model. *Computers and Concrete, 34* (5), pp.625-648.
- [18] Belabed, Z., Tounsi, A., Bousahla, A., Tounsi, A., Khedher, K. & Salem, M. Mechanical behavior analysis of fg-cntrc porous beams resting on winkler and pasternak elastic foundations: A finite element approach. Comput. Concrete 34 (4), 447–476 (2024).

- [19] Belabed, Z., Tounsi, A., Bousahla, A.A., Tounsi, A., Bourada, M. & Al-Osta, M.A., 2024. Free vibration analysis of bi-directional functionally graded beams using a simple and efficient finite element model. *Structural Engineering and Mechanics, An Int'l Journal, 90* (3), pp.233-252.
- [20] Belabed, Z., Tounsi, A., Al-Osta, M.A., Tounsi, A. & Minh, H.-L., 2024. On the elastic stability and free vibration responses of functionally graded porous beams resting on winklerpasternak foundations via finite element computation. *Geomechanics and Engineering*, 36 (2), pp.183-204.
- [21] Meftah, S.A., Aldosari, S.M., Tounsi, A., Cuong-Le, T., Khedher, K.M. & Alluqmani, A.E., 2024. Simplified homogenization technique for nonlinear finite element analysis of in-plane loaded masonry walls. *Engineering Structures*, 306, pp.117822.
- [22] Tounsi, A., Belabed, Z., Bounouara, F., Balubaid, M., Mahmoud, S., Bousahla, A.A. & Tounsi, A., 2024. A finite element approach for forced dynamical responses of porous fg nanocomposite beams resting on viscoelastic foundations. *International Journal of Structural Stability and Dynamics*, pp.2650078.
- [23] Benmesssaoud, M. & Nasreddine, M.M., 2019. Optimization of mems capacitive accelerometer. *Microsystem Technologies*.
- [24] Fei, J. & Ding, H., 2017. System dynamics and adaptive control for mems gyroscope sensor. *Applied Industrial Robotics Systems*.
- [25] Russo, C., Mocera, F. & Somà, A., 2021. Mems sensors for sport engineer applications. pp.12056.
- [26] Şimşek, M., Kocatürk, T. & Akbaş, Ş.D., 2013. Static bending of a functionally graded microbeam timoshenko beam model based on the modified couple stress theory. *Composite Structures*, 95, pp.740–748.
- [27] Thai, H.T., Vo, P., Nguyen, T.K. & Lee, J., 2013. Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. *Composite Structures*, 95, pp.340–349.
- [28] Dehrouyeh-Semnani, A.M., Mostafaei, H. & Nikkhah-Bahrami, M., 2016. Free flexural vibration of geometrically imperfect functionally graded microbeam based on the

modified couple stress theory. *Journal of Engineering Science*, pp.56–79.

- [29] Sheikholeslami, S.A., Aghdam, M.M., Zappino, E. & Carrera, E., 2017. Application of refined beam theories to the coupled-field analysis of magnetostrictive microbeams. *Composites Part B: Engineering*, 115, pp.1– 14.
- [30] Akbaş, Ş.D., 2017. Free vibration of cracked functionally graded micro-scale beams based on the modified couple stress theory. *International Journal of Structural Stability and Dynamics, 17.*
- [31] Karamanli, A. & Alyodoglu, M., 2020. Vibration of functionally graded and shear deformable porous microplates via the finite element method. *Composite Structures, 237*.
- [32] Karamanli, A., Vo, T.P. & Quasi, A., 2021. 3d theory for functionally graded porous microbeams based on the modified strain gradient theory. *Composite Structures*, 257.
- [33] Tr, H.H., Lan, Y.U. & Bui, T.Q., 2020. Functionally graded reduced-order timoshenko microbeams: A numerical study using iga and modified couple stress theory. *Composite Structures, 254*.
- [34] Attia, M.A. & Mohamed, S.A., 2022. Thermal vibration characteristics of pre/postbuckled bi-directional functionally graded microbeam based on modified couple stress reddy beam theory. *Engineering Computations, 38*, pp.2079–2105.
- [35] Shafiei, N., Kazemi, M. & Ghadiri, M., 2016. Nonlinear vibration of axially functionally graded tapered microbeam. *International Journal of Engineering Science, 102*, pp.16– 26.
- [36] Shafiei, N. & Yarmeni, K., 2017. Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. *Composite Structures, 178*, pp.493–492.
- [37] Attia, M.A. & Mohamed, S.A., 2023. Nonlinear thermal buckling and post-buckling analysis of bidirectional functionally graded microbeams based on reddy beam theory. *Engineering Computations, 38*, pp.523–554.
- [38] Shenas, A.G., Ziaee, S. & Malekzadeh, P., 2017. Nonlinear vibration analysis of pretwisted functionally graded microbeams in

ED PROOF

ED PROOF

ED PROOF

thermal environment. *Thin-Walled Structures*, *118*, pp.87-104.

- [39] Shenas, A.G., Ziaee, S. & Malekzadeh, P., 2021. Nonlinear thermal stability of rotating pre-twisted temperature-dependent fg microblades. *Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 45*, pp.1-22.
- [40] Malekzadeh, P. & Moradi, H., 2024. Large amplitude free vibration of elastically restrained tapered beams resting on nonlinear elastic foundation. *Iranian Journal of Science and Technology, Transactions of Mechanical Engineering*, pp.1-12.
- [41] Pham, Q.-H., Malekzadeh, P., Tran, V.K. & Nguyen-Thoi, T., 2023. Free vibration analysis of functionally graded porous curved nanobeams on elastic foundation in hygro-thermo-magnetic environment. *Frontiers of Structural and Civil Engineering*, 17 (4), pp.584-605.
- [42] Nguyen, V.C., Tran, T.T., Sobhy, M., Hoang, N.T. & Pham, Q.H., 2025. The effective finite element method for free and forced vibration analysis of 2d-fgsw plates lying on an elastic foundation. *Mechanical Based Design of Structures and Machines*, 53 (2), pp.1329–1350.
- [43] Reddy, J.N., 2003. *Mechanics of laminated composite plates and shells: Theory and analysis.* CRC Press.
- [44] Thai, H.T., Vo, T.P., Nguyen, T.K. & Lee, J., 2015. Size-dependent behavior of functionally graded sandwich mcrbs based on the modified couple stress theory. *Composite Structures*, *123*, pp.337–349.
- [45] Karamanlı, A., 2017. Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory. *Composite Structures*, *174*, pp.70–86.
- [46] Dang, N.D., Nguyen, D.K. & Le, C.I., 2024. Size-dependent nonlinear bending of mcrbs based on a third-order shear deformation theory. *Vietnam Journal of Mechanics, 46* (2), pp.119–137.